
Producing Enactable Protocols
in Artificial Agent Societies

George K. Lekeas1, Christos Kloukinas1, and Kostas Stathis2

1 City University London, Northampton Square, London EC1V 0HB
{c.kloukinas,g.k.lekeas}@soi.city.ac.uk

2 Royal Holloway, University of London, Egham Surrey TW20 0EX
kostas.stathis@cs.rhul.ac.uk

Abstract. This paper draws upon our previous work [16,7] in which we pro-
posed the organisation of services around the concept of artificial agent societies
and presented a framework for representing roles and protocols using LTSs. The
agent would apply for a role in the society, which would result in its participation
in a number of protocols. We advocated the use of the games-based metaphor for
describing the protocols and presented a framework for assessing the admission
of the agent to the society on the basis of its competence. In this work we look at
the subsequent question: what information should the agent receive upon entry?.
We can not provide it with the full protocol because of security and overload is-
sues. Therefore, we choose to only provide the actions pertinent to the protocols
that the role the agent applied for participates in the society. We employ branch-
ing bisimulation for producing a protocol equivalent to the original one with all
actions not involving the role translated into silent (τ) actions. However, this ap-
proach sometimes results in non-enactable protocols. In this case, we need to re-
pair the protocol by adding the role in question as a recipient to certain protocol
messages that were causing the problems. We present three different approaches
for repairing protocols, depending on the number of messages from the original
protocol they modify. The modified protocol is adopted as the final one and the
agent is given the role automaton that is derived from the branching bisimulation
process.

1 Introduction

Ubiquitous computing envisages objects with information processing and communi-
cation capabilities that will assist users in their daily tasks [18]. An example of such
an setting could be a “user’s personal assistant” (UPA) running on a Personal Digital
Assistant (PDA). It will have knowledge of the user’s timetable and assist him on the
task(s) he has to carry out. The UPA could, for example, determine the location of the
user and if he has to be at the airport in a short period of time order him a taxi.

In this example, the context and/or location in which the UPA is deployed play a
significant role, as it will have to use a local taxi service or identify the products that are
of interest to the user it represents. Furthermore, such an application will need to have
a number of properties such as autonomy and pro-activity. This is the case as some of
the taxi services the UPA is using might temporarily be down or not accepting a certain

D. Kinny et al. (Eds.): PRIMA 2011, LNAI 7047, pp. 311–322, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 G.K. Lekeas, C. Kloukinas, and K. Stathis

method of payment. On the other hand, it will need to be pro-active and be able to make
decisions on what services to contact and what resources to use.

A paradigm that fits these requirements is this of a single agent or Multi-Agent
System [12]. Such systems exhibit autonomy, reactivity and pro-activeness within the
social context they operate (social ability). Moreover, in a Multi-Agent System no agent
has complete ability to solve the problem, data is spread across the system, no agent
can control the whole system and the computation is asynchronous; UPA will need the
collaboration of other agents providing the required services.

In [16] we proposed the organisation of services around artificial agent societies.
These would be semi-open in the sense of [3] (i.e. new members are accepted only on
completion of a successful application). We should note here that openness is consid-
ered from a membership viewpoint and not, for example, from an agent communication
language or agent architecture perspective.

The agent will choose the society to apply for membership on the basis of its service
needs and apply for a role R in it. It will have to submit its communication abilities
(i.e. the set of messages that it can utter/understand). These will be judged against the
requirements of the protocols that R is participating in. The requirement is that the
agent should be able to understand the messages that it can receive, as well as be able
to utter the messages that R can send.

The representation of protocols is done using the games-based metaphor [15], which
we extended to include different representations for the state of the game. This metaphor
is not related to game theory; we are simply using the notion of game to represent the
evolution of a protocol and not to quantify the agent strategies (which are, in general,
unknown). The representation of the game as a protocol should allow for the represen-
tation of protocol states. These are described by the values of a number of properties we
are interested in; e.g. who was the last player, who is the next one and what is the last
move made in the game. In [15] destructive assignment has been used for this purpose,
i.e., every time there is a change in the value of a property the old value is deleted and
the new one is inserted. However, this is not the only option. Situation Calculus [9]
can be used to represent the state as a sequence of actions forming a situation. On the
other hand, if we are interested in a game that has concurrent moves, Event Calculus
[8] could be used to describe the game state as events happening at specific time points.
Finally, commitments [17] could be used.

