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Abstract 

 

Statistical Methods for the Analysis of Visual Field Data in Glaucoma 

Stuart K Gardiner (Nottingham Trent University) 

 

Glaucoma is a leading cause of visual disability. Automated static perimetry determines the minimum 

contrast that a subject can perceive (called the sensitivity) at individual locations within their visual field. 

This instrumentation currently offers the most reliable strategy for the clinical follow-up of the disease. 

The accurate detection of glaucomatous change in a series of visual field results is important in the 

clinical management of a patient, and in the evaluation of which treatments are most effective in arresting 

progression. The slow, often equivocal rate of sensitivity loss, and the variability that exists between field 

results, makes this a difficult task. 

 

The purpose of this thesis is to improve the statistical methods used for determining true visual field 

defects and progression in suspected glaucoma patients. 

 

Pointwise linear regression models for identifying true change in the sensitivity at a point are examined. 

By simulating visual field data, it is shown that a testing frequency of three tests per year is optimal for a 

given rate of sensitivity loss. Next, the use of confirmation fields to verify suspected progression is 

examined, and the comparative specificity and sensitivity of different confirmation techniques assessed; a 

novel technique where the penultimate field is omitted is found to be the most specific. 

 

A novel spatial filter is developed, based on pair-wise covariances between different points in the fields of 

patients at a tertiary glaucoma clinic. The filter is found to closely reflect the anatomical structure of the 

retinal nerve fibre layer. This filter appears to reduce the noise present in visual field tests, as evidenced 

by an improved fit to pointwise linear regression, fewer false positives and fewer false negatives when 

looking for progression. It has been programmed into computer software used to identify progressing 

defects. 

 

The effect of applying the filter to patient data is proposed as a measure of the amount of noise present. 

This noise is modeled statistically to determine the suitability of assuming that the noise is normally 

distributed. The assumption is found to be not unreasonable but inaccurate; an improved model is 

developed which fits the empirical data better and over a wider range of sensitivities. 

 

These new quantitative methods, in particular the new spatial filter, may prove clinically useful in the 

analysis of visual function deterioration in glaucoma. 
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Outline 

 

Chapter 1 discusses the background behind this thesis. It introduces glaucoma as a severe and 

irreversible cause of damage to visual function, particularly prevalent in the older population. It then goes 

on to discuss the testing methods for glaucoma, in particular the use of perimetry to produce a map of the 

sensitivity to light of different parts of the retina. The Full Threshold algorithm for determining the 

sensitivity of each point in the visual field is described. The amount of variability in sensitivity estimates 

from perimetry is discussed, as are the reasons for this variability. Next, different methods for 

determining whether or not a field is progressing are described, including pointwise linear regression. 

 

Chapter 2 describes a Virtual Eye simulation developed to address questions about the progression of 

visual fields. The chapter starts by summarising the reasons for using a simulation approach to visual 

fields, and discusses previously published simulations. It then goes on to describe the Virtual Eye 

simulation in detail, giving examples of the results it produces. 

 

Chapter 3 describes an experiment which uses the Virtual Eye to determine the ideal number of field 

tests per year which should be carried out to optimise the specificity and sensitivity of pointwise linear 

regression. It concludes that performing three tests per year provides a significant improvement in 

sensitivity when compared with using fewer tests per year; yet increasing the frequency of testing beyond 

this level leads to unacceptable levels of false positives. 

 

Chapter 4 discusses the use of confirmation fields when progression is suspected. Seven different 

methods for using confirmation fields are examined. Theoretical comparisons and an experiment using 

the Virtual Eye both showed that for maximum specificity, methods introduced in this chapter which omit 

the penultimate point when carrying out the confirmation test should be used. 

 

Chapter 5 describes the derivation of a new spatial filter which aims to reduce the noise in visual fields, 

by comparing the sensitivities at each point with the sensitivities at points which are anatomically related 

to it in the retinal nerve fibre layer. The filter is based on the pair-wise covariances between points in the 

field, as derived from a large retrospective patient database, which is described in detail. The shape of the 

filter is found to resemble the pattern of nerves on the retina. 

 

Chapter 6 describes two methods for determining the efficacy of the filter. First, series of visual fields 

from 303 eyes are examined, and it is found that filtering improves the fit of pointwise linear regression, 

indicating a reduction in the amount of noise. Next, the Virtual Eye is used to simulate stable and 

defective eyes. It is found that filtering reduces the proportion of false positives amongst stable eyes, 

whilst increasing the detection rate of points which are truly progressing in realistic glaucomatous defects, 

as derived from an anatomical structural map of the retina. Further, it is found that non-glaucomatous 

localised defects become less likely to be flagged as progressing after filtering. This indicates that 

 - 10 - 

filtering significantly improves the process of distinguishing between healthy or stable eyes and 

progressing glaucomatous eyes. 

 

Chapter 7 describes and justifies a novel way of estimating the noise present in visual fields by 

comparing the filtered sensitivity with the raw sensitivity at each point. Empirical estimates of the noise at 

each sensitivity level are then modelled by a Pearson Type IV distribution, and examples of the fit of the 

model are given. The model is found to fit the empirical data significantly better than a normal 

distribution. 

 

Chapter 8 sums up the work in the thesis, noting the novel contributions to the field of work; and gives 

suggestions for future work. 

 

This is an applied thesis, written primarily with the statistically literate researcher in visual fields in mind. 

It is also to be hoped that a clinical reader should gain useful information from it; and further that the 

thesis provides a useful example of the application of a selection of applied statistical methods. 
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1. Background 

 

This chapter gives an introduction to glaucoma and visual fields, and the background behind the current 

work. It also sets out the aims of this study. Background to the more specialised work underlying different 

elements of the study is included in later chapters when they become relevant. 

 

1.1 Glaucoma 

 

Glaucoma is estimated to be the second commonest cause of blindness in the world. Although there is no 

universally accepted definition, it can be considered as an eye disease characterised by damage to the 

optic nerve head. This can result in partial or full loss of vision from the eye in question in certain 

directions, determined by the part of the optic nerve head which has been damaged. If untreated, the 

disease will normally progress, resulting in the vision loss in affected areas worsening and/or spreading to 

other areas; eventually this may result in complete loss of the vision in that eye. Once vision loss has 

occurred, it is irreversible; although the decline can be slowed or even halted by appropriate treatment in 

most cases. Since adequate therapy significantly slows progression of the disease (Hitchings et al 1995; 

Bhandari et al 1997; Koseki 1997; AGIS 2000; Wormald 2003), the early identification of individuals at 

risk is considered important. 

