
Quality Analysis of Dependable Systems: A
Developer Oriented Approach

Apostolos Zarras1, Christos Kloukinas2, and Valérie Issarny3

1 Computer Science Department, University of Ioannina, Greece,
zarras@cs.uoi.gr

2 VERIMAG, Centre Équation, 2 avenue de Vignates, 38610 Gières, France,
Christos.Kloukinas@imag.fr

3 INRIA, Domaine de Voluceau, B.P. 105, 78 153 Le Chesnay Cédex, France,
Valerie.Issarny@inria.fr

Abstract. The quality of dependable systems (DS) is characterized by a
number of non-functional properties (e.g., performance, reliability, avail-
ability, etc.). Assessing the DS quality against these properties imposes
the application of quality analysis and evaluation. Quality analysis con-
sists of checking, analytically solving, or simulating models of the sys-
tem, which are specified using formalisms like CSP, CCS, Markov-chains,
Petri-nets, Queuing-nets, etc. However, developers are usually not keen
on using such formalisms for modeling and evaluating DS quality. On
the other hand, they are familiar with using architecture description
languages and object-oriented notations for building DS models. Based
on the previous and to render the use of traditional quality analysis
techniques more tractable, this paper proposes an architecture-based en-
vironment that facilitates the specification and quality analysis of DS at
the architectural level.

1 Introduction

Nowadays, there exists a clear trend for business, industry, and society to place
increasing dependence on systems, consisting of the integration of numerous,
disparate and autonomous components. Consequently, users have strong non-
functional requirements on the quality of these systems. To satisfy these de-
mands, quality analysis must be performed during the lifetime of the system.
The quality of dependable systems (DS) is characterized by a number of at-
tributes (e.g., security, performance, reliability, availability, etc.), whose values
are, typically, improved by using certain means (e.g., encryption, load balanc-
ing, fault tolerance mechanisms). Two different kinds of quality analysis can be
performed:

– Qualitative analysis, which aims at facilitating and verifying the correct use
of certain means for improving the DS quality.

– Quantitative analysis, which aims at predicting the values of the quality
attributes characterizing the overall DS quality.



The above kinds of quality analysis are complementary. In particular, the
results of quantitative analysis are most probably affected by certain means,
whose correct use is verified by the qualitative analysis. On the other hand, the
use of certain means is guided by the results of the quantitative analysis at early
design stage.

Performing quality analysis is not a new challenge and several techniques have
been proposed and used for quite a long time [1–4]. Techniques for qualitative
analysis are mainly based on theorem proving and model checking. Typically,
models specifying the system’s behavior are built using formalisms like CSP,
CCS, Pi-Calculus, TLA, etc. Then, these models are checked against properties
that must hold for the system to behave correctly. Techniques for quantita-
tive analysis can be analytic, simulation, or measurement-based. Again models
specifying the system’s behavior are built using formalisms like Markov-chains,
Petri-nets, Queuing- nets, etc. Certain model parameters (e.g., failure rates of
the system’s primitive elements) are obtained using measurement-based tech-
niques. Then, the models are analytically solved, or simulated, to obtain the
values of the attributes that characterize the overall system’s quality. The main
problem today is that building good quality models requires lots of experience
and effort. Developers use Architecture Description Languages (ADLs) [5, 6], and
object oriented notations (e.g., UML [7]) to design the system architecture. It
is a common case that they are not keen on building quality models using CSP,
CCS Markov chains, Petri-nets, Queuing-nets, etc. Hence, the ideal would be to
provide the developers with an environment, which enables the specification of
DS architectures and further provides adequate tool support that facilitates the
specification of models suitable for DS quality analysis.

In this paper, we investigate the above issue and we present a developer-
oriented, architecture-based environment for the specification and quality anal-
ysis of dependable systems. The specification of DS architectures is based on
an extensible ADL, which is defined in Section 2. Section 3, then, presents an
approach that facilitates the qualitative analysis of DS at the architectural level.
Similarly, Section 4 discusses an approach that facilitates the quantitative anal-
ysis of DS at the architectural level. Finally, Section 5 concludes this paper with
a summary of the contributions to DS quality analysis.

2 Architecture Description Language

2.1 Background and Related Work

Architecture description languages are notations enabling the rigorous specifi-
cation of the structure and behavior of systems. ADLs come along with tools
that facilitate the analysis and the construction of systems, whose architecture
is specified using them. Several ADLs have been proposed in the past years and
they are all based on the same base principles [6]. In particular, the structure
of systems is specified using components, connectors and configurations. It is
worth noticing that existing ADLs have concise semantics and are widely known
and used in academia, but their use in the industry is quite limited. Industrials,



nowadays, tend to use object- oriented notations for specifying the architecture
of their software systems. UML, in particular, is becoming an industrial stan-
dard notation for the definition of a family of languages (i.e., UML profiles) for
modeling software. However, there is a primary concern regarding the impreci-
sion of the semantics of UML. To increase the impact of ADLs in the real world,
and to decrease the ambiguity of UML, we propose an ADL defined in relation
to standard UML elements. Our main objective is the definition of a set of core
extensible language constructs for the specification of components, connectors
and configurations. This core set of extensible constructs shall further facilitate
future attempts for mapping existing ADLs into UML. Our effort relates to the
definition of architecture meta- languages like ACME [5] and AML [8]. Our work
also compares to the recent XML-based, extensible ADL [9]. Our approach can
be the basis for the definition of a standard UML profile for ADLs, while [9]
can be the basis for a complementary standard DTD used to produce textual
specifications from graphical ADL models.