Assuming that the agent in question is accepted into the society, there is a new issue
of what part of the protocol it should receive. It could, of course, be provided by the
full protocol but that might not always be easy e.g. for security or information overload
problems. A procedure is, thus, needed for providing the agent only with the protocol
information needed. This procedure should discard (hide from the agent) any parts of
the protocol there is no need to know about as it is not involved in those. It should, also,
ensure that there are no structural problems with the protocol that the agent receives,
i.e., it is enactable. This means that any time the agent needs to take a decision as to
what action to perform next, all information needed for making the decision is available
to it.

The rest of the paper is structured as follows: Section 2 provides a quick overview
of bisimulation, whereas Section 3 describes NetBill, our working example. We present

Producing Enactable Protocols in Artificial Agent Societies 313

our approach for creating the role automata in Section 4. In Section 4.1 we present three
approaches for repairing non-enactable protocols . Finally, Section 5 discusses related
work and we conclude the paper in Section 6.

2 Bisimulation

Bisimulation [10] is a way of minimising LTS on abstract (silent) actions while preserv-
ing the properties of the original model. It can be computed automatically without any
human involvement.

Formally, it can be defined as [13]: A binary relation R on the states of a Labelled
Transition System is bisimulation if whenever s1 R s2:

for all s′1with s1
μ−→ s′1, there is s′2 such that s2

μ−→ s′2 and s′1Rs′2
(∀s′1.s1

μ−→ s′1 ⇒ ∃s′2 : s2
μ−→ s′2, s

′
1Rs′2);

the converse, on the transitions emanating from s2

(∀s′2.s2
μ−→ s′2 ⇒ ∃s′1 : s1

μ−→ s′1, s
′
2Rs′1).

(1)

As the state of the protocol can be determined at any stage by the actions that have been
already executed and the choice of what action to execute next, two equivalent (bisimi-
lar) systems should represent the same evolution. This means that for any evolution of
the first system (the original protocol), the second system (bisimulated model) should
be able to evolve in the same way and any choice of actions in the first system should
exist in the second system as well.

Any action the role in question is not involved in, either as a sender or amongst
the recipients, is replaced by a silent (τ) action. Depending on how silent actions are
treated, we distinguish between different types of bisimulation. The first option is to
merge all silent actions with the first non-silent one, i.e. τ�α ≡ α. This is a quick and
easy way of dealing with τ actions, but it does not respect the structure of the protocol.

Branching bisimulation rectifies this by considering the structure of the LTS as well.
Two LTS P and Q are branching bisimilar via a relationship R if: (i) their initial states
are related via R and (ii) if r and s are related by R and r

α−→ r′, then either α = τ or
there exists a path s ⇒ s1

α−→ s2 ⇒ s′ such that r and s1, r′ and s2 as well as r′ and s′

are related by R.
The difference between the two types of bisimulation can be seen in Fig. 1.
Fig. 1a shows the original protocol with three roles, A, B and C. The protocol starts

with role A sending message α to role B and afterwards role C has the option of sending
B either b or c. Finally, role A can send role B either d or e but this choice is not indepen-
dent of the previous steps. It depends on what message role B received. Fig. 1b shows
the role automaton for role A by replacing any non-observable actions (i.e. actions that
the role is not involved in as sender or recipient) with τ . The result of τ�α bisimulation
is shown in Fig. 1c. According to this, role A sends message α to role B and then it can
send B either d or e.

However, this is not accurate. The choice of the second message is not with A, but
depends on the choice that C made on the previous step. This is knowledge that role A

314 G.K. Lekeas, C. Kloukinas, and K. Stathis

A −> B: e

4

3

20 1A −> B: a

C −> B: b

C −> B: c

A −> B: d

(a) Full Protocol

A −> B: e

4

3

20 1A −> B: a

A −> B: dτ

τ

(b) Protocol with τ

A−>B: e

20 1A−>B: a

A−>B: d

(c) Result of τ�α Bisimulation

4

3

20 1A−>B: a

A−>B: d

A−>B: e
τ

τ

(d) Result of Branching Bisimulation

Fig. 1. Non-implementable protocol due to incomplete knowledge

does not have (in effect, it does not know neither whether role C acted nor what message
it chose to send). Branching bisimulation in Fig. 1d takes this into consideration by
keeping the two branches with τ actions and not discarding them, even if they do not
represent role A’s knowledge. This means that for role A the protocol that it should
receive should be the same as the original one with the τ actions, even if they do not
represent role’s knowledge.