 

The commonest form of glaucoma is primary open-angle glaucoma (POAG); this is when the disease is 

unrelated to other underlying ocular conditions, and the aqueous drainage route is not closed by some 

known other normal or pathological structure. Frequently, glaucoma is associated with a higher than 

normal pressure inside the eyeball (the intraocular pressure or IOP) (Coleman 1999; Henson 2000, p.92), 

in which case the lowering of IOP, by either increasing the rate of outflow from the eye or reducing the 

rate of production, is an important clinical tool; however there is a subset of patients whose IOP is 

considered normal, known as Normal Tension Glaucoma (NTG) patients. Patients whose IOP is abnormal 

but who do not, as yet, show other symptoms of glaucoma are described as having Ocular Hypertension 

(OHT), and are considered as glaucoma suspects. Results from recent clinical trials have confirmed the 

long-held belief that reducing IOP reduces the risk of glaucoma developing and progressing (Kass et al 

2002; Heijl et al 2002; Wormald 2003). 

 

Glaucoma initially results in partial or full loss of vision in small areas of the visual field. These areas 

(called localised defects) follow the shape of the nerves along the retina (the retinal nerve fibre layer, or 

RNFL) which conduct messages from the light sensitive cells (called rods and cones) spread across the 

retina into the optic nerve, and hence to the brain. In Figure 1.1, the optic nerve enters the retina towards 

the left of the picture; at this point (and only at this point) there are no light-sensitive cells, causing the 

phenomenon known as the physiological blind spot. This occurs just above the horizontal meridian, 

approximately 10 to 15 degrees from the centre towards the nose; resulting in a blind spot in vision a 

similar distance temporal of the centre just below the meridian. The nerves in the RNFL then spread out 
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from the optic nerve head in an arcuate pattern, as seen in the photograph; the nerve fibres (which appear 

as light grey lines on the darker background) leave the optic nerve head in all directions, but tend to bend 

to the right as they get further away, eventually heading back towards the horizontal meridian towards the 

right hand side of the photograph. Therefore a glaucomatous localised defect will normally also follow an 

arcuate pattern mimicking the shape of the RNFL. 

 

 

Figure 1.1: A photograph of the retina of a healthy eye. 

 

The literature on the underlying mechanisms of glaucoma is both extensive and subject to ongoing 

discussion; some papers have failed to find significant correlation between IOP and loss of visual function 

(Holmin & Krakau 1982; O’Brien et al 1991; Chauhan & Drance 1992). Since this discussion is 

tangential to the work described in this document, it shall not be considered in detail; a comprehensive 

review is given by Hayreh (1994). 

 

Prevalence is higher amongst people of Afro-Caribbean origin and other black populations (Tielsch et al 

1991; Leske et al 1994; Buhrmann et al 2000). In a white population, the prevalence of glaucomatous 

visual field defects has been reported to be 1.5% (Wolfs et al 2000). Family history of the disease is 

amongst the other risk factors associated with an increased susceptibility to POAG (Leske 1983; Tielsch 

et al 1994; Wolfs et al 1998). Work on identifying gene loci associated with an increased risk of 

glaucoma is continuing (Stoilova et al 1996; Stone et al 1997; Wirtz et al 1997; Trifan et al 1998; 

Sarfarazi et al 1998; Wirtz et al 1999; Aung et al 2002a; Aung et al 2002b; Pang et al 2002; Aung et al 

2003). 

 

Coffey et al (1993) suggested that at the time of the study there were approximately 250,000 known 

sufferers in the UK alone, with probably an equal number of undiagnosed cases; since glaucoma is an 

age-related condition, this number would be expected to rise in line with the country’s aging population. 

It has been estimated that approximately 5.2 million people worldwide are bilaterally blind from 

glaucoma, representing 15% of the total number of blind people (Thylefors & Negrel 1994). Although 

exact definitions of POAG differ from one study to another (most importantly the cut-off point at which 

the eye is said to be either normal or diseased), the prevalence of POAG has been estimated to be around 

2% of the middle-aged and old-aged population (Coffey et al 1993; Tielsch et al 1991; Klien et al 1992). 
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This has been reported to range from 0.9% for subjects from 43 to 54 years of age, up to 4.7% for patients 

aged 75 or over (Klein et al 1992). Whilst glaucoma has a lower prevalence than cataract, the fact that it 

is irreversible (unlike cataracts which can be removed with surgery) contributes to its economic burden 

being of the same magnitude (Guzman et al 1992). 

 

A thorough review of the definition of glaucoma and methods its treatment, and their side-effects, is 

given by Coleman (1999). 

 

1.2 Visual Fields and Perimetry 

 

The visual field is defined as being the area from which light can enter the eye and reach the retina, thus 

stimulating the light-sensitive cells on the retina (called rods and cones) into sending messages to the 

brain (Tate & Lynn 1977; Werner 1991; Henson 2000, p.1). The ganglion cells in the inner retina process 

the signals from these rods and cones prior to relaying them to the brain via their axons, which pass 

across the inner layer of the retina and exit the eye via the optic nerve head. For a bright stimulus, the 

normal extent of the visual field is 60° up, 75° down, 100° temporal and 60° nasal from the line of sight 

(Henson 2000, p.2). The visual field is said to be damaged if the patient has reduced or non-existent 

vision in a certain direction with the eye in question; that is, if the patient looks directly at a given point 

with that eye (called the point of fixation), they will not be able to see an object presented in another 

direction. The centre of the retina in a healthy eye has a higher concentration of ganglions than areas 

further away from fixation, and so the resolution is typically better there. 

 

Traditionally, the visual field has been measured by perimetry (Lachenmayr & Vivell 1993). This is a 

technique which measures the light-difference sensitivity across the visual field. To do this, a visual 

stimulus is presented at one or more points, and the patient indicates whether or not the stimulus has been 

seen. Naturally, this must be carried out for one eye at a time (with the other eye being covered or closed), 

with the patient looking directly forward at a pre-determined point of fixation. 