2.2 Basic Concepts

To define ADL components, connectors, and configurations in relation to stan-
dard UML model elements, we undertook the following steps: (i) identify stan-
dard UML element(s), whose semantics are close to the ones needed for the
specification of ADL components, connectors and configurations; (ii) if the se-
mantics of the identified element(s) do not exactly match the ones needed for
the specification of components, connectors, and configurations, extend them
properly and define a corresponding UML stereotype(s) 4; (iii) If the semantics
of the identified element(s) match exactly, adopt the element(s) as a part of the
core ADL language constructs.

A component abstracts a unit of computation or a data store. As discussed
in the literature [10, 11], various UML modeling elements may be used to specify
an ADL component. The most popular ones are the Class, Component, Package,
and Subsystem elements. From our point of view, the UML Component element
is semantically far more concrete compared to an ADL component, as it specif-
ically corresponds to an executable software module. Moreover, the UML Class
element is often considered as the basis for defining architectural components.
However, a UML class does not directly support the hierarchical composition of
systems. It is true that the definition of a UML Class may be composite, con-
sisting of a number of constituent classes. However, the class specification can
not contain the interrelationships among the constituent classes. Consequently,
if an ADL composite component is mapped into a UML class, its definition may
comprise a set of constituent components for which we have no means to de-
scribe the way they are connected through connectors. Technically, to achieve
the previous we would need to define a Package containing the UML class defini-
tions and a static structure diagram showing how they are connected. However,

4 A UML stereotype is a UML element whose base class is a standard UML element.
Moreover, a stereotype is associated with additional constraints and semantics.



packages cannot be instantiated or associated with other packages. Hence, they
are not adequate for specifying ADL components. This leads us to use the UML
Subsystem element to model ADL components. A UML Subsystem is a subtype
of both the UML Package and Classifier element, which may be instantiated
multiple times, and associated with other subsystems. Precisely, we define an
ADL component as a UML Subsystem, that may provide and require standard
UML interfaces. The ADL component is further characterized by a property,
named “composite”, which may be true, or false depending on whether, or not
a component is built out of other components and connectors.

A connector is an association representing the protocols through which
components may interact. Hence, the natural choice for specifying it in UML is
by stereotyping the standard UML Association element. A connector role cor-
responds to an association end. Moreover, the distinctive feature of a connector
is a non-empty set of interfaces, named “Interfaces”, representing the specific
parts of components’ functionality playing the roles. Each interface out of the
set must be provided by at least one associated component. Equally, each in-
terface out of the set must be required by at least one associated component.
So far, we considered connectors as associations representing communication
protocols. However, we must not ignore the fact that, in practice, connectors
are built from architectural elements, including components and more primitive
connectors. Taking CORBA for example, a CORBA connector can be seen as a
combination of functionalities of the ORB and of CORBA services (i.e., COSs).
Hence, it is necessary to support hierarchical composition of connectors. At this
point, we face a technical problem: UML Associations can not be composed of
other model elements. However, there exists a standard UML element called
Refinement defined as “a dependency where the clients are derived by the suppli-
ers” [7]. The refinement element is characterized by a property called mapping.
The values of this property describe how the client is derived by the supplier.
Hence, to support the hierarchical composition of connectors, we define a stereo-
type, whose base class is the standard UML Refinement element and is used
to define the mapping between a connector and a composite component that
realizes the connector.

A configuration specifies the assembly of components and connectors. In
UML, the assembly of model elements is specified by a model. The correspond-
ing semantic element of a model is the standard UML Model element, defined as
“an abstraction of a modeled system specifying the system from a certain point
of view and at a certain level of abstraction...the UML Model consists of a con-
tainment hierarchy where the top most package represents the boundary of the
modeled system” [7]. Hence, a configuration is actually a UML model, consist-
ing of a containment hierarchy where the top-most package is a composite ADL
component. The given definition of configuration is weak in that it enables the
description of any architectural configuration provided it complies with the well-
formedness rules associated with the component and connector elements. This
results from our concern of supporting the description of various architectural
styles, which possibly come along with specific ADLs as is the case with the



C2 style [6]. Constraints that are specific to a style are introduced through the
definition of a corresponding extension of the ADL configuration element, possi-
bly combined with extension of the UML elements for component and connector
definition.

2.3 Tools

The basic ideas described so far for the specification of software architectures
are realized into a prototype implementation of the architecture-based develop-
ment environment, which makes use of an existing UML modeling tool. More
specifically, we use the Rational Rose tool 5 for the graphical specification of soft-
ware architectures. The Rational Rose tool allows the definition of user specific
add-ins that facilitate the definition and use of stereotyped elements. Given the
aforementioned facility, we implemented an add-in that eases the specification of
architectural descriptions using the elements defined in the previous subsection.
Moreover, we use an already existing add-in, which enables generating XMI tex-
tual specifications of architectures specified graphically using the Rational Rose
tool; these textual specifications shall serve as input to the tools we use for qual-
itative and quantitative analyses of architectures. We further developed an OCL
verifier that can be used to verify architectural constraints expressed in OCL.
Note that we could have used an already existing verifier implemented in Java 6.
However, given that the expected complexity of our models is high, we preferred
developing a more efficient implementation based on OCAML 7, which has been
successfully used to efficiently develop large applications like the COQ theorem
prover 8.

2.4 Example

To illustrate the use of our environment, we employ examples taken from a case
study we are investigating in the context of the DSoS IST project 9. The case
study is a travel agent system (TA). TA offers services for flight, hotel, and
car reservations. It consists of the integration of different kinds of existing sys-
tems supporting air companies, hotel chains, and car rental companies. Figure 1
gives a screen shot of the actual architecture of the TA as specified using the
UML modeling tool, which we customized. The TA comprises the TravelAgent-
FrontEnd component, which serves as a GUI for potential customers wanting
to reserve tickets, rooms, and cars. The TA further includes the HotelReser-
vation, FlightReservation, CarReservation components, which accept as input
5 http://www.rational.com. Notice that the use of the Rational Rose tool was mainly

motivated by pragmatic consideration that is the ownership of a license and former
experience with this tool. However, our specific developments may be integrated
within any extensible, UML-based tool that processes XMI files.