3 The Netbill Protocol

In this section, we introduce a variation of the e-commerce protocol NetBill [6]. This
can be used by a society that aims at allowing merchants to sell goods to customers
and make use of payment gateways in order to collect payment. An agent wishing to
enter a society where Netbill is available will have to apply for the role of customer,
merchant or gateway depending on the goal it wishes to achieve when entering the
society. In the original protocol, there are three roles - customer (c), merchant (m) and
gateway (g)- and eight overall steps for a customer to purchase goods from a merchant
and the merchant to process payment for the order through NetBill’s gateway. These
are depicted in Fig. 2 and are as follows:

Producing Enactable Protocols in Artificial Agent Societies 315

c rq m

s0 s7s6

c oa m m pq c

c oa m

m pq c

s8s1 s2 s3 s4 s5

c sepo m

m dgb c

m dg c

m dga c m seepo g m dgk cg sr m

Fig. 2. A variant of the NetBill protocol

– The customer requests a quote for some digital goods from a merchant - see the
transition (s0, (c, rq, {m}), s8), i.e., from state 0 to state 8, labelled as (c, rq, {m}).

– The merchant provides a quote to the customer - (s8, (m, pq, {c}), s7).
– The customer accepts the quote made by the merchant - (s7, (c, oa, {m}), s6).
– The merchant proceeds to deliver the ordered goods encrypted with a key K -

(s6,(m, dg, {c}), s1).
– The customer signs an Electronic Purchase Order (EPO) with the merchant - (s1,

(c, sepo, {m}), s2).
– The merchant signs in its turn the EPO and sends it to the NetBill gateway - (s2,

(m, ssepo, {g}), s3).
– The NetBill gateway internally checks the information on the EPO, transfers the

money and ends by sending the merchant a receipt - (s3,(g, sr, {m}),s4).
– Finally, the merchant sends the customer the key needed to decrypt the goods it

purchased - (s4, (m, dgk, {c}), s5).

We made the following additions to the original NetBill protocol to create one with
branching structure so that we can illustrate problems when the agent has to make a
decision but does not have all the information required:

– The merchant can now make a price quote directly - (s0, (m, pq, {c}), s7); e.g., in
the case of a promotional offer.

– The merchant could select to deliver the goods as its first move - (s0, (m, dga, {c}),
s1); e.g., when the customer has good credit and solid reputation with that mer-
chant. In this case, the encryption method used in the delivery can be more relaxed
than the normal one as the process involves a trusted customer.

– The customer might accept the merchant’s quote directly - (s0,(c, oa, {m}), s6);
e.g., when the merchant is trusted or this is a recurring order.

– On reception of a quote request, the merchant can make the quote and ship the
goods directly without waiting for a formal acceptance of the quote - (s8, (m, dgb,
{c}), s1); e.g. when dealing with a trusted customer or a recurring order. The de-
livery and encryption method will have to be different again, as if it is a recurring
order it will mean that the customer is low on stock for this particular item.

316 G.K. Lekeas, C. Kloukinas, and K. Stathis

4 Producing the Final Enactable Protocol

In order to derive the role automata for each individual role involved in the protocol,
the followed process is applied:

1. prepare the initial role automaton, i.e. the automaton we get from the original pro-
tocol automaton by replacing actions for which the role is neither the sender nor
amongst the recipients by τ ;

2. run branching bisimulation on the resulting automaton;
3. examine the resulting automaton for the presence of τ actions;

(a) if τ actions exist but not make the protocol non-enactable, this is the protocol
that the role receives;

(b) if τ actions exist and they make the protocol non-enactable, then the protocol
is repaired using one of the approaches in Section 4.1 and we start over with
the updated protocol automaton.

