Towards Design-by-Contract Based Software
Architecture Design

Mert Ozkaya
Department of Computer Science
City University London
London, EC1V OHB, UK
Email: mert.ozkaya.l @city.ac.uk

Abstract—Design-by-Contract (DbC) gained wide familiarity
among software developers for specifying software. It aids in
documenting the behaviour of class methods as contracts between
clients of the methods and their suppliers. This not only provides
a user-friendly way of specifying software behaviour but also
facilitates the verification of software correctness.

In this paper, we provide a comprehensive extension to DbC
so that it can be applied to the level of software architecture
design. We illustrate this through our architecture description
language XCD. Components in XCD have four different types
of interfaces: provided and required interfaces of synchronous
methods or emitter and consumer interfaces of asynchronous
events where methods/events are contractually specified. Con-
tract specification is separated into functional and interaction
contracts thus modularising the functional and interaction com-
ponent behaviours. Furthermore, treating interaction protocols
as connectors, XCD allows to specify connectors with interaction
contracts that participating components adhere to.

The formal semantics of XCD are defined using Finite State
Process (FSP) thus enabling formal analysis of contractually spec-
ified software architectures for quality properties, e.g., deadlock.

I. INTRODUCTION

Since early nineties, several architecture description lan-
guages (ADLs) have been developed, e.g., Darwin [17], Uni-
Con [29], Wright [2], LEDA [6], Koala [31], SOFA [26], and
CONNECT [13]. They allow designers to specify architectures
of large and complex systems. Some (Koala and UniCon) place
their focus on automatic code generation, and some (Darwin,
Wright, LEDA, SOFA, and CONNECT) on formal analysis
of software architectures. Those addressing formal analysis
mostly adopt process algebras (e.g., FSP [18] by Darwin
and CONNECT, CSP [12] by Wright or m-calculus [22] by
LEDA) in specifying the behaviour of software architectures.
Indeed, process algebras provide formally defined, mathemati-
cal syntax and semantics and also lead to formal specifications
which can be rigorously analysed through model checker tools.
However, the syntax of process algebras looks unfamiliar to
the practising designers who might find it hard to specify their
systems as parallel composition of processes [1].

Design-by-Contract is another approach [20] that can be
considered as alternative to process algebras in specifying
the behaviour of software architectures. Based on Hoare’s
logic [11] and VDM’s rely-guarantee [4] specification ap-
proach, DbC allows for formal specification of contracts for
software components. A contract herein applies in general to
class methods and is specified as a pair of pre- and post-

Christos Kloukinas
Department of Computer Science
City University London
London, EC1V OHB, UK
Email: C.Kloukinas@city.ac.uk

condition where the former states what the caller of the method
is obliged to do and the latter what benefits are guaranteed
by the method supplier. Practitioners prefer DbC essentially
in test-driven developments to specify test conditions which
are used to verify the software quality. [14], [19]. Originally
intended for Eiffel [21], DbC has so far been adopted by
many programming languages, e.g., Java through JML [5],
[7], [8]. Hence, given the level of familiarity DbC gained, we
strongly believe that if DbC were adopted in specifying the
behaviour of software architectures, practitioners would feel
more comfortable in specifying their software architectures.

DbC has so far been primarily considered for OO pro-
gramming languages; its application to the level software ar-
chitecture design is relatively immature. Indeed, while software
components at the programming level provide only interfaces
to their environments, at the software architecture level they
explicitly require interfaces from outside too. Furthermore,
objects of classes perform synchronous method-based com-
munication only, whereas components at the level of software
architecture can perform asynchronous event-based communi-
cation too.

Being aware of this gap, we focus on extending DbC
to the level of software architecture design; so, designers
can specify software architectures in a both formal and user-
friendly way. To this end, in this paper we present our XCD
ADL adopting our extensions to the DbC and thus enabling
DbC-based software architecture specifications. The rest of
the paper firstly describes syntactically and semantically how
component and connector in XCD are specified in the form
of contracts. Next, the formal semantics of component and
connector specifications are given in Finite State Process (FSP)
enabling the formal analysis of XCD software architectures.
Last part is the related work where similar works are discussed.