6 http://www.db.informatik.uni-bremen.de/projects/USE
7 http://www.caml.inria.fr/ocaml/
8 http://www.coq.inria.fr
9 http://www.newcastle.research.ec.org/dsos



individual parts of a customer request for hotel, ticket and car reservation, and
translate them into requests for services provided by specific hotel, air company
and car company components. The set of the hotel components is represented
by the Hotels composite component. Similarly, the sets of air company and car
company components are represented by the AirCompanies and CarCompanies
composite components. Two different kinds of connectors are used in our ar-
chitecture. The HTTP connectors (e.g., see the specification relating to HTTP
in Figure 1) represent the interaction protocol among customers and the TA
front end component, and among components translating requests and existing
component systems implementing Web servers. The RPC connector represents
the protocol used among the front end component and the components that
translate requests. Note that multi-party connectors abstract complex connec-
tor realizations, which may actually be refined into various protocols, depending
on the intended behavior. For instance, the RPC connector may be refined into a
number of bi-party connectors as well as into a complex transactional connector.

Fig. 1. The Architecture of the Travel Agent DS



3 Qualitative Analysis

3.1 Background and Related Work

Since the early work on ADL definition, there has been a significant effort for
defining ADLs that ease the qualitative analysis of software architectures. Specif-
ically, a number of existing ADLs come along with tools like theorem provers
and model-checkers, allowing the specification of the functional behavior of com-
ponents and connectors making up a system, and the verification of properties
that must hold for the system against the system’s functional behavior [1, 4].
In existing ADLs, the specification of the system’s behavior is, typically, done
using formalisms like logic or process algebras. Hence, to perform qualitative
analysis, developers have to learn these formalisms and tools. They further have
to derive mappings between the basic architectural concepts (e.g., components,
connectors, ports, roles, etc.) they use to specify software architectures and the
basic constructs provided by the formalism that is to be used for specifying the
system’s functional behavior (e.g., processes, channels, etc.), if these mappings
are not already provided by the ADL itself. Neither of the previous tasks is
straightforward for everyday developers who are very experienced and educated
on the use of object-oriented modeling methods (e.g., UML methods), and sev-
eral programming languages like C, C++, Java, but are not experts in logic and
process algebras. An evidence of this is provided in the Web site of PVS 10, a
well-known theorem-prover, where the following warning is given: “...PVS is a
large and complex system and it takes a long while to learn to use it effectively.
You should be prepared to invest six months to become a moderately skilled user
(less if you already know other verification systems, more if you need to learn
logic or unlearn Z)...”

A number of approaches have recently been proposed to try to alleviate the
previous complexities towards rendering the use of qualitative analysis more
tractable to nowadays developers. For instance, in [12], the authors propose a
tool for model checking UML models. Developers have to specify these using
state-chart diagrams, which are then used for generating models that serve as
input to the SPIN model checker [13]. However, state-chart specifications of sys-
tem behavior are quite low level and certainly not easy to produce. Take for
instance the usual case where developers need to specify loops, procedure calls,
synchronization and communication using state-charts. In this case, developers
would prefer using a modeling language, which resembles a real programming
language instead of using automata such as state-charts. We thus consider that
the approach proposed in [12] is not a solution. Another approach is proposed
in [14], which introduces stereotypes that are formally specified using Finite State
Processes (FSP). FSP models may then be generated from UML models anno-
tated with the stereotypes, for analysis using the Labelled Transition System
Analyzer (LTSA) tool. This solution alleviates the limitations of the previous
but it requires specifying formal models in FSP, which is not known by the vast
majority of developers.
10 http://pvs.csl.sri.com/whatispvs.html



From the above discussion and from a pragmatic point of view, it is not possi-
ble to completely avoid using a tool-specific formalism for performing qualitative
analysis in the general case. Hence, our basic requirement becomes to integrate
into our environment an existing tool for qualitative analysis, whose formalism
for behavioral modeling is as natural as possible for the developers. This has led
us to exclude, in the first place, theorem provers. In consequence, we are left
with the option of integrating into our framework a model-checking tool. The
second requirement, for rendering the qualitative analysis simpler, comprises
providing an automated procedure that maps basic architectural concepts into
basic constructs of the behavioral modeling formalism assumed by the selected
model-checking tool. This allows the automated generation of formal behavioral
models from DS architectural descriptions.

3.2 Basic Concepts

Support for the specification of the functional behavior of the basic architectural
elements that constitute a DS, is provided by our environment as follows:

– ADL components are characterized by a property, called ”Body Behavior”,
whose value can be assigned to a textual specification, given in any behavioral
modeling formalism, describing the components’ behavior.

– UML interfaces provided/required by ADL components are characterized by
a property, called “Port Behavior”, whose value describes in some textual
specification, the particular protocol used at that point of interaction.

– ADL connectors are characterized by:
• A property, named “Body Protocol” (see Figure 1), whose value specifies

the role-independent part of the interaction protocol.
• A set of properties (see Figure 1), named “Role Protocol”. Each one of

these corresponds to an association end, i.e., a role. The value of each
property specifies the role-dependant part of the interaction protocol
represented by the connector.