By following this process, the protocol for the gateway role of the NetBill protocol is
reduced to two transitions and three states, as shown in Fig. 3.

s2

BG
m ssepo g g sr m

s0 s1

Fig. 3. The gateway role of NetBill after running branching bisimulation

The resulting protocol for the merchant agent would be the whole protocol, as the
merchant is involved in all communications, while for the customer agent it would be
the whole protocol except for the messages involving the gateway agent. The customer
needs have no knowledge of these.

4.1 Protocol Repair

The NetBill protocol has been decomposed into role automata with no silent actions in
them, as it is a well designed protocol. However, the breakdown of a protocol into its
constituent roles need not always produce enactable specifications. If the resulting role
automaton contains silent (τ) actions, then repair might be required. The repair process
takes place at step 3b of Section 4 and consists of adding the role in question to the
recipients of certain moves from the original protocol. The choice of the moves will
depend on the algorithm we choose for the repair; the following sections describe three
such algorithms starting with the one that will make most repairs to the protocol and
finishing with the one making the least.

Producing Enactable Protocols in Artificial Agent Societies 317

Updating All τ Actions. One approach is to find the equivalent states in the original
protocol of the problematic states in the bisimulated one and add the role as a recipient
to any messages originating from these states in the protocol. The algorithm is described
in Listing 1.1.

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP
2 repair(GP, RP_badState, GP_role) {
3 GP_class= equivalence_class(RP_badstate, GP);
4 // Add role to the recipients of the moves of these states
5 foreach (GP_state in GP_class)
6 foreach (GP_tran from GP_state.transitions)
7 GP_tran.move.receivers = GP_tran_move.receivers ∪ GP_role;
8 }

Listing 1.1. Updating all silent transitions

This algorithm repairs the protocol by adding the extra information that was missing
and was causing the occurrence of the τ move, i.e., adds the role in question to the
recipients of the communication act. At the beginning, we calculate all states from
the original protocol that are in the equivalence class of the originating state of the
transition with the silent move in the bisimulated protocol. Once these are found, for
every transition that starts from these states in the original protocol, the set of receivers
is updated with the inclusion of the role whose automaton we are calculating.

Updating Frontier τ Actions. Another approach would be to repair a few transitions
of the original protocol, those that start from any state in the original protocol that
belongs to the same equivalence class as the original state of the silent action in the
bisimulated protocol and finish in any of the states belonging to the same equivalence
class as the end state of the same transition. The intuition here is that τ transitions within
states of the same equivalent class will not be present in the resulting role automaton,
so no repair is needed.

C1 C2

τ

s6

s8

s1 s2

s4
s7

s5

s3

τ

τ

τ

τ

τ

τ

Fig. 4. Branching Bisimulation Equivalence Classes

318 G.K. Lekeas, C. Kloukinas, and K. Stathis

In Fig. 4 after running branching bisimulation we have states s1 and s2 linked with
a τ transition. However, as branching bisimulation is an equivalence relation placing
states into equivalence classes, each of these two states would belong to an equivalence
class of states from the original automaton. In this case, we have two equivalence classes
C1 = {s3, s4, s5} (represented by s1) and C2 = {s6, s7, s8} (represented by s2). By
looking at the transitions, we can see that the transitions from states belonging to class
C1 to states belonging to class C2 are all τ transitions that need to be repaired. The
benefit, however, in comparison with the approach described in Section 4.1 is that we
do not repair any silent transitions internal to the class , i.e., the transitions from s3 to
s4, s4 to s5 and s5 to s3.

The algorithm that performs the repair is described in Listing 1.2:

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP
2 repair(GP, RP_Transition, GP_role) {
3 RP_initial_state = RP_Transition.initial_state;
4 RP_end_state = RP_Transition.final_state;
5 GP_equiv_initial_states = equivalence_class(initial_state,
6 GP);
7 GP_equiv_end_states = equivalence_class(RP_end_state,GP);
8 //Add role in the recipients of the moves
9 //of those transitions that start in