II. A DESIGN-BY-CONTRACT BASED ARCHITECTURE
DESCRIPTION LANGUAGE

XCD, initially introduced in [15], extends DbC to bet-
ter support features commonly found in component models
such as CCM [23] and OSGi [24], [30]. XCD supports
the contractual specification of both provided and required
(synchronous) method interfaces which components need to
function properly. Additionally, XCD adds support for the
contractual specification of (asynchronous) event interfaces.
Furthermore, as it treats connectors as first-class entities, XCD
also supports the contractual specification of protocols that the
components use to interact.



A. Component Specification

XCD allows designers to describe freely as components
whatever they deem appropriate performing a functional be-
haviour in their system. Components are distinguished from
component types. Each component type, as shown in Listing 1,
is essentially specified in terms of (i) ports (or interfaces)
representing the points of interaction with their environment,
(ii) data representing the component state.

Listing 1: Generic component structure

component Name {
data; *
provided port Name {
method; +
biox
required port Name {
method; +
biox
emitter port Name ({
event; +
bix
consumer port Name {
event; +
i
} . .

Figure 1 depicts the types of ports a component type can
possess: required and provided for making method-call to
outside and providing methods to outside respectively; emitter
and consumer for emitting events to outside and receiving
events from outside respectively. Required and provided ports
are described with method specifications, while emitter and

consumer ports with event specifications.

FC_ promise_requires. ' ''[ FC_promises_ensures
ensures ‘

[\C promises |

[FC_requires_ensures |

lﬂ!ﬁﬂﬂﬂﬂﬁl

| Consumed_Event | | Provided Method

¢

[Required_Port | [ Emitter_Port Ci _Port |

ﬂ(ﬂmpﬂmlﬂ_ﬁqm

Fig. 1: Meta-model of component ports

[Required Method | [Emitted_Event \

[Provided_Port |

XCD extends DbC firstly by separating in specification
of components the interaction behaviour from functional be-
haviour. As illustrated in Figure 1, each component port
consists of a set of actions (i.e., either method or event actions)
which are described in terms of cleanly separated functional
(F'C_x) and interaction constraints (/C_x). The former allows
for specifying the contract on the parameter arguments of
method/event actions, and the latter for specifying the contract
describing (i) the particular manner in which components
want to behave (i.e., the order of actions) or (ii) the cases
in which they do not know how to behave thus leading to
chaotic behaviour. Note here that XCD allows for the con-
tractual specification of required port behaviours. Furthermore,
the behaviour of ports emitting/receiving events can also be
contractually specified.

1) Required Port: Listing 2 exemplifies a required port
specification through which a client components can make
a request call to a server. Constrained with interaction con-
straints in lines 2-4, the call for request is delayed until the
promised (pre) condition is met, the component data opened
evaluating to true. When a connection is opened, then the
functional constraints in lines 5-12 can be evaluated. There
in line 6, the parameter of the request are promised to be
equal to self (i.e., the id of the component). In this case, upon
receiving the response from the provided port of a server, if
the requirement that an exception is not thrown is satisfied, the
data server Reply is ensured to be equal to the received result;
otherwise (lines 10-11), the component state is not changed.

Listing 2: Required port specification
1 required port client_port{

2 @Interaction{

3 @promises: \when (opened);

4}

5 (@Functional{

6 @promises: caller == self;

7 @requires: !\exception;

8 @ensures: serverReply=\result ;
9 @otherwise

10 @requires: \exception;

1 @ensures: true;

12 }
13 int request (ID caller);

2) Provided Port: Listing 3 exemplifies a provided port
specification. The port server_port receives calls for the
method request from clients. Upon receiving a call for the
request, first the interaction constraints in lines 2-6 are
evaluated. The call is accepted when the initialised data is
true. However, the call is rejected (line 5) if the initialised
evaluates to false, indicating chaotic behaviour. When the
accepts condition is met,then the functional constraints in
lines 7-13 are evaluated. If the requirement that the caller
parameter of the received method-call is non-null is met, then
the component data numO frequests is incremented and the
result to be returned is assigned to 3. If however the caller
is unassigned (lines 11-12), then a NulllID_Exception is
ensured to be thrown to the client.