3.3 Tools

We identified 3 widely used model checking tools that could be integrated into
our environment, i.e., FDR2 11, SMV 12 and SPIN [13]. Among them, we have
chosen SPIN because: (i) it is based on a C-like language for modeling system
behavior, which is more familiar to DS developers compared to other modeling
languages, and (ii) it has built-in channels, i.e., constructs used for modeling
message-passing, with which we can easily model parts of the ADL connectors.
A model in the SPIN modeling language, i.e., PROMELA, consists of a num-
ber of independent processes, i.e., each one has its own thread of execution,
which communicate either through global variables or through special commu-
nication channels by message-passing, as is done in CSP, at least in its machine
11 http://www.formal.demon.co.uk/fdr2manual
12 http://www.cs.cmu.edu/˜modelcheck



readable version. Therefore, the mapping of our basic architectural elements to
the constructs of PROMELA can be done in a way analogous to the mapping
used by the Wright ADL for CSP [1]. In particular in [1], for each component,
connector, port/interface and role, a corresponding process is generated. Each
generated process shall communicate with the rest through channels generated
as prescribed by the configuration of the DS. However, such a mapping results in
the generation of a large number of processes and requires a substantial amount
of resources for model checking.

Table 1. Generating PROMELA Models

Component For each component c:

– Create a PROMELA process type, “proctype”, named after the
component, whose behavior is given by the value of “Body Be-
havior”

– For each port p of c, create an “inline” procedure whose name is
the catenation of the component’s and the port’s name, i.e., c p.
This procedure contains the Port Behavior of the respective port
p. For interacting with its environment, c p uses a channel named
after the port’s name, i.e., p.

Connector For each connector c:

– Create a “proctype”, named after the connector, whose behavior
is given by the value of “Body Protocol”. Unlike the processes
corresponding to ADL components that take no arguments, these
processes receive as arguments at initiation time the channels
they will be using for their respective roles. These channels are
named after the roles themselves.

Configuration Create a special process called “init” in PROMELA, which will be
responsible for instantiating the rest of the architecture. More specif-
ically:

– The “init” process creates as many instances of the processes cor-
responding to particular ADL components, as there are instances
of these components in the configuration.

– Afterwards, it does the same for each instance of an ADL connec-
tor but it uses the attachments of component ports to connector
roles to deduce the specific channels that should be passed as
arguments to the processes corresponding to the connector.

To alleviate the above problem, we have chosen to generate independent
processes for each component and connector specified in a DS architectural de-
scription, while for each port and role we generate PROMELA inline procedures.
This inline procedure construct of PROMELA allows us to define new functions
that can be used by processes, but do not introduce their own threads of execu-
tion. In this manner, we keep to a minimum the number of different processes
that the model-checker will be asked to verify, thus enabling the verification of



large architectures. Then, for each port of an ADL component we declare in
the PROMELA description of the component, a communication channel named
after that port. This channel will be used by the process related to the ADL
component for communicating through that specific port. Since ports of ADL
components are bound to specific roles of ADL connectors, their channels are
passed as arguments to the processes created for these connectors, at the time
of their initiation. Thus, messages sent from a process of an ADL component
at a channel corresponding to a port of it, will be received by a process of an
ADL connector. Similarly, messages sent from a process of an ADL connector to
a channel it has received as argument at initiation time, will be in fact received
by a process of an ADL component, whose port was mapped to that channel.
Even though the proposed mapping may seem as depriving the architect from
the possibility to describe complex cases, e.g., multi-threaded components, it is
not so. Indeed, it is always possible to describe a component as a composite
one, i.e., one that consists of a number of simpler components and connectors,
which will be subsequently modeled as a number of independent processes. The
steps that are followed for generating a complete PROMELA model from an
architectural description are given in Table 1.

3.4 Example

To exemplify the qualitative analysis of DS, we get back to the TA case study.
A typical property that is often required over RPC and HTTP connectors is for
reply messages to be received by the client in the order it sent the corresponding
request messages. Meeting the previous is usually under the responsibility of the
connector realization, possibly in association with the server. For instance, the
HTTP/1.0 and HTTP/1.1 realizations of the HTTP connector differ in that the
latter supports persistent connections and allows pipelining of request messages,
which leads to explicitly require for the server to ensure that it sends back reply
messages in the order it received the corresponding request messages. In the
TA case study, we consider both realizations of HTTP. Moreover, we consider
two realizations of the TravelAgentFronEnd component and the rest of the Web
servers supporting the hotel, car and flight reservations. In the first case, the
components process HTTP requests sequentially, while in the second case they
use multi-threading to process multiple HTTP requests in parallel.

The processes corresponding to the RPC and the HTTP/1.0 connectors are
similar in functionality; they iterate constantly, doing the following: (i) they
receive a request from the component assuming the role of the RPC caller/Web
client, (ii) deliver it to the component assuming the role of RPC callee/Web
server, (iii) receive the reply from the callee/server, and (iv) forward it to the
caller/client. The HTTP/1.1 connector works differently; it can receive multiple
requests and forward them to the callee/server, or decide to read one (or more)
replies and deliver them to the caller/client. For instance, we get the following
specification provided for the RPC connector:



Role Protocol: caller(RPC channel, request, reply)
{RPC channel ! request; RPC channel ? reply }

Role Protocol: callee(RPC channel, request, reply)
{RPC channel ? request; RPC channel ! reply }

Body Protocol:
{Msg request, reply;
do::

caller ? request; callee ! request;
callee ? reply; caller ! reply

od }
The Customer component initiates requests to the TravelAgentFrontEnd

and waits for responses. The reservation components get requests from the RPC
connector and diffuse them, through the HTTP connector, to the existing Web
servers supporting the hotel, car and flight reservations. In the sequential ver-
sions of the TravelAgentFrontEnd component and of the Web servers supporting
reservations, the corresponding PROMELA processes process each request and
send the corresponding reply before serving a new request. Their concurrent
versions are based on a pool of threads. For illustration, we get the following
specification provided for the Web servers that handle requests sequentially:

Port Behavior: HTTP Request(HTTP channel, request, reply)
{ HTTP channel ? request; HTTP channel ! reply }

Body Behavior:
{chan HTTP channel ; Msg request, reply;
do::

HTTP Request(HTTP channel, request, reply)
od }

Four different PROMELA models were generated. These models result from
the combination of the different HTTP and Web server versions. More specif-
ically, for all components and connectors, corresponding processes were gener-
ated. The realizations of the generated processes consist of the Body Behavior
and Body Protocol, for components and connectors respectively. These processes
were connected via channels generated for each port of the various components,
according to the configuration given in Figure 1. SPIN was then used to assess
the TA against ordered delivery of reply messages to the customers for all the 4
cases resulting from the combination of the different HTTP and Web server ver-
sions. Checking of the models resulted in identifying an erroneous architecture
for the TA that is the case where Web components interact via HTTP/1.1 and
the Web servers handle concurrently the request messages. The full source code
of the TA PROMELA model used in this case study can be found in [15].