10 //GP_equiv_initial_states, end in GP_equiv_end_states
11 //and is a silent transition in the original protocol
12 foreach (GP_tran from GP_state.transitions) {
13 GP_initial_state = GP_tran.initial_state;
14 GP_final_state = GP_tran.final_state;
15 GP_m = GP_tran.move;
16 GP_recipients = GP_tran.recipients;
17 if (GP_initial_state ∈ GP_equiv_initial_states ∧
18 GP_final_state ∈ GP_equiv_end_states ∧
19 GP_role /∈ GP_recipients)
20 GP_tran.move.recipients = GP_tran.move.recipients ∪
21 GP_role;
22 }
23 }

Listing 1.2. Updating silent actions by looking at equivalence groups

Updating Selected τ Actions. Our approaches to protocol repair so far, have consid-
ered silent actions as something that needs to be removed from the role’s final automa-
ton - their presence would imply lack of knowledge and failure in implementation.

However, this is not always true. A role will need to have a silent action repaired only
if it is causing problems in the role’s action selection process. Assuming a branch where
the first move in both leaves is τ , the following combinations exist for the follow-ups:

– the two actions following the silent ones are both receive actions for the role - in
that case, we do not need to repair the transition as the role has no decision to make
and just waits to receive a message;

– the two actions following the silent ones are both send actions for the role and they
are different in terms of either the move or the recipients of the move (or both);
in this case repair is needed so that the role will have the required information to
decide on which move to pursue;

Producing Enactable Protocols in Artificial Agent Societies 319

– one of the following moves is a send, while the second one is a receive; we need
to repair the protocol in this case too, as the role in question will need the extra
information to decide whether it will wait to receive the prescribed message or go
ahead and send a message.

If such moves are found in a role’s LTS, then they need to be repaired. This presents
the overhead of having to examine a much larger section of the protocol every time we
come across a silent move, but gives smaller final protocol sizes.

The algorithm for repairing a protocol in this way is shown in Listing 1.3 (this time
we have to include the role LTS as well).

1 // Game Protocol ⇒ GP, Role Protocol ⇒ RP
2 repair(GP, RP_Transition, GP_role, RP) {
3 RP_initial_state = RP_Transition.initial_state;
4 RP_end_state = RP_Transition.final_state;
5 // check if the transition needs to be repaired
6 RP_outgoing_transitions = find_outgoing(RP_initial_state);
7 forall (t ∈ RP_outgoing_transitions,k ∈ RP_outgoing_transitions, k �= t){
8 if (t.Move == "tau" ∧ k.Move == "tau"){
9 final_state_t = t.FinalState;

10 final_state_k = k.FinalState;
11 outgoing_transitions_newt = find_outgoing(final_state_t);
12 outgoing_transitions_newk = find_outgoing(final_state_k);
13 forall (r ∈ outgoing_transitions_newt ∧ s ∈

outgoing_transitions_newk){
14 Move1 = r.Move; Move2 = s.Move;
15 sender1 = r.Sender; sender2 = s.Sender;
16 Recipients1 = r.Recipients; Recipients2 = s.Recipients;
17 if ((sender1 == sender2 == GP_Role) ∧ ((Move1 �= Move2) ∨ (

Recipient1 �= Recipient2)) ∨
18 (Sender1 == GP_Role ∧Sender2 �= GP Role ∧ GP Role ∈ Recipient2)){
19 // repair process
20 initial_equiv =equivalence_class(RP_initial_state,GP);
21 end_equiv = equivalence_class(RP_end_state,GP);
22 forall (v ∈ GP.Transitions) {
23 initial_state = v.InitialState;
24 final_state = v.FinalState;
25 if (initial_state ∈ initialequiv ∧
26 final_state ∈ endequiv)
27 v.Recipients = v.Recipients ∪ GP_Role;
28 }
29 }
30 }
31 }
32 }

Listing 1.3. Updating selected silent transitions for role R

Example of Protocol Repair. As an example of protocols requiring repair, we can look
at the example in Fig. 1d. According to τ�α bisimulation there is no need for repair as no
silent actions are present in the resulting automaton. However, when running branching
bisimulation two silent actions remain. The issue here is that role A arrives at a point
where it has to make a decision as to which message to send to role B, but this decision
will depend on the previous decision of role C for which A has no information about.

In this case, because of the size and the structure of the protocol, all repair algorithms
will require the addition of role A to the recipients of messages starting from state one
and emanating to states three and four. Thus, role A should receive all messages of the
protocol and receives the protocol in Fig. 5.