Listing 3: Provided port specification

1provided port server_port{
2 @Interaction{

3 @accepts: \when(initialised);
4 @otherwise
5 @rejects: \when(!initialised);

6}
7 @Functional{

3 @requires: ! (caller == null);

9 @ensures: numOfrequests++ && \result = 3;
10 @also

1 @requires: caller == null;

12 @ensures: \throws (NullID_Exception);

13 }
14 int request (ID caller);

3) Emitter Port: Listing 4 exemplifies an emitter port speci-
fication. There, the port client_port2 emits an event initialise
to a server. Note that unlike methods, event are specified
without return types — only names and parameters allowed
in its signature. Constrained with an interaction constraint,



the emission of the event ¢nitialise is delayed until what is
promised is met, i.e., the component data opened is true.
When the client opens its connection, then the functional
constraint in lines 5-8 is evaluated. It states that the actual
parameter of the initialise to be emitted is promised to be the
id of the client which then ensures that the data isInitialised
is true. Note that unlike synchronous method ports, event ports
are asynchronous; so, emitter ports do not wait for a response,
nor do reicever ports send response.

Listing 4: Emitter port specification

1emitter port client_port2{

2 @Interaction{

3 @promises: \when (opened);

4}

5 (@Functional{

6 @promises: client == self;

7 @ensures: isInitialised = true;
8
9

}
initialise(ID client);
10 }

4) Consumer Port: Listing 5 exemplifies a consumer port
specification. The server_port2 receives event initialise
from the emitter port of its clients specified in Listing 4.
Constrained with interaction constraints, the event initialise
is accepted when the component data initialised is false.
Otherwise, when initialised is true, the rejects condition
holds leading to chaotic behaviour. When the server is not yet
initialised, the event initialise is received successfully leading
to the functional constraint in lines 7-11 being evaluated.
There, the client parameter of the received initialise event
is required to be non-null which then ensures that the client
argument is stored in the data initialiser.

Listing 5: Emitter port specification

1 consumer port server_port2{
@Interaction{

@accepts: \when(!initialised);
Qotherwise

@rejects: \when(initialised);

2
3
4
5
6}
7 @Functional{
8
9

@requires: ! (client == null);
@ensures: initialised = true &&
10 initialiser = client;

1 }

12 initialise (ID client);

B. Connector Specification

Besides component types specified in the form of
@interaction and Q functional contracts, connector types
are also specified with contracts in XCD.

Connector types are, as shown in Listing 7, specified
in terms of roles and channels. Each role acts as a compo-
nent wrapper that represents the interaction behaviour of that
component interacting via the connector. A role is described
with data, and port-variables. The port-variables of a role
essentially represent the respective ports of the components
adopting the role. Channels of an XCD connector represent the
communication links between interacting role port-variables
and can have different types, e.g., synchronous, buffered, etc.

Representing the component ports, role port-variables

can also be either of four different types depicted in Fig-
ure 1: required, provided, emitter, and consumer. However,
port-variables impose only interaction constraints (through
@interaction contracts) on their actions. Indeed, they serve to
mediate the interaction behaviour of component ports, avoiding
chaotic behaviour. They essentially represent high-level inter-
action protocols that are imposed on the component(s) acting
as the roles of the port-variable. The interaction protocols are
intended for enforcing components to behave in a particular
manner (i.e., through execution of certain action order). In
doing so, components can be avoided from getting involved in
unexpected interactions with other components associated with
the same connector. The end result is then a set of components
interacting with their environments successfully to compose
the whole system.

Listing 6: Generic connector structure

connector Name {
role Name {
data; *
provided port_variable Name {
method; +
bix
required port_variable Name {
method; +
bix
emitter port_variable Name ({
event; +
bix
consumer port_variable Name {
event; +
bix
}

channel; +

}

Listing 7 exemplifies a connector type specification for me-
diating the interaction between a server and a client. Client role
in lines 3-11 are played by client components; server role in
lines 12-20 by server components. The port-variable client_pv
(lines 5-10) in the client role constrains the interaction be-
haviour of the client_port in Listing 2; the Qinteraction
contract herein delays the calls for method request until the
role data isInitialised is true. The @Qinteraction specified
in the server_pv of the server role constrains the server_port
in Listing 3 so that call for method request cannot be accepted
until the role data initialised becomes true. Therefore, client
and server components are prevented from interacting before
they ensure that server is initialised thus avoiding chaos. Note
that due to space restriction, we have not included the port-
variables associating with client_port2 and server_port2
which are to update isInitialised and initialised in client
and server roles respectively.