 

Recently, new technology has enabled imaging techniques to be developed, whereby the retina is 

‘photographed’ so that damage can be looked for and assessed. While this is a promising (and very broad) 

area of research, perimetry is still far more widespread. Further, the relationship between structural 

damage (as shown by imaging techniques) and functional damage (as evidenced by perimetry) is far from 

straightforward (Shareef et al 2002); the two types of testing do not necessarily produce diagnoses 

concurrently. It is possible that in the future, imaging techniques will overtake perimetry and become the 

accepted diagnostic tool for glaucoma; however, that time has not yet come, and so perimetric research is 

still as relevant now as at any time in the past. It is still the only way of determining what a patient can 

actually see, and so addressing such important issues as quality-of-life and fitness-to-drive. 

 

Several different types of perimetry have been used. Originally, manual perimeters were used. Manual 

static perimetry was considered to be a highly sensitive and exact, but very time-consuming, technique, 

and so was mainly used in research rather than routine clinical settings (Haley 1997, p.1-4). It required 
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the full attention of either a doctor or well-trained and experienced technician. Since the advent of 

computers, automated perimetry has become available; by following set rules and algorithms, 

standardised repeatable testing can be carried out. These tests do not have to be administered by a 

specialised technician. Further, visual stimuli can now be presented in random order, with their duration 

and intensity strictly controlled. These advantages have led to automated perimetry becoming the 

accepted tool in a clinical setting. 

 

Most automated perimeters are based on white-on-white perimetry; that is, the patient looks at a white 

screen (actually normally a bowl) with one eye at a time, fixating on a point in the centre, and then white 

visual stimuli of varying brightness are presented at set points in the screen, designed to ascertain the 

patient’s visual sensitivity at the corresponding point in their visual field. Alternative developments 

include blue-on-yellow perimetry (where blue stimuli are presented on a yellow screen) and kinetic 

perimetry (where the stimuli are in motion), but they are less widespread. Short-Wavelength Automated 

Perimetry (SWAP), based on blue-on-yellow perimetry, has been of much interest recently, even though 

it has been shown to have a higher variability than white-on-white perimetry (Sample et al 1993; Wild et 

al 1995; Kwon et al 1998; Wild et al 1998). Frequency-Doubling (FDT) Perimetry is designed primarily 

for the screening of possible glaucoma patients (Johnson & Samuels 1997). This study will be concerned 

solely with white-on-white perimetry; comprehensive reviews of the principles of perimetry, and the 

different instruments used, are given by Lachenmayr & Vivell (1993) and Henson (2000, p.23-49).  

 

The most widely used automated perimeters in both clinical (especially in secondary or tertiary care) and 

research settings are the Octopus perimeter (Interzeag AG, Schlieren-Zurich, Switzerland) and the 

Humphrey Field Analyzer (or HFA) (Carl Zeiss Meditec AG, Germany). This study is based on results 

from the HFA, which is the more commonly used instrument in the UK. The methods developed could 

easily be transferred to data from other types of perimeter if desired. For full information on the HFA, see 

Haley (1987) or Werner (1991, p.67-89). Each stimulus can be presented at varying brightness, from 0.08 

to 10,000 apostilbs luminance; the lowest brightness which can be seen at the point in question is known 

as the sensitivity threshold of that point, reported on a decibel (dB) scale which is based on the log 

luminance. If the stimulus intensity is measured in Lamberts (where one Lambert = 10,000 apostilbs), 

then 1dB = 10 * log (1/L). A sensitivity of 30-40dB is considered as normal (depending on, for example, 

the age of the patient); a sensitivity of 0dB means that the patient could not detect the brightest stimulus 

presented by the machine at that point. It has recently been suggested that switching to a Lambert scale 

rather than a decibel scale could improve diagnostic techniques (Garway-Heath et al 2000a), but this is 

not yet proven (Racette et al 2003). 

 

Different testing strategies have been proposed. Full Threshold testing (described below) was the standard 

for many years, and is still the benchmark to which other strategies are compared; the data used in 

Chapters 5-7 was obtained using the Full Threshold strategy. More recently, the Swedish interactive 

threshold algorithm (SITA) (Bengtsson et al 1997) has been gaining acceptance; it is designed to provide 

sensitivity values of an equal reliability in a shorter testing time. It does this by estimating in a Bayesian 

manner the expected threshold value at each point, based on prior knowledge of the point’s neighbours 

and the distribution of threshold values from other patients. Whether the variability of SITA results is in 
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fact the same as those from the Full Threshold strategy is currently subject to much debate (Bengtsson & 

Heijl 1999; Shirato et al 1999; Wild et al 1999a; Sharma et al 2000; Artes et al 2002); whilst it is to be 

hoped that the results presented in this study would be equally applicable to SITA data (as they would be 

if the variability was truly the same, both in magnitude and in other distributional characteristics), this has 

not yet been tested. SITA Fast is a similar algorithm with an even further reduced testing time, although 

with an associated higher test-retest variability (Bengtsson & Heijl 1998).  

 

In the Full Threshold algorithm, the HFA measures the threshold sensitivity at each point by a so called 

“repetitive staircase” procedure. An initial stimulus is presented slightly brighter than the patient’s 

expected sensitivity at the point being measured, based on neighbouring points. Every time a stimulus is 

seen, the patient presses a button. Each time a stimulus is seen, the next stimulus presented by the 

machine at that point will be 4dB dimmer (i.e. 4dB higher on the decibel scale for sensitivity); this is 

repeated until the stimulus is too dim to be seen. At this point, the intensity is increased again in steps of 

2dB until it is seen again. This then gives the measurement of the threshold at this point. If the initial 

stimulus is not seen, the process runs in reverse; stimuli are presented in steps 4dB brighter (4dB lower) 

until one is seen, at which point the intensity is reduced by 2dB at a time until it is no longer visible. For 

example, if the sensitivity of a point was 16dB (that is, stimuli of 16dB or below will be seen) then a 

typical sequence of stimuli could be 30dB, 26dB, 22dB, 18dB, 14dB, 16dB, 18dB, where only the 14dB 

and 16dB stimuli were seen. The strategy begins by twice thresholding four initial points, one in each 

quarter of the visual field; it subsequently moves onto the other locations in the field. Some points are 

thresholded twice, partly to gain an estimate of the reliability and variability of the test, and also to 

confirm the threshold at any locations whose estimate is more than 4dB away from the expected value 

(based on neighbouring values). The stimuli for different points are presented in random order, rather than 

determining each threshold individually one at a time. 

 

The locations tested are normally determined by either the 30-2 or 24-2 patterns. The 30-2 field gives the 

threshold estimates of locations in a grid covering the central 30˚ of the visual field; the locations are 6˚ 

apart, with none falling on the horizontal or vertical meridians. This gives a total of 76 test locations, as 

shown in Figure 1.2. 