4 Quantitative Analysis

4.1 Background and Related Work

Pioneer work on the quantitative analysis of software systems at the architectural
level includes Attribute-Based Architectural Styles (ABAS) [16]. In general, an



architectural style includes the specification of types of basic architectural el-
ements (e.g., pipe and filter) that can be used for specifying a software archi-
tecture, constraints on using these types of architectural elements, and patterns
describing the data and control interaction among them. An ABAS is an archi-
tectural style, which additionally provides modeling support for the quantitative
analysis of a particular quality attribute (e.g., performance, reliability, availabil-
ity). More specifically, an ABAS includes the specification of:

– Quality attribute measures characterizing the quality attribute (e.g., the
probability that the system correctly provides a service for a given dura-
tion, mean response time).

– Quality attribute stimuli, i.e., events affecting the quality attribute of the
system (e.g., failures, service requests).

– Quality attribute parameters, i.e., architectural properties affecting the qual-
ity attribute of the system (e.g., faults, redundancy, thread policy).

– Quality attribute models, i.e., traditional models that formally relate the
above elements (e.g., a Markov model that predicts reliability based on the
failure rates and the redundancy used, a Queuing network that enables pre-
dicting the system’s response time given the rate of service requests and
performance parameters like the request scheduling and the thread policies
of the various system elements).

In [17], the authors introduce the Architecture Tradeoff Analysis Method
(ATAM) where the use of an ABAS is coupled with the specification of a set of
scenarios, which roughly constitutes the specification of a service profile. ATAM
has been tested for analyzing quality attributes like performance, availability,
modifiability, and real-time. In all these cases, quality attribute models (e.g.,
Markov models, queuing networks) are manually built given the specification
of a set of scenarios and the ABAS- based architectural description. However,
in [17], the authors recognize the complexity of the aforementioned task; the
development of quality analysis models requires about 25% of the time spent
for applying the whole method. ATAM is a promising approach for doing things
right. However, nowadays, there is a constant additional requirement for doing
things fast and easy.

Our environment supports the automated generation of quality attribute
models from architectural descriptions embedding quality attributes. In par-
ticular, the environment currently supports the generation of performance and
reliability models aimed at analysis tools that have been recognized successful
for handling complex models associated with real systems. Note that there is no
unique way to model systems. A model is built based on certain assumptions.
Thus, the model generation procedures supported by our environment are cus-
tomizable. Customization is done according to certain assumptions that can be
made by the developer for the quality stimuli and parameters affecting the value
of the particular quality attribute that is assessed. Due to the lack of space, we
provide hereafter details regarding only the case of reliability. The interested
reader is referred to [18] and [15] for details regarding the case of performance,



where the former concentrates on performance analysis of workflow-based sys-
tems.

4.2 Basic Concepts

To perform quantitative analysis, we have to specify a service profile, i.e., a set of
scenarios, describing how the inspected system is used. In our environment, sce-
narios are specified using UML collaboration diagrams. A scenario then specifies
the interactions among a set of component and connector instances, structured
as prescribed by the configuration of the inspected system. Moreover, the defini-
tions of the base ADL elements have been extended to support the specification
of reliability measures, parameters, and stimuli, as defined below.

The basic reliability measure is the probability that a scenario successfully
completes within a given time duration. A scenario may fail if instances of com-
ponents, nodes 13, and connectors used in it, fail because of faults causing errors
in their state. The manifestations of errors are failures. Hence, faults are the
basic parameters, associated with components/connectors/nodes, which affect
the reliability of an inspected system. Failures are the stimuli, associated with
components/connectors/nodes, causing changes in the value of the reliability
measure. According to [19], faults and failures can be further characterized by
the properties given in Tables 2 and 3. Different combinations of the values of
these properties can be used to customize properly the generation procedure of
quality attribute models, which is detailed in Subsection 4.3.

Except for faults and failures, another parameter affecting reliability is re-
dundancy. Redundancy schemas can be defined using the base ADL constructs
defined in Section 2. More specifically, a redundancy schema is a configuration
of redundant architectural elements, which behave as a single fault tolerant unit.
According to [20], a redundant schema is characterized by the kind of mechanism
used to detect errors, the way the constituent elements execute towards serving
incoming requests, the confidence that can be placed on the results of the error
detection mechanism and the number of component and node faults that can be
tolerated. The properties characterizing a redundancy schema are summarized in
Table 4. A re-configurable/repairable redundancy schema may be characterized
by additional properties (e.g. repair rate, number of spares, state of the spares),
whose values reflect the particular re-configuration/repair policy used.

Table 2. Properties of Failures

Failure Properties Range Associated ADL Element

domain time/value Component/Connector/Node
perception consistent/inconsistent

13 Since an ADL component is by definition an extension of the standard UML Subsys-
tem element, it is associated with a set of UML nodes on top of which it executes.