The channel specification in lines 21-22 essentially de-
scribes the component port pair that are to communicate
with each other. Indeed, the client port playing the client_pv
communicates with the server port playing the server_port in
a synchronous manner.

Components with their ports are passed as actual parame-
ters to connectors. As shown in Listing 7, the clients_server
has a parameter list for each of its role each augmented with its
port-variables. At configuration time, when the clients_server
is instantiated, the components playing the roles are passed as
actual parameters along with their ports.



Listing 7: A connector specification

1 connector clients_server (client{client_pv},

2 server{server_pv} ) {
3 role client{

4 bool isInitialised = false;

5 required port_variable client_pv{

6 @Interaction{

7 @promises: \when (isInitialised);

8 }

9 int request (ID caller);

10 }
11 }
12 role server({

13 bool initialised = false;

14 provided port_variable server_pv{
15 @Interaction{

16 @accepts: \when(initialised);
17 }

18 int request (ID caller);

19 }

20 }

21 channel sync clients2server (client.client_pv,
22 server.server_pv);

III. COMPONENT SEMANTICS

Above, we implicitly explained the semantics of different
port types without providing precise information. Now, we give
the formal semantics of a component specification by showing
how its data and different port types can be translated into
formal Finite State Process (FSP) processes.

Definition 1 The semantics of a component with data D
and ports p1, .., pn 1S the composite process:
Pp, |Pp1-~HPpn (1)
where Pp, is the data process and Ppi,..., P, each is a
composite port process whose definition is:
Pic || Pre,, - || Pre,,, (2)
where Pro is the interaction constraints process and
Prc,,...Prc,,, each is a process for a functional constraints
imposed on a single method/event action taken via the port.
Acting as the component memory, the data process Pp
stores the component data as index variables of its sub process
D. The process D executes read and write actions in a
random order where the read has index variables holding the
current data values, and the write has variables (V' _n) holding
the new data values to overwrite the current values of the D.

1Pp = D([InitialValue(V)]) *,

2D ([Name (V) : Type (V) ]) x =

3 read ([Name (V) ])* — D ([Name(V)]) *
4 | write([Name (V)_n:Type(V)])* — D(
5).

[Name (V) _n]) *

As aforementioned, the interaction constraints for a port
are mapped to P;c. Pjc includes a sub process Port which
firstly locks component data and performs read action. Upon
reading the data, for each event/method action of the port, a
code snippet is produced in the body part.

1 Pr¢ (ID = 1)= Port,

2Port=(lock— read([Name (V) : Type (V) ]) *
3 — P ([Name (V) ])*),

4P ([Name (V) : Type (V) ])* = (

5 Va.ctionEpo'rt.actionL7lst

6 ..body part..
7).

If the port is of emitter or required type, the body part is
produced with the following pattern. There, for each functional
constraint (fc) on the current action a when statement is
produced whose guard is the logical OR of the action’s
interaction constraints. When the guard is true (i.e., at least
one of the interaction constraints are met), the event/method
action is emitted/send, as in line 3, which has the promised
values of the parameters as index variables. If the port is
required, the response action is waited for, as in line 4, which
has result/exception as its index variables. Then, the control
is passed to the process Prc through the internal action in
line 5. Note that it is the Ppc that executes the functional
constraints thus updating component data. Prc then responds
with another internal action as in line 7 where new data
values are stored in the index variables (V' _n). The component
memory is updated with the new data values by executing
write action, and then the memory is released with unlock.

1 vchaction.FunctionalConst'raints
> when (\/ InteractionConstraint)

3 action_e/m([promises(fc,arg)l) «
(— action_e/m([promises(fc,arg)]l) »[r:RES] [e:EX])?

4
5 — internal_action ([Name (arg)]) * ( [Name (V) ]) %
6 ([rllel)?

7 — internal_action ([Name (arg)]) * ( [Name (V) ]) %
8 ([Name (V_n) : Type (V) ]) *

9 — write ([Name (V_n)]) *

10  — unlock

11 — Port

If the port is of consumer or provided type, the body part,
following the below pattern, includes a single when statement
whose guard condition is the [ogical OR of the action’s normal
interaction constraints. When the guard evaluates to true, then
the event/method action is accepted as in line 2. Next, just like
emitter/required ports, the control is passed to the process Ppc
through the internal action in line 3. Pr¢ then responds with
another internal action as in lines 4-6 where new data values
are stored in the index variables (V_n) and in the case of
provided ports so are the result/exception ([r : RES][e : EX]).
The component memory is updated with the new data values
by executing write action, and then the memory is released
with unlock. In the case of provided ports, a response action
is executed as in line 9 which includes as index variables the
action arguments and result/exception.