 

Figure 1.2: The subset of points in the 30-2 field which comprise the 24-2 visual field. The dashed grey lines show the horizontal 

and vertical meridians. The nose is on the right; and the large grey area towards the left shows the approximate position of the 

physiological blind spot (note that two of the test locations coincide with this area). 
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The 24-2 field consists of the subset of the 30-2 locations which fall within the central 24˚ of the visual 

field, plus the two most peripheral locations (nearest the nose, and hence furthest from the physiological 

blind spot caused by the optic nerve entering the retina; one immediately either side of the horizontal 

meridian); giving a total of 54 test locations, a shown in Figure 1.2. 

 

Although defects further from the centre of the field (further from fixation) do occur in glaucoma and 

retinal disease, they are relatively rare, and have much less effect on visual function (and hence important 

factors such as quality-of-life); this, coupled with the increased variability further from fixation (Heijl et 

al 1989), and the reduced testing time required, has led to the 24-2 field becoming the standard in recent 

years. 

 

Additionally, the HFA at certain times during the test will move as if to present a stimulus (causing the 

noise associated with the machine’s movement), but not present the stimulus; if the patient presses the 

button at this point, a False Positive is recorded. Similarly, stimuli will be presented at intensities well 

above the patient’s threshold at certain points; if the patient fails to respond, a False Negative is recorded. 

Thirdly, stimuli are presented at the physiological blind spot; if these are seen by the patient, it is 

evidence that they are failing to fixate properly (recall that the patient is looking directly forward all the 

time the test is happening; a fixation loss occurs when their eye ‘wanders’). Tests with high levels of 

False Positives, False Negatives or Fixation Losses are automatically labelled as unreliable fields. The 

SITA algorithm (Bengtsson et al 1997) uses an alternative method for estimating the prevalence of false 

positives based on the number of responses which occur before the minimum possible reaction time after 

a stimulus has been presented. 

 

Perimetry results in a grid of sensitivity values, on the decibel scale as described earlier. This can then be 

represented as a greyscale, to give a visual impression of the state of the visual field; this is then much 

easier to understand and interpret, both for the clinician and for the patient. The standard output from the 

HFA, including the Statpac2 analysis program (Heijl et al 1991a), is a printout as shown in Figure 1.3 

(although it can be stored electronically as well) which includes: 

• The patient’s name and date of birth 

• Details of the test carried out (including the testing strategy and the current date) 

• The grid of the raw sensitivity values 

• A greyscale representing the sensitivities 

• The numbers of False Positives, False Negative and Fixation Losses 

• The testing time, and the total number of stimuli presented 

• Probability maps of the total deviation (comparing the sensitivity of each point with the HFA 

normal database) and pattern deviation (the same after mathematically adjusting to take account 

of a possible overall reduction in sensitivity across the field, making localised defects more 

evident) 

• Global indices giving a measure of whether the visual field has a lower sensitivity than normal 

globally and/or in the form of a localised defect. 

The probability maps and global indices are added to the output by the Statpac2 program. 
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Figure 1.3: A sample printout from a Humphrey Field Analyser incorporating Statpac 2. 
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This study considers only the actual sensitivity values and the accompanying greyscale. Two examples 

are given in Figure 1.4, along with the key showing how the sensitivity values are converted into the 

greyscale. 

 

 

Figure 1.4: Two sample visual fields, from a HFA. The top field is from a healthy left eye; the bottom field shows a right eye with 

an advanced defect. The grid on the left in each case shows the raw sensitivities at each point, in decibels; where a second number is 

shown underneath the number, it is the second threshold estimate at that point (where applicable). The key at the bottom shows how 

the greyscales are generated from the sensitivities in the decibel scale (bottom row) or the equivalent luminances (middle row). Note 

that both of these eyes were tested using the 24-2 visual field algorithm. 

 

In a healthy eye, contrast sensitivity decreases further from the fixation. This results in the so-called ‘hill 

of vision’ (Traquair 1931), whereby sensitivity decreases as eccentricity increases. The height of the hill 

represents the sensitivity at that point; stimuli equivalent to a sensitivity which would put them above this hill 

cannot be seen. Beyond the extent of the hill are points at which no stimuli can be seen, no matter how bright; 

this corresponds with points outside of the extent of the visual field (e.g. behind the patient’s head). 

 

Sensitivities in a perfectly healthy eye will still decline over time as a result of aging. This decay is slow, and 

would not in itself cause significant loss of vision; however it should still be taken into account when 

considering progression of visual fields, as in Section 1.3. This effect has been estimated as a loss of 

0.1dB/year (Heijl et al 1991b). 
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1.2.1 Variability in Perimetry 

The major limitation of perimetry is that the threshold estimates fluctuate, due to both measurement error 

and other factors such as the nature of the psychophysical test, whereby the results depend on a patient’s 

response. The sensitivity of each test location can vary physiologically and become more or less sensitive 

over time. The variability between tests is commonly known as long-term fluctuation, and becomes an 

issue when examining a series of visual fields, especially when looking for evidence of progression, as 

discussed in Section 1.3 (Hutchings et al 2000). Also problematic is variability caused by measurement 

errors; repeated measurements at the same point during the same test will often produce different 

sensitivities. Reducing this variability, commonly referred to as short-term fluctuation (Flammer et al 

1984; Lachenmayr & Vivell 1993), is a key aim of work in this field. 

 

Over a short time, such as the duration of a test, the threshold above which a stimulus will be detected is 

in fact probabilistic, not deterministic. Brighter stimuli merely have a higher probability of being 

detected. By presenting many stimuli of the same brightness, known as the method of constant stimuli 

(Schwartz 1999), a graph can be produced plotting stimulus intensity versus the percentage of 

presentations seen; this is known as a frequency-of-seeing curve (Henson 2000, p.19-21). The point on 

this curve at which a stimulus has a 50% chance of being seen provides the best estimate for the 

threshold. With a steep slope, there is little difference in stimulus intensity between an always-seen and a 

never-seen response; this indicates a low short-term fluctuation. If the slope is flatter, there is greater 

variability. In a normal, healthy individual, the inter-quartile range of the frequency-of-seeing curve will 

usually be 1.5-2dB for standard automated perimetry (Chauhan et al 1993). 

 

Many factors contribute towards the variability, including: 

• Learning effects: the first time (and possibly more) a patient has been tested, they will respond 

less well, typically causing artificially low threshold estimates (Wood et al 1987). 