Table 3. Properties of Faults

Fault Properties Range Associated ADL Element

nature intention/accident Component/Connector/Node
phase design/operational
causes physical/human
boundaries internal/external
persistence permanent/temporary
arrival-rate Real
active-to-benign Real
benign-to-active Real
disappearance Real

Table 4. Properties of Redundancy Schemas

Redundancy Properties Range Associated ADL Element

error-detection vote/comp./acceptance Component
execution parallel/sequential
confidence absolute/relative
service-delivery continuous/suspended
no-comp-faults Integer
no-node-faults Integer

4.3 Tools

The quantitative analysis of DS is supported by our environment with automated
procedures, which take as input, architectural specifications defined using the
basic concepts discussed so far, and generate traditional quality attribute models.
The specific tool integrated into our environment for reliability analysis is called
SURE-ASSIST [21]. The tool calculates reliability bounds given a state space
model describing the failure and repair behavior of the inspected system. The
tool was selected because it is very highly rated compared to other reliability
tools [2] and because it is available for free. However, the automated support
provided by our environment for reliability analysis can be coupled with any
other tool that accepts as input state space models.

A state space model consists of a set of transitions between states of the
system. A state describes a situation where either the system operates correctly,
or not. In the latter case the system is said to be in a death state. The state
of the system depends on the state of its constituent elements. Hence, it can
be seen as a composition of sub states, each one representing the situation of
a constituent element. A state is constrained by the range of all possible situ-
ations that may occur. A state range can be modeled as a composition of sub
state ranges, constraining the state of the elements that constitute the system.
A transition is characterized by the rate by which the source situation changes
into the target situation. If, for instance, the difference between the source and
the target situation is the failure of a component, the transition rate equals to



the failure rate of the component. The specification of large state-space models
is often too complex and error-prone. The approach proposed in [22] alleviates
this problem. In particular, instead of specifying all possible state transitions,
the authors propose specifying the following: (i) the state range of the system,
(ii) transition rules between sets of states of the system, (iii) the initial state of
the system, and (iv) a death state constraint. In a transition rule, the source and
the target set of states are identified by constraints on the state range (e.g., if the
system is in a state where more than 2 subsystems are operational, then the sys-
tem may get into a state where the number of subsystems is reduced by one). A
complete state space model can then be generated using the algorithm described
in [22]. Briefly, the algorithm takes as input an initial system state. Then, the
algorithm applies recursively the set of transition rules. During a recursive step,
the algorithm produces a transition to a state derived from the initial one. De-
pending on the rule that is applied, in the resulting state, one or more elements
are modeled as being failed, or operational, while in the initial state they were
modeled as being operational or failed, respectively. If the resulting state is a
death state, the recursion ends.

Complete state space models are automatically generated from DS architec-
tural descriptions embedding the specification of reliability stimuli and parame-
ters, by following the steps below.

First, a state range definition for each collaboration belonging to a given
service profile is generated. The state of a collaboration is composed of the
states of the component and connector instances used within the collaboration
and the state of nodes on top of which the component instances execute. If a
component is composite, its state is composed of the states of the constituent
elements. The range of states for a component/connector/node depends on the
kind of faults that may cause failures. At this point, the generation procedure
is customized accordingly. In the case of permanent faults for instance, a com-
ponent/connector/node may be either in an OPERATIONAL, or in a FAILED
state. In the case of intermittent faults, a component/connector/node may be in
an OPERATIONAL state, or it may be in a FAILED-ACTIVE or in a FAILED-
BENIGN state. The range of states for a component further depends on the kind
of redundancy used. Again, the generation procedure is customized accordingly.

After generating the state range definition for a collaboration collab, the
step that follows comprises the generation of transition rules for components/
connectors/nodes used in the collaboration. These rules depend on the kinds of
faults of the corresponding architectural element. For instance, for permanent
faults, the rules follow the pattern given in Table 5. What is left at this point
is to generate the definition of the initial state of the collaboration, and the
definition of the death state constraint. The initial state is a state where all
of the elements used in the collaboration are operational. A collaboration is in
death state if any of the architectural elements used within it is not operational.
Hence, the death state constraint consists of the disjunction of base predicates,
each one of which defines the death state constraint for an individual element
used in the collaboration. More specifically, the base predicate for a component,



connector, or a node states that the element is in a FAILED state. The base
predicate for a redundancy schema is the disjunction of two predicates. The first
one states that the number of failed redundant component instances is greater
than the number component faults that can be tolerated. Similarly, the second
one states that the number of failed redundant nodes is greater than the number
of node faults that can be tolerated.

Table 5. Transition Rules for Permanent Faults

ADL Rule
Element

Component For all instances of primitive components, c:

– If collab is in a state where c is in an OPERATIONAL state st , then collab may
get into a state st ′ where c is FAILED. The rate of these transitions is equal to
the arrival rates of the faults that cause the failure of c, c.Faults.arrival -rate (see
Table 3).

For all instances of composite components, c:

– If collab is in a state st where c is OPERATIONAL, then collab may get into a
state st ′ where c is FAILED due to a failure of a constituent element c′. The rate of
these transitions is equal to the arrival rates of the faults that cause the failure of
c′, c′.Faults.arrival -rate.

For all instances of composite components rc representing a redundancy schema of k
components:

– If collab is in a state st where rc is OPERATIONAL, and the number of failed re-
dundant component instances if fc, then collab may get into a state st ′ where the
number of failed components of rc is fc + l. The difference between st and st ′ is l re-
dundant component instances of the same type t, which in st were OPERATIONAL
and in st ′ are FAILED. The rate of these transitions is equal to the fault arrival rate
specified for t. This rule captures failure dependencies among redundant component
instances of the same type. These components are used in the same conditions and
with the same input. Hence, if one of them fails due to a design or an operational
fault, all of them will fail.

Connector For all instances of primitive connectors see the case of primitive components.
For all instances of composite connectors, see the case of composite components.

Node We assume that nodes fail independently from each other. Hence, for all nodes in collab:

– If collab is in a state st where a node n is in an OPERATIONAL state, then collab
may get into a state st ′ where n is in a FAILED state.