Besides the when statement for normal interaction con-
straints, another alternative when statement is for the excep-
tional cases as in lines 11-12. When any exceptional interaction
constraints are met, this leads to ERROR state.

1 when (\/ Normal_InteractionConstraint)
2 action_e/m([Name(arg) : Type(arg)]) =

3 — internal_action ([Name (arg)]) * ([Name (V) ]) %
4 — internal_action ([Name (arg)]) * ( [Name (V) ]) %
5 ([Name (V_n) : Type (V) 1) *

6 ([r:RES] [e:EX])?

7 — write ([Name (V_n)]) *

8 — unlock

9 (— action_e/m([arg]) *

10 — Port

11| when (\ Exceptional_InteractionConstraint)

12 action_e/m([Name(arg) : Type(arg)l) »— ERROR

[r][e])?

As aforementioned, the process Pr¢ is produced for each
event/method action of a port to compute the respective func-
tional behaviour. The control is passed from P;o to the Pro
through the internal action in lines 3-4. Note that the internal



action has index variables [r : RES][e : EX] in the case
of required ports which are the result/exception received from
the response action (action_e/m). Then, for each functional
constraint (fc) on the action, a when statement is produced
whose guard is the requires condition of the fc. When the
guard is true, the internal action is responded to the P;o again
along with updated data values (V') as index variables Note
that if the port is provided the result/exception calculated are
also passed as index variables ([r'][¢’] in line 9).

1 vactionEport.actic)nList

2 Pro(ID=1) = (

3 internal_action ([Name (arg) : Type (arg) ]) *

4 ([Name (V) : Type (V) 1) x

5 ([r:RES] [e:EX])?

6 — (VfceFunctionalConstTaints

7 when (requires(fc))

8 internal_action ([Name (arg)])* ([V'])*
9 ([x"]le"])?
10 — Prc)

11 ) o

IV. CONNECTOR SEMANTICS

Just like components, we have not yet provided a precise
definition of connector specification. Below, we give a formal
definition of connector in FSP.

Definition 2 The semantics of a connector with roles r1,...,

Ty, channels chq,..., chy, is the composite process:
P .|| P (3)
where P,i..., P, each is a role process whose definition is:
Pp, || Py - || Bpu,  (4)

where Pp_ is the data process and Py, ,..., Ppy, €ach is a
port-variable process that represents the interaction constraints
imposed on method/event actions taken by the port-variable.

While role data is mapped to a process in the same way
as the component data, port-variables in a role are mapped in
a different way from component ports. This is due to port-
variable imposing solely interaction constraints on actions.

Below is the pattern followed in mapping a port-variable
of any of the four types into an FSP process (FP,,). Firstly,
role memory is locked and data are read as in line 2. Then,
in lines 5-10, for each action of the port-variable, a set of
when statements is produced each corresponding to a unique
interaction constraint (ic) imposed on that action. The when
guard herein is either a promises condition in the case of
emitter and required port-variables or an accepts condition
in the case of consumer and provided port-variables. When
an interaction constraint of an action is met leading to the
respective when guard being true, then the event/method
action is executed as in line 8. This is followed by the write
action which updates the role memory with the new data values
(V_n) imposed by the ensures of the ic.

1 Ppy (ID = 1)= Port_var,

2Port_var=(lock— read([Name (V) :Type (V) ])
3 — Pv ([Name (V) ]) %),

4Pv ([Name (V) : Type (V) ]) x =

5 (vactionEportvar.actionList

6 ic€action.InteractionConstraints

7 when (promises(ic)) //OR accepts(ic)

8 pv_action_e/m([Name(arg) : Type(arg)l) *
9 —write ([Name (V_n)])* — unlock

10 — Port_var

1) .

Channels of a connector are mapped to relabelling func-
tions employed in the composite process corresponding to the
connector. The relabelling function, for each channel, re-names
the actions taken by the required/emitter port-variable in one
end of the channel to the names of the respective actions taken
by the provided/consumer port-variable in the other end. This
enables the port-variable processes to synchronise on these
actions.