• Fatigue: tests can frequently last for more than 15 minutes per eye for the Full Threshold 

algorithm. Patients may well lose concentration during the test, and so fail to respond to stimuli 

(Hudson et al 1994; Wall et al 2001). 

• Alertness: similarly, concentration may be lower if the patient is for example more tired that 

usual on the day in question. 

• Button pushing: the patient responds to a seen stimulus by pressing a button. This is open to 

errors due to the button being pushed too slowly, or not fully depressed, or pushed accidentally. 

• Fixation losses: during the test, the patient is asked to look directly forward at a set point. If their 

eye wanders, the visual stimuli will be presented into the wrong part of the retina. Similar effects 

can be caused by the head tilting during testing; usually the chin is rested on a stand to reduce 

head movements, but this system is not perfect. However, this is now thought to be unlikely to 

be a major cause of variability (Henson et al 1995; Henson et al 1996). 

• Ocular media opacities: the presence of cataracts causes a general diffuse loss of sensitivity in 

the visual field (Smith et al 1997; Chen & Budenz 1998). 
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Some of these factors are more controllable than others; furthermore, some are more quantifiable than 

others. More in depth discussions of each of these, and other, factors are given by Lachenmayr & Vivell 

(1993) and Henson (2000, p. 50-64). Not all variability can be explained by these factors; the cause of 

much of the noise is unknown (Blumenthal et al 2000). Some patients will produce very reliable results, 

with little variation over time; others will produce very different threshold estimates at the same point 

during the same test, and also from one test to the next. A point whose threshold is estimated at 20dB one 

day could be repeated the following day, and the estimate be anywhere from 0dB to 30dB (Heijl et al 

1989; Chauhan & Johnson 1999b). Figure 1.5, reproduced from Artes et al (2003), shows the 5th and 95th 

percentiles of the distribution of the sensitivity at a second test for each value of the sensitivity at an 

initial test, showing the alarmingly large test-retest variability of full-threshold perimetry. This inevitably 

makes identification of defects, and their follow-up over time, very difficult. 

 

Figure 1.5: Pointwise 90% test-retest intervals for full-threshold perimetry, reproduced from Artes et al (2003). For each threshold 

level of the initial test, the circles represent the 5th and 95th percentiles of the distribution of retest values based on patient data. The 

solid lines indicate the percentiles established from simulations of the testing algorithm. 

 

It is widely agreed that variability increases as the sensitivity of the point in question decreases (Heijl et al 

1989; Heijl et al 1991b; Chauhan & Johnson 1999b; Henson et al 2000; Artes et al 2002). This means that 

the variability will naturally increase when a patient has a glaucomatous defect, and with age, and with 

eccentricity. 

 

A more in-depth discussion of the causes of variability in visual fields, and methods for testing it, is given 

by Spry & Johnson (2002). 

 

1.3 Progression 

 

As yet, there is no accepted mathematical model or universally recognised quantitative technique for 

following how glaucomatous visual fields change over time. Because of ethical considerations, no data is 

available on how glaucomatous eyes would change if left untreated, except in special cases such as the 
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subset of patients who exhibit normal tension glaucoma (McNaught et al 1995), or in very early stages of 

the disease (Heijl et al 2002). It seems reasonable to assume that defects occurring in treated eyes 

probably exhibit the same patterns of change as untreated eyes, although at lower rates (Spry & Johnson 

2002). However there are still few longitudinal studies providing information about the evolution of 

progressive glaucomatous visual field loss. Mikelberg & Drance (1984) studied loss in 42 glaucomatous 

eyes with progressive defects, over a mean follow-up period of 8.2 years; they found that defects became 

deeper in 79% of the eyes, larger in 52% of the eyes, and new defects occurred in 50% of the eyes. 

However, this was a small study based on manual perimetry, which (as explained in Section 1.2) is less 

reliable than automated perimetry. 

 

What is known from clinical observations is that change is very slow, measured over several years rather 

than weeks. This means that it is necessary to follow patients over a period of several years to answer the 

two key questions: does the eye have a glaucomatous defect, and if so is it getting worse? If the defect is 

worsening – called a progressing defect – then treatment can be applied to slow or halt this deterioration 

(Hitchings et al 1995; Bhandari et al 1997; Koseki et al 1997; AGIS 2000). If the defect is stable, then 

unnecessary treatment can be both painful and costly; many treatments for glaucoma have associated 

side-effects (Coleman 1999). Furthermore, treatment has recently been shown to increase the risk of 

nuclear cataract (Heijl et al 2002; Leske et al 2002; Wormald 2003). Also, in clinical trials it is important 

to have some means of determining whether one group of glaucomatous eyes are deteriorating faster than 

another group. This raises the question of how to best detect true change in visual fields over time. 

 

Clinical judgment, consisting of a simple subjective observation of sequential visual field test results 

(normally in greyscale form), and other information on the perimeter output, is probably the typical 

method for identification of progressing defects; and is still commonly used in glaucoma clinics. It is 

quicker, since it involves no computer use; it is easy to perform; and it is highly flexible, since an 

experienced clinician can take account of other factors such as the appearance of the optic disc, and other 

clinical and non-clinical factors. However, this subjectivity is also the method’s downfall; the same series 

of fields can be interpreted differently by different people, and agreement between even experienced 

clinicians has been shown to be very poor (Werner et al 1988; Viswanathan et al 1997b; Viswanathan et 

al 2003). Table 1.1, reproduced from Viswanathan et al (2003), shows how poor the agreement between 

two experienced clinicians is, even when based on an exceptionally long series of sixteen fields. 

 

 Observer B 

Observer A 
Definitely 

Stable 
Probably 

Stable 
Probably 

Progressing 
Definitely 

Progressing 

Definitely Stable 5 4 1 0 

Probably Stable 4 1 2 1 

Probably Progressing 0 3 1 3 

Definitely Progressing 0 1 0 1 

Table 1.1: The differing clinical opinions of two experienced observers on the status of 27 series of 16 visual fields. 