320 G.K. Lekeas, C. Kloukinas, and K. Stathis

C−>{B,A}:c

4

3

20 1

A−>B: d

A−>B: e

A−>B: a

C−>{B,A}:b

Fig. 5. Final Protocol for role A

5 Related Work

The concept of breaking down (& repairing) a protocol into constituent roles has been
studied using a variety of approaches and protocol representations. In [4], Desai et al.
identify the dangers of moving from the global view of a choreography (or protocol)
to a local view of a single role (or agent) in either web service or multi-agent systems
applications. This is important as the shift of viewpoint and the respective limitations
on what the web service (or agent) can observe might mean that in the isolated agent
view, there might be not enough information to implement their role specification in the
choreography (or protocol).

Their description of the protocol is in a form of rules of the type α ⇒ β. They
demand that the description of the protocol always allows any proposition that is part
of a rule’s consequent to be part of another rule’s antecedent and reachable from the
beginning of the protocol. As a result of these rules, all protocols are enactable.

Furthermore, since they look at protocols as distributed entities and as a composition
of roles, they provide an algorithm for deriving a role skeleton, i.e., the local view of the
interaction that a role will have of the protocol including its own message exchanges.
The role will need to know the messages it can send and receive, as well as any facts
that enable them and lead to the creation (or discharge) of commitments (obligations of
the role to bring about certain properties). The main idea in the algorithm for working
out the role skeleton for a certain role is that if the role does not have knowledge of
the immediate proposition needed to make a decision as to how to proceed, it should
be possible to backtrack and find another one that leads with certainty to the one been
examined. If the role needs to know α but it does not, then the role should go back in
history and find β so that the role knows it and β → α. This algorithm works on the
assumption that protocols are enactable. However, if they are not, there is no proposed
action to rectify the problem.

Bouaziz [2] uses XML and XSD schema to describe a protocol ontology and views
role as a component that can be fully specified by the Role Profile and Role Behaviour
elements, as specified in [1]. In order to provide a full description of a role in the form
of an XML document, all actions involving role R are been identified. Then, for every
action a found a new node is added to the role XML document and all protocol actions

Producing Enactable Protocols in Artificial Agent Societies 321

succeeding a are added to it. As a result, the role schema will contain actions that the
role in question is not directly involved in as we are just selecting everything succeeding
action a from the protocol ontology, rather than the set of actions that the role is involved
in. In our approach, only if the protocol is not enactable, additional knowledge will have
to be inserted.

Blanc and Haumerlain [14] raise the issue of the agent been overloaded with big pro-
tocols if all the information is provided, and suggest the separation of knowledge in two
different aspects. These would be the strategic aspect which is generated by the agent it-
self and consists of generating a strategy for the protocol (e.g. in an auction how should
the agent bid) and the participation aspect that is about the agent actually participating
in the protocol. The participation aspect will, effectively, realise the strategy plotted by
the agent’s strategic aspect. The protocol rules are defined as a Petri Net [11]. In order
to retrieve the rules pertinent to the role, we replace any actions in which the role is not
involved with ε. The idea is that every state in the Petri net will be characterised by a
marking, i.e., the number of tokens on each place of the Petri net. The initial markings
will make up the initial state and the transition relation is an empty set (∅); afterwards,
the Graphe [14] algorithm is applied. Their definition of a protocol can easily be ac-
commodated by the games-based representation in [16]. Moreover, as we are interested
in assessing the agent’s competence and return to the agent the part of the protocol that
it will be assuming in the society, we need the actual content of the messages rather
than the Petri-net markings.

Giordano et al. [5] consider the representation of a local view (or role skeleton), as
they look at the alphabet of each agent (Σi) separately. They are specifically interested
in the actions that agent i can understand (send or receive). Any other action taken in
the protocol will have a local equivalent that will be the empty action (ε) if the agent
in question is not involved in it, either as a sender or a receiver. Also, the way that the
local view of the agent is constructed is essentially by the use of τ�α bisimulation, as
any actions not relevant to the agent are discarded. This leads to problems, especially
for protocols with a branching structure as it is not taken at all into consideration.