As aforementioned, connector receives as actual parame-
ters the components and their ports that play its roles. Each
matching here between a component port and a role port-
variable is also mapped to a relabelling function. That is, the
role port-variable actions are renamed to the respective port
actions. This enables the port and port-variable processes to
synchronise on these actions.

V. RELATED WORK

To the best of our knowledge, XCD ADL is the first
approach to specifying software architectures which applies
DbC comprehensively to both component and connector spec-
ifications. Indeed, contractual specification of components is
two folds: functional and interaction contracts cleanly separat-
ing functional from interaction behaviour of components. The
contracts can be attached to methods provided or required by
ports and events too emitted or received by ports. Moreover,
components interact with each other under the control of inter-
action protocols specified by the connectors. So, XCD allows
to specify interaction protocols as interaction contracts which
the participating components adhere to in their behaviour.

Research community has so far placed their main focus
on applying DbC to component specifications only. Beugnard
et al.’s approach [3] is considered the inspiring work in
applying DbC to components. They proposed four types of
component contracts: basic, behavioural, synchronisation, and
quality-of-service contracts. However, components, just like
Java classes, are considered with provided interfaces ignoring
explicit specification of required interfaces and also interfaces
of asynchronous events. There are also DbC based approaches
that consider components with explicit required interfaces e.g.,
[9] and [16]; however, just like Beugnard et al.’s work, they
do not support interfaces for events either.

Interest shown towards DbC-based architecture specifica-
tion remains rather weak. This seems to be due to current
approaches following CBSE where connectors are not granted
top-level status. Thus, contracts for connectors, through which
components interact, seem to be found immaterial. The work
of Schreiner et al. [28] along with Schmidt et al.’s TrustME
ADL [27] are some of the very few examples applying
DbC at the level of software architecture and introducing
contracts for connectors too. Schreiner et al.’s work however
does not support component interfaces emitting or receiving
events. Moreover, unlike XCD, they view connectors as simple
interconnection mechanisms providing no support for the con-
tractual specification of complex interaction protocols. Like-
wise, TrustME supports only required and provided interfaces
for components thus neglecting interfaces of asynchronous
events. Furthermore, unlike current approaches, Fiadeiro et al.
[10] proposed a connector-centric DbC based approach that
focuses on defining contracts for connectors only which act as
coordinators for the participating components.



VI. CONCLUSION

In this paper, we presented a series of extensions to DbC
for adapting it to software architecture design. We illustrated
this through our architecture description language, XCD which
enables to specify software architectures in the form of con-
tracts. XCD is unique in the sense that components can be
contractually specified either with required and provided inter-
faces of synchronous methods or with emitter and consumer
interfaces of asynchronous events. Contracts are applied at
the level of methods/events to specify their behaviour. To
enhance modularity, they are split into two types: functional
and interaction contracts where the former represents the
functional behaviour and the latter the interaction behaviour
of the component interfaces.

Treating interaction protocols explicitly as connectors
in architectural designs, XCD also enables the contractual
specification of connectors. They are specified with interac-
tion contracts for participating components. Thus, components
interacting through the connectors are ensured to adhere to
interaction protocols in their behaviours.

Furthermore, we provide formal semantics of component
and connector specifications in Finite State Process (FSP)
which enables the formal analysis of contractual specifications
for safety and liveness properties (e.g., deadlock).

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the EU project
FP7-257367 IoT@Work — “Internet of Things at Work”.

REFERENCES

[1] Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A Process
Algebraic Approach to Software Architecture Design. Springer, 2010.

[2] Robert Allen and David Garlan. A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6(3):213-249, 1997.

[3] Antoine Beugnard, Jean-Marc Jézéquel, and Noél Plouzeau. Making
components contract aware. [EEE Computer, 32(7):38-45, 1999.

[4] Dines Bjgrner and Cliff B. Jones, editors. The Vienna Development
Method: The Meta-Language, volume 61 of Lecture Notes in Computer
Science. Springer, 1978.

[5] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. STTT, 7(3):212-232, 2005.

[6] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and
refinement of dynamic software architectures. In Patrick Donohoe,
editor, WICSA, volume 140 of IFIP Conference Proceedings, pages
107-126. Kluwer, 1999.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced specification and verification with JML
and ESC/Java2. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, FMCO, volume 4111 of Lecture
Notes in Computer Science, pages 342-363. Springer, 2005.