 

Early attempts at more formal trend analysis were still largely subjective; based on either an estimate of 

the area of the field where the perimetric stimulus was seen (Smith 1972; Sponsel et al 1983; Smith 
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1986), or on classification into (essentially arbitrary) stages based on the size and depth of the defect (Jay 

& Allan 1989), all based on manual perimetry. More objective analysis became possible with the advent 

of repeatable automated perimetry. Initially, trend analyses were carried out on global indices 

summarizing the field. The first version of the Statpac analysis package (Heijl et al 1987), developed for 

the HFA, tests whether the mean deviation (i.e. the mean difference between the sensitivities of each 

point and the age-corrected normal values for those points) is increasing over time, using a simple linear 

regression (subject to there being enough fields in the series). In Statpac2 (Heijl et al 1991a), this is 

adjusted so that the first test result is discarded if it deviates substantially from the trend, to take account 

of learning effects. Other global indices (such as the pattern standard deviation) have been used similarly. 

However, clinical opinion (Hitchings 1993; Johnson 1993; Wild et al 1993) and research findings 

(Chauhan et al 1989; Chauhan et al 1990; Katz et al 1997) suggested that following global indices over 

time was insufficiently sensitive to glaucomatous loss; the reduction of the data to just one measure 

removes much useful information on the distribution of loss through the field, ignoring the important 

spatial nature of visual field loss in progressive glaucoma. 

 

A similar technique used is to give each visual field a score, giving an objective indication of the amount 

of glaucomatous loss. One example of this is the AGIS scoring system (AGIS 1994), where the field is 

given a score based on the depth and size of defects in each of three areas – the upper and lower 

hemifields, and the six most nasal points, in the 24-2 field – as shown by the total deviation map on the 

HFA printout. This results in a score from 0 to 20, where a score of 20 indicates that all test sites are 

deeply depressed. The Collaborative Initial Glaucoma Treatment Study (Musch et al 1999) produces a 

similar score from 0 to 20, this time based on the total deviation probability plot provided by Statpac 2 

(Heijl et al 1991a), described below. While this technique is attractive for producing objective results for 

clinical trials such as these, it is of less use for clinically examining a patient, since it give no indication of 

the spatial profile of any defect. It also exhibits a large variability between tests; the AGIS investigators 

found that the scores of 16% of the 756 eyes in the study varied by four or more points when retested 

after a short interval (median follow-up time one week). 

 

This led to the consideration of so called pointwise methods for identifying progression. In a ‘pure’ 

pointwise method, each point in the field is examined separately to determine whether the sensitivity at 

that point appears to be deteriorating over time. Clinically, it is common to look for clusters of two or 

more neighbouring points in expected locations (i.e. adjacent along one of the arcs which localised 

glaucomatous defects follow, as described in Section 1.1) which all appear to be progressing. While such 

methods are not technically ‘pointwise’ in the usual definition of the term, the methods for determining 

which individual points are progressing are still the same as if a pure pointwise technique was being used; 

and so these too are referred to as pointwise methods. It has been shown that such methods identify 

progressive field loss which would have been masked by looking at changes in global indices (Wild et al 

1994; Nouri-Mahdavi 1997). 

 

One commonly used package for analysing pointwise changes in glaucomatous visual field series is the 

Statpac 2 program (Heijl et al 1991). The ‘Glaucoma change probability analysis’ evaluates the amount of 

change with respect to empirical results of repeated tests, from a population of patients with stable 
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glaucomatous field loss. Two of the first three fields in the series are selected and averaged to give a 

merged baseline field. The change from this baseline, in decibels, is calculated and displayed for each test 

location; this is to highlight locations where the sensitivity has changed by more than would typically be 

observed were the field stable, based on the location of the point in question, the initial sensitivity loss 

and the mean deviation of the field as a whole. It results in a map of symbols; for example a solid triangle 

at a point indicates a deterioration which would be found less than 5% of the time in a stable field (so the 

principle is similar to, although not identical to, a statistical p-value). Additionally, the program evaluates 

change in the mean deviation of the whole field, in the same manner. 

 

One limitation of the Statpac2 program is that its results are based solely on comparing the field with the 

baseline field(s); intermediate tests are ignored. It is really an event analysis rather than a trend analysis. 

One result of this is that changes detected always need to be confirmed by another test; another result is 

that the test is highly dependent on the accuracy of the baseline field. Further, the normal database which 

the probability values are based on is taken solely from patients with stable, medically treated POAG; 

results from patients whose circumstances are different need to be treated with caution (Morgan et al 

1991). 

 

To use all the available data, regression analysis is necessary. Here, each point is considered as a separate 

time series, and a line found which predicts the values at each point in time, whilst minimising the errors 

at the times when the sensitivity was measured. Previously, curve-fitting software has been used to 

identify a best-fit model for glaucomatous sensitivity deterioration (McNaught et al 1995). Complex 

polynomials produced the best fit, but it was suggested that these polynomials were in fact modelling the 

noise more than the actual deterioration. The predictive power for the next test in the series was seen to be 

much better using a simpler linear model; that is, when the line of best fit was calculated based on only 

the first five sensitivity measurements, and then the sensitivities at future time points estimated based on 

this line, the linear model produced the smallest errors. Thus the investigation concluded that linear 

modelling was the best (out of those tested) for determining progression. Linear approaches have been 

used in other longitudinal visual field models (Wild et al 1993; O’Brien & Schwartz 1993; Spry 2000); 

and while there is no way of saying that such a model is optimal, it has gained pre-eminence as the most 

accepted model of those examined so far. 

 

Pointwise Linear Regression (PLR) has been implemented into a computer program called Progressor 

(Institute of Ophthalmology & Moorfields Eye Hospital, London, UK). This accepts data from a 

computer disc or directly from the perimeter, and calculates the relationship between threshold sensitivity 

and test date, displaying the degree of change (and its statistical significance) in a grid form so that the 

important spatial relationships are not lost (Fitzke et al 1996); an example output is shown in Figure 1.6. 

It has been shown that the use of this program significantly improves the agreement between experienced 

clinicians on the matter of whether a field is progressing or not (Viswanathan 1997b; Viswanathan 2003); 

and that the results obtained compare favourably with those from the Statpac 2 program (Birch et al 

1995b; McNaught et al 1996; Viswanathan et al 1997a). 
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Figure 1.6: Sample output from the Progressor program. Visual fields can be displayed individually in greyscale form (as with the 

right eye here); alternatively, colour-coded bars can be displayed for each point (as with the left eye here), with the size of each bar 

representing the deviation from normal sensitivity for that point at that test, and the colour representing the statistical significance of 

the regression slope up to and including that test. A series of bars is shown at each point, showing the deviation and significance at 

that point for each test in the series up to and including the currently selected field. This enables progressing points to be easily 

identified. Such points can also be automatically labelled on the greyscale diagram; the exact criteria for slope and significance level 

are adjustable by the user. 