– Moreover, in st ′, all instances of components c deployed on n are in a FAILED state.
– Finally, in st ′ all instances of redundancy schemas rc, built out of m components

deployed on n, have fc + m failed components and fn + 1 failed nodes.

The rate of these transitions is equal to the arrival rate of the faults that caused the
failure of n, n.Faults.arrival -rate.



4.4 Example

To demonstrate the automated quantitative analysis detailed in the previous
subsection, we use the TA case study. The goal of our analysis is not to obtain
precise values of the reliability measure since this would require to precisely
model the Internet, which in general is considered as rather unrealistic [23]. For
that reason, we concentrate on comparing different scenarios towards improving
the design of our system, while assuming certain invariants for modeling issues
related to the Web. Our objective is to try to improve the reliability of TA while
keeping the cost of the required changes in the TA system low.

The scenario shown in Figure 2 gives a typical use case of TA. This scenario
constitutes the basic service profile used for the reliability analysis, i.e., the
provided scenario is processed for the automatic generation of the state space
model analyzed by the SURE-ASSIST tool. According to the scenario, one or
more customers use an instance, ta, of the TravelAgentFrontEnd to request the
reservation of a flight ticket, a hotel room and a car. The ta component instance
breaks down such a request into 3 separate requests. The first one relates to the
flight ticket reservation and is sent to an instance, fr , of the FlightReservation
component. The fr component instance uses this request to generate a new set
of requests, each one of which is specific to an air company that collaborates
with the TA system. The set of specific requests are finally sent to an instance,
ac, of the AirCompanies composite component, which represents the current set
of collaborating air companies. Similarly, the second and the third requests are
related to the hotel and the car reservations, respectively. These requests are sent
to instances of the HotelReservation and CarReservation components, which
reproduce them properly and send them to the current sets of collaborating
hotels and car companies.

The component instances used in the scenario may fail to give answers to
customers. Component failures are manifestations of design faults. We assume
that these faults are accidental, created by the component developers. Moreover,
component faults are all permanent and their arrival rates vary depending on
the type of the components. More specifically, the fault arrival rates for the
components that represent component systems supporting hotels, air companies
and car companies are much smaller compared to the faults arrival rates of
the rest of the components that make up the TA system. The reason behind
this is that the component systems supporting hotels, air companies and car
companies have already been in use and their implementations are quite stable.
On the other hand, the TA front end and reservation components are still under
development. The nodes used in our scenario may fail because of permanent
faults. HTTP and RPC connectors may also fail, however, in this case it is more
pragmatic to assume that we deal with temporary faults, which may disappear
with a certain rate. The arrival rates of node faults are much smaller than the
arrival rates of component faults. This holds similarly for the RPC connector.
On the contrary, the HTTP connector is expected to be quite unreliable, with a
failure rate greater than that of the components used in the TA. For illustration,



Figure 2 shows the detailed specification of the reliability stimuli and parameters
that are given for the FlightReservation component.

Fig. 2. A generic scenario for TA

By taking a closer look at the architecture of the TA system, we can de-
duce that some sort of redundancy is used. In particular, the Hotels, AirCompa-
nies and CarCompanies components are composite, consisting of k components
that represent the dependable systems supporting hotels, air companies and car
companies. The reservation components request from them, room, ticket and
car reservations. For the scenario to be successful, we need answers from at
least one hotel, one air company, and one car company. Hence, Hotels, Air-
Companies, and CarCompanies can be seen as ad hoc redundancy schemas
with the following properties: the execution of redundant elements is parallel
(redundancy .execution = parallel), the number of component and node faults
that can be tolerated is k−1 (redundancy .no-comp-faults and redundancy .no-node-
faults = k − 1).

To further improve the architecture regarding the provided reliability, we
designed three additional redundancy schemas. The first one contains k differ-
ent versions of the HotelReservation component. Upon the instantiation of the
schema, k component instances are created, one of each version. These instances



execute in parallel and are deployed on k different nodes. The second schema
contains k versions of the FlightReservation component, the instances of which
are also deployed on the k nodes, on top of which the instances of the Hotel-
Reservation component execute. Finally, the last schema contains k versions
of the CarReservation component, the instances of which are also deployed on
the nodes used to execute the instances of the HotelReservation component. At
runtime, a customer request is broken down by the instance of the TravelA-
gentFrontEnd component into individual requests for flight ticket, hotel room
and car reservation. Each one of these requests is replicated and sent to all the
redundant instances of the corresponding reservation component. Each instance
of the reservation component translates the request into specific requests for the
corresponding available component systems and sends them. When the instance
of the TravelAgentFrontEnd starts receiving offers for flight tickets, hotel rooms
and cars, it removes identical reply messages and combines them into replies
that are returned to the customer. We tried our scenario for n = 1, 2, 3 redun-
dant versions. Given the aforementioned scenario and reliability parameters and,
three complete state space models were generated and analytically solved. The
results obtained are summarized in Figure 3. For further detail about the sce-
nario, including complexity of the generated state space models, the interested
reader is referred to [15].

The main observation we make is that the reliability of TA does increase.
However, the improvement when we use redundant versions is certainly not
spectacular. The explanation for this is simple. In our scenario, the most un-
reliable element used is the HTTP connector. This is the main source causing
the reliability measure to have small values. Any improvement in the rest of the
architectural elements used shall not cover this problem, which unfortunately can
not be easily alleviated. Hence, using multiple versions does not bring much gain.
However, the good news are that regarding the cost of using multiple versions,
we do not lose much. The elements for which we produced multiple versions just
translate TA specific requests into component systems’ specific requests. Since
the functionality of these components is quite simple, re-implementing them
differently (e.g., using different developers) is not a complex, neither a time-
consuming task. Note here that the fact that the functionality of the redundant
components is simple does not mean that there can be no bugs in their imple-
mentation. Actually, mistakes in the mapping of TA requests into component
systems’ specific requests can be quite often. Furthermore, the cost of developing
multiple versions is low since we did not really use any strong synchronization
among the different versions.