6 Conclusion

In this work, we looked at how a protocol specified as an LTS can be broken down into
individual role automata with the use of branching bisimulation. However, no assump-
tion can be made about the enactability of the resulting protocol. In some cases repair
will be needed. We presented three approaches for repairing the protocol differentiating
on the actions that need to get repaired.

This work can be expanded along with the work on the representation of the pro-
tocols in [16]. We are aiming for a representation with a higher level of abstraction,
including the notion of compound games (i.e., describe the initial game as a compo-
sition of smaller games). If the resulting role automata can be composed in the same
way that the original protocol was, it will allow for a much higher level of granularity.
Furthermore, we aim to look closer into the effectiveness of the repair algorithms. We
plan to perform all different repair algorithms on a number of protocols and assess the
number of repairs that they will be making.

322 G.K. Lekeas, C. Kloukinas, and K. Stathis

References

1. Bouaziz, W.: Une Ontologie de Protocoles pour la Coordination de Systèmes Distribués. In:
Journées Francophones sur les Ontologies (JFO), Sousse, Tunisie, 18/10/07-20/10/07. pp.
231–246. Centre de Publication Universitaire (October 2007)

2. Bouaziz, W., Andonoff, E.: Dynamic Execution of Coordination Protocols in Open and
Distributed Multi-Agent Systems. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 609–618. Springer,
Heidelberg (2009)

3. Davidsson, P., Johansson, S.: On the potential of norm-governed behavior in different
categories of artificial societies. Comput. Math. Organ. Theory 12(2-3), 169–180 (2006),
http://dx.doi.org/10.1007/s10588-006-9542-x

4. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design abstrac-
tions for business processes. IEEE Transactions on Software Engineering 31(12), 1015–1027
(2005)

5. Giordano, L., Martelli, A.: Verifying Agents’ Conformance with Multiparty Protocols. In:
Fisher, M., Sadri, F., Thielscher, M. (eds.) CLIMA IX. LNCS, vol. 5405, pp. 17–36. Springer,
Heidelberg (2009)

6. Goradia, V., Mowry, B., Kang, P., Panjwani, M., Lowe, D., Somogyi, A., Magruder, P., Wag-
ner, T., McNeil, D., Yang, C., Arms, W., Sirbu, M., Tygar, D.: Netbill 1994 prototype. TR
1994-11, Information Networking Institute, Carnegie Mellon University (1994)

7. Kloukinas, C., Lekeas, G., Stathis, K.: From agent game protocols to implementable roles.
In: EUMAS 2008, Sixth European Workshop on Multi-Agent Systems, Bath, UK, pp. 1–15
(December 2008)

8. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1),
67–95 (1986)

9. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial in-
telligence, pp. 26–45 (1987)

10. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-
cus (1982)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

12. Nwana, H.S.: Software agents: An overview. Knowledge Engineering Review 11(3), 205–
244 (1996)

13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.
Syst. 31, 15:1–15:41 (2009), http://doi.acm.org/10.1145/1516507.1516510

14. Sibertin-Blanc, C., Hameurlain, N.: Participation Components for Holding Roles in Multia-
gent Systems Protocols. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004.
LNCS (LNAI), vol. 3451, pp. 60–73. Springer, Heidelberg (2005)

15. Stathis, K.: Game–based development of interactive systems. Ph.D. thesis, Department of
Computing, Imperial College London (November 1996)

16. Stathis, K., Lekeas, G., Kloukinas, C.: Competence Checking for the Global E-Service Soci-
ety Using Games. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW
2006. LNCS (LNAI), vol. 4457, pp. 384–400. Springer, Heidelberg (2007)

17. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols. Au-
tonomous Agents and Multi-Agent Systems 2(3), 217–236 (1999)

18. Weiser, M.: The world is not a desktop. ACM Interactions 1(1), 7–8 (1994),
http://doi.acm.org/10.1145/174800.174801

http://dx.doi.org/10.1007/s10588-006-9542-x
http://doi.acm.org/10.1145/1516507.1516510
http://doi.acm.org/10.1145/174800.174801

	Producing Enactable Protocols in Artificial Agent Societies
	Introduction
	Bisimulation
	The Netbill Protocol
	Producing the Final Enactable Protocol
	Protocol Repair

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