 

Pointwise Linear Regression (PLR) is not universally accepted. In its pure form, it makes the possibly 

unwarranted assumption that different locations progress independently; it takes account of localised 

defects deepening over time, but not of defects spreading into neighbouring locations. It implicitly 

assumes that test locations are independent, which is not strictly true (Hoffman et al 2003). This problem 

is lessened, though not eliminated, by methods which look for clusters of adjacent individually 

progressing points, or by methods utilising spatial filtering (of which more in Chapter 5). Specificity is 

also sacrificed (O’Brien & Schwartz 1992); points will be falsely labelled as progressing even in a stable 

eye because of the random nature of the noise. Again, this effect is reduced when clusters of progressing 

points are sought, or when further confirmatory tests are performed. It is non-contentious to say that PLR 

detects more cases of progression than global indices, suggesting that it has a higher level of sensitivity, 

with an accompanying lower level of specificity (Smith et al 1996; Katz et al 1997). Because there is no 

gold standard definition of glaucomatous field loss, it is currently impossible to say which has the better 

discriminatory power. The choice will inevitably vary according to the purpose of the testing; sometimes 

it is better to be conservative with diagnoses, at other times (for example when examining a patient whose 

other eye already has partially or completely reduced vision) any change, no matter how small, is crucial. 

 

An additional difficulty associated with using this technique is that the amount of deterioration required 

before a point is flagged as progressing depends on the exact criteria used. Some studies have defined 

progressive loss as any statistically significant negative slope, irrespective of gradient, which has a  

p-value of below 0.001 (Smith et al 1996; Katz et al 1997). Other common criteria are for slopes to be 

steeper than –1dB/year accompanied by a p-value less than either 0.05 or 0.1 (Wild et al 1997; Birch et al 
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1995a; Viswanathan et al 1997a; Viswanathan et al 1997c; Membrey et al 2000; Membrey et al 2001). In 

the Progressor program, the criteria can be altered by the user; the default is a slope of steeper than  

–1dB/year with a p-value less than 0.1 for inner points, and a slope of steeper than –2dB/year with a  

p-value less than 0.1 for edge points (points at the periphery of the Humphrey 30-2 field, i.e. those points 

appearing in the 30-2 field but not in the 24-2 field). Stricter criteria will inevitably improve the 

specificity whilst reducing the sensitivity. 

 

There is also no universally accepted criterion for how many points in the field must be flagged as 

progressing in order for the eye to be said to be progressing, or whether those points should be adjacent. 

Nor is there any agreement on how often visual fields should be tested (Viswanathan 1997c; Gardiner & 

Crabb 2002a), which will inevitably have an effect on the significance levels of slopes; this question 

forms the motivation for the work done in Chapter 3. Further, there is disagreement over whether an 

apparently progressing point must be confirmed by a further test or tests; different criteria have been used 

in different studies (Hitchings et al 1994; Birch et al 1995a; McNaught et al 1996; Smith et al 1996; Katz 

et al 1997; Nouri-Mahdavi et al 1997; Viswanathan et al 1997a; Viswanathan et al 1997c; Wild et al 

1997; Kamal & Hitchings 1998; Leske et al 1999; Viswanathan et al 1999; Membrey et al 2000; Spry et 

al 2000; Hofmann et al 2001; Membrey et al 2001; Westcott et al 2001; Gardiner & Crabb 2002b; Heijl et 

al 2002; Kim et al 2003). This question forms the motivation for the work done in Chapter 4. 

 

Other methods for identifying progression have been postulated. These include using neural networks, 

which do not rely on the assumption of independence between different points (Goldbaum et al 1994; 

Spenceley et al 1994; Lietman et al 1999); mixed topographical and longitudinal models (Wild et al 

1993); and pointwise multivariate regression analysis with fixed effects on panel data (Nouri-Mahdavi et 

al 1997). Although some of these techniques are still under investigation, they have addressed many of 

the drawbacks of the current progression algorithms, potentially leading to a better understanding of 

glaucoma progression. However, to date no conclusive evidence has been presented showing these 

methods to be definitively better than PLR. 

 

1.4 Aims of Study 

 

This study aims to improve the analysis of visual field results from HFA perimetry. Given a series of test 

results over time, how is it possible to distinguish better between progressing and stable eyes? In 

particular, the study sets out: 

• To evaluate the current PLR criteria and methodologies. 

• To suggest improvements for those criteria and methodologies, where possible. 

• To reduce the variability of threshold estimates that limits these methodologies. 

• To implement resulting techniques for variability reduction into clinically useful software. 
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2. Virtual Eye Simulation 

 

The major aim of this work is to evaluate and improve the current methodologies for testing visual fields 

for glaucoma. Specifically, given one or more visual fields output from an automated perimeter, it is 

sought to improve the way these results are used to determine the presence or absence of glaucoma, and 

whether or not the disease is progressing (note that this is different from trying to improve the methods 

used to obtain visual fields using an automated perimeter). To achieve this, it is essential to have a fair, 

reliable, unbiased testing procedure for comparing methods. 

 

2.1 Previous Work 

 

There is currently no widely agreed ‘gold standard’ for comparing procedures for testing for progression. 

It is not as simple as finding the detection rates for glaucomatous eyes, since there is no true cut-off point 

distinguishing a glaucomatous eye from a healthy eye; even a perfectly healthy eye will show a 

deterioration in sensitivity over time due to aging. There are cases when a glaucomatous defect can 

clearly be seen on a visual field test result, such as in Figure 1.4 in the previous chapter; but there are 

many more cases where the diagnosis is less clear-cut, especially during the crucial early stages of the 

disease. In Figure 2.1, for example, it is very unclear whether the eye in question (taken from a 

demonstration eye provided with the Progressor software described in Chapter 1.3) is progressing or not 

over the three year time period. 

 

Figure 2.1: Example series of greyscales. The four fields were taken on (from left to right) 24/4/86, 16/7/87, 9/6/88 and 11/7/89. 