[8] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In Boris Magnusson, editor,
ECOOP, volume 2374 of Lecture Notes in Computer Science, pages
231-255. Springer, 2002.

[9] Daniel Enselme, Gerard Florin, and Fabrice Legond-Aubry. Design
by contract: Analysis of hidden dependencies in component based
application. Journal of Object Technology, 3(4):23-45, 2004.

[10] José Luiz Fiadeiro and Luis Filipe Andrade. Interconnecting objects
via contracts. In TOOLS (38), pages 182-183. IEEE Computer Society,
2001.

[11] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576-580, 1969.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

Valérie Issarny, Amel Bennaceur, and Yérom-David Bromberg.
Middleware-layer connector synthesis: Beyond state of the art in
middleware interoperability. In Marco Bernardo and Valérie Issarny,

editors, SFM, volume 6659 of Lecture Notes in Computer Science, pages
217-255. Springer, 2011.

David Janzen and Hossein Saiedian. Test-driven development: Con-
cepts, taxonomy, and future direction. IEEE Computer, 38(9):43-50,
2005.

Christos Kloukinas and Mert Ozkaya. Xcd - Modular, realizable
software architectures. In Pasareanu and Salaiin [25], pages 152-169.

Zhiming Liu, Jifeng He, and Xiaoshan Li. Contract oriented develop-
ment of component software. In Jean-Jacques Lévy, Ernst W. Mayr, and
John C. Mitchell, editors, IFIP TCS, pages 349-366. Kluwer, 2004.

Jeff Magee and Jeff Kramer. Dynamic structure in software architec-
tures. In SIGSOFT FSE, pages 3—14, 1996.

Jeff Magee and Jeff Kramer.
programs (2. ed.). Wiley, 2006.

E.M. Maximilien and L. Williams. Assessing test-driven development
at IBM. In 257 Intl. Conf. on Software Engineering, pages 564—569,
May 2003.

Bertrand Meyer. Applying “Design by Contract”.
25(10):40-51, 1992.

Bertrand Meyer, Jean-Marc Nerson, and Masanobu Matsuo. Eiffel:
Object-oriented design for software engineering. In Howard K. Nichols
and Dan Simpson, editors, ESEC, volume 289 of Lecture Notes in
Computer Science, pages 221-229. Springer, 1987.

Concurrency - state models and Java

IEEE Computer,

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Inf. Comput., 100(1):1-40, 1992.

OMG. Common object request broker architecture (CORBA) specifi-
cation, version 3.3 — Part 3: CORBA component model. Specification
formal/2012-11-16, OMG, November 2012. //omg.org/spec/CORBA/3.
3/.

OSGi Alliance. OSGi core release 5. Specification, March 2012. //
osgi.org/.

Corina S. Pasareanu and Gwen Salaiin, editors. Formal Aspects
of Component Software, 9" International Symposium, FACS 2012,
Mountain View, CA, USA, September 12-14, 2012. Revised Selected
Papers, volume 7684 of Lecture Notes in Computer Science. Springer,
2013.

Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for
software components. [EEE Trans. Software Eng., 28(11):1056-1076,
2002.

Heinz Schmidt, Iman Poernomo, and Ralf Reussner. Trust-by-contract:
Modelling, analysing and predicting behaviour of software architectures.
J. Integr. Des. Process Sci., 5(3):25-51, August 2001.

Dietmar Schreiner and Karl M. Goschka. Explicit connectors in compo-
nent based software engineering for distributed embedded systems. In
Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek, Christoph
Meinel, Harald Sack, and Frantisek Plasil, editors, SOFSEM (1), volume
4362 of Lecture Notes in Computer Science, pages 923-934. Springer,
2007.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross,
David M. Young, and Gregory Zelesnik. Abstractions for software
architecture and tools to support them. IEEE Trans. Software Eng.,
21(4):314-335, 1995.

Andre Luiz Camargos Tavares and Marco Tulio de Oliveira Valente.
A gentle introduction to OSGi. ACM SIGSOFT Software Engineering
Notes, 33(5), 2008.

Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff

Magee. The koala component model for consumer electronics software.
IEEE Computer, 33(3):78-85, 2000.