5 Conclusion

In this paper, we presented an environment for the quality analysis of DS. The
overall design and realization of our environment is guided by the needs of its
current and potential users, imposing the simplification of certain extremely im-
portant and inevitable development activities related to the quality analysis and



Fig. 3. Results produced by the reliability analysis of TA

assurance of the DS. The quality analysis of systems is traditionally based on
methods and tools that have a strong formal basis. We believe that the pro-
posed environment brings everyday developers closer to such methods and tools.
The proposed environment relies on an architecture description language for the
specification of DS architectures, which is defined based on UML, a standard
and widely accepted notation for modeling software. Our environment further
provides a certain level of automation that eases the development of traditional
quality models from architectural descriptions. In the case of quantitative anal-
ysis, a high level of automation is achieved since the developer is requested only
to specify quality attributes within the architecture, from which formal models
processed by existing analysis tools are automatically generated. On the other
hand, in the case of qualitative analysis, the automation that can be achieved
is more limited since the developer is requested to formally specify the behavior
of architectural elements. This led us to carefully select an existing qualitative
analysis method and associated tool whose use is natural to the developers.

Having reached into a stable prototype implementation of our environment,
we now concentrate on testing it on real world case studies. So far, we used it
successfully in the context of the DSoS DST project for the quality analysis case
of the Travel Agent system. Parts of the analysis was presented here in the form
of demonstrating examples. We further used the basic ideas of our environment
in the context of the C3DS IST 14 project for the performance and reliability
analysis of workflow based dependable systems [18].

Acknowledgments

This work has been partially funded by the IST DSoS project.

14 http://www.newcastle.research.ec.org/c3ds/



References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of
the 16th ACM-SIGSOFT-IEEE International Conference on Software Engineering
(ICSE’94). (1994) 71–80

2. Geist, R., Trivedi, K.: Reliability estimation of fault tolerant systems: Tools and
techniques. IEEE Computer 23 (1990) 52–61

3. Kobayashi, H.: Modeling and Analysis: An Introduction to System Performance
Evaluation Methodology. Addison-Wesley (1978)

4. Magee, J., Kramer, J., Giannakopoulou, D.: Behavior analysis of software archi-
tectures. In: Proceedings of the 1st IFIP Working Conference on Software Archi-
tectures (WICSA-1). (1999) 35–49

5. Garlan, D., Monroe, R., Wile, D.: ACME: An architectural description interchange
language. In: Proceedings od CASCON’97. (1997)

6. Medvidovic, N., Taylor, R.: A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering 26
(2000) 70–93

7. OMG: UML semantics 1.3 (1997)
8. Wile, D.: AML: An architecture meta-language. In: Proceedings of the 14th IEEE

International Conference on Automated Software Engineering (ASE-99). (1999)
9. Dashofy, E., Van Der Hoek, A., Taylor, R.: An infrastructure for the rapid devel-

opment of XML-based architecture description languages. In: Proceedings of the
24th International Conference on Software Engineering (ICSE’02). (2002) 266–276

10. Garlan, D., Kompanec, J., Pinto, P.: Reconciling the needs of architectural de-
scription with object-modeling notations. In: Proceedings of the 3rd International
Conference on the Unified Modeling Language (UML-00). (2000)

11. Medvidovic, N., Rosenblum, D.S., Robbins, J.E., Redmiles, D.F.: Modeling soft-
ware architectures in the unified modeling language. ACM Transactions on Soft-
ware Engineering and Methodology ((to appear))

12. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: Proceedings
of the 14th IEEE International Conference on Automated Software Engineering
(ASE’99). (1999) 255–258

13. Holzmann, G.J.: The SPIN model checker. IEEE Transactions on Software Engi-
neering 23 (1997) 279–295

14. Kaveh, N., Emmerich, W.: Deadlock detection in distributed object systems. In:
Proceedings of the 8th European Software Engineering Conference (ESEC) / 9th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE).
(2001)

15. Zarras, A., Kloukinas, C., Issarny, V., Nguyen, V.K.: An Architecture-based En-
vironment for the Development of DSoS. In: (IC2 Report: Initial Results on Ar-
chitectures and Dependable Mechanisms for Dependable SoSs) Available at URL:
http://www.newcastle.research.ec.org/dsos/deliverables.

16. Klein, M., Kazman, R., Bass, L., Carriere, S.J., Barbacci, M., Lipson, H.: Attribute-
based architectural styles. In: Proceedings of the 1st IFIP Working Conference on
Software Architecture (WICSA-1). (1999) 225–243

17. Kazman, R., Carriere, S.J., Woods, S.G.: Toward a discipline of scenario-based
architectural engineering. Annals of Software Engineering 9 (2000) 5–33

18. Zarras, A., Issarny, V.: Automating the performance and reliability analysis of
enterprise information systems. In: Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01). (2000)



19. Laprie, J.C.: Dependable computing and fault tolerance: Concepts and termi-
nology. In: Proceedings of the 15th International Symposium on Fault-Tolerant
Computing (FTCS-15). (1985)

20. Laprie, J.C., Arlat, J., Beounes, C., Kanoun, K.: Definition and analysis of hard-
ware and software fault-tolerant architectures. IEEE Computer 23 (1990) 39–51

21. Butler, R.W.: The SURE approach to reliability analysis. IEEE Transactions on
Reliability 41 (1992) 210–218

22. Johnson, S.C.: Reliability analysis of large complex systems using ASSIST. In:
Proceedings of the 8th AIAA/IEEE Digital Avionics Systems Conference. (1988)
227–234

23. Floyd, S., Paxson, V.: Difficulties in simulating the internet. ACM/IEEE Trans-
actions on Networking (2001)