 

Given the irreversible nature of glaucomatous damage, the key question is not whether or not a defect is 

present; more important is whether the defect is progressing (and hence requiring treatment) or remaining 

stable. Early detection of defects is keenly sought, yet this relies on the same principle of looking for 

change. The variability described in Section 1.2.1 means that noise can easily be confused with 

progression. Assessing series of visual fields by hand leads to very poor agreement between experienced 

clinicians (Werner et al 1988; Viswanathan et al 1997b; Viswanathan et al 2003), as shown in Table 1.1; 

hence the development of quantification methods, including PLR, as described in Section 1.3. It is these 

PLR methods which we wish to test. So, we require series of visual fields where the true state of each eye 

is known, so that it can be determined whether a diagnosis of that eye as deteriorating is due to true 

progression or simply due to noise. Ideally, we would like to base all testing on real patient data; 
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however, the true (noise-free) status of these eyes is unknown, and so comparing test results from 

different methodologies with the actual status is impossible. 

 

Therefore, it is natural to look for ways to specify the noise-free behaviour of an eye over time; then when 

noise is added in, the series can be tested for progression, and the test results compared with this specified 

behaviour. There are two ways to do this: 

– Theoretically. When a simple form of noise is added in, it may be possible to determine the 

probability of a correct test result. This is mathematically appealing; but it does require assumptions 

to be made, and even then many problems posed will be intractable. 

– Numerically. Noise can be added in by randomly sampling from a given distribution, or probability 

model, to simulate noisy visual fields; and then the test results evaluated in each case. This requires 

many simulated series to be determined. This will result in sample probabilities of a correct test result 

being generated; which, given sufficient runs of the simulation model (the more the better), will 

approximate the exact probability. This method is more flexible, as it enables approximations of 

arbitrary precision to be made, whether or not the theoretical problems are tractable. 

 

A key question in either approach is the form which the noise takes. The biggest assumption made in both 

cases is that the noise will follow a certain distribution. Test-retest data, where the same point in the field 

has been tested more than once under the same conditions within a short time period (typically less than a 

week, so that it is too short a time period for any true change to have occurred), gives one way of 

estimating the noise. While there are problems with this method of noise estimation – most notably the 

fact that because both the initial test and the retest are noisy, the estimate is actually double the noise 

present in one test – this does give a good indication of the shape of the distribution of the noise. This has 

been done in different sets of conditions, producing similar results (Flammer et al 1984; Heijl et al 1989; 

Heijl et al 1991; Chauhan & House 1991; Chauhan & Johnson 1999b; Henson et al 2000; Artes et al 

2002; Artes et al 2003). It is seen that at sensitivities of around 30dB (a typical reading for a healthy eye), 

the noise is approximately normally distributed, albeit with slightly fatter tails. As the sensitivity 

decreases, the noise becomes progressively more negatively skewed, with the left tail being fatter than the 

right tail. For further details, see Chapter 7 (and in particular Figure 7.1). 

 

The amount of noise also increases as the sensitivity decreases; Henson et al (2000) estimate that the 

standard deviation SD when the sensitivity is S is given by: 

log(SD) = -0.162S + 6.54 

Equation 2.1 

This equation was found by looking for a line of best-fit for log(SD), based on frequency-of-seeing data 

(as described in Chapter 1.2.1) collected in both patients and normal subjects at different visual field 

locations. This means that it gives a prescription for the level of noise which a perfect testing strategy 

would attain; the testing strategy chosen will increase this amount. It should also be noted that the noise is 

censored; that is, since sensitivities cannot be measured below 0dB, the distribution of the noise reflects 

this. However, the consensus is that noise is best modelled by a normal distribution, since it is eyes which 

are healthy or which exhibit early glaucomatous defects, and hence which have sensitivities well above 

zero, which are of most interest clinically. Although this assumption of normality is clearly not wholly 
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accurate, it is used in all the current literature on using simulation for visual field progression (Crabb et al 

1999; Spry et al 2000; Vesti et al 2002). In Chapter 7, empirical results will be used to examine the 

assumption, and to develop a better estimate of the distribution of the noise. 

 

There are currently two independently developed simulation models for progression in the literature. The 

first, called the ‘FieldSim’ model (Crabb et al 1999) followed on from work on PLR. This model assigns 

either gradual loss (at a user-defined rate) or episodic loss (by a user-defined amount) to a point over 

time, and then adds noise by sampling randomly from a normal distribution (with a fixed, user-defined 

standard deviation). The program is run in SPlus (StatSci Europe, MathSoft Inc., Oxford, UK). This is the 

program upon which the Virtual Eye model described below was based. 

 

This ‘FieldSim’ simulation model was used to demonstrate that PLR detected episodic change (a one-off 

loss of 3y dB at a random point over a three year period) just as well as it detected gradual loss 

(deterioration by y dB per year over three years) for different values of y, when the noise was normally 

distributed with a standard deviation of 3dB, and tests were carried out every six months over that period. 

This experiment addressed a possible problem with using PLR to detect progression, namely that it 

assumes loss is gradual rather than episodic, an as-yet unproven assumption. 

 

The second simulation model was developed by Spry et al (2000). This differs in four key ways: 

1. Two forms of noise are used. First, Short-Term Fluctuation is added by randomly sampling 

from a normal distribution for each point in turn, as in the ‘FieldSim’ model. Additionally, 

Long-Term Fluctuation is added by taking another random sample from a normal distribution, 

and adding this value to all the points in the field. This has no effect when only one point is 

being considered, since the sum of two normal variables is another normally distributed 

variable; it only has an effect when neighbouring points are being considered together. 

2. The initial and final fields of the series are taken from real patient data. Then, the intermediate 

fields are derived by interpolating between these two fields and adding noise. The effect of 

this is that the initial and final fields are effectively noise-free; no account is taken of noise 

present in these readings. Given that the first and last data points have a much larger effect on 

the slope of a regression line than the intermediate points, this has major consequences for 

PLR and any other regression-based techniques. 

3. A function is included which can, when desired, produce an increase in the short-term 

fluctuation with increasing eccentricity. Although this phenomenon has been noted in the 

literature (Heijl et al 1987; Katz & Sommer 1987), it has been suggested that the increased 

average variability further from fixation is due purely to the sensitivities decreasing (Flammer 

& Zulauf 1985), and hence would also be accounted for by using Equation 2.1. 

4. The short-term fluctuation can (if desired) be set to increase its standard deviation by 0.4dB 

for every 5dB of sensitivity loss. This is a simplified form of the principles accounted for by 

using Equation 2.1. 

 

This simulation model was used to quantify the effects of different levels of noise on the detection rates 

for progression using PLR (Spry et al 2000); and in a study looking at the effect of applying the Gaussian 
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filter to visual field data (Spry et al 2002), which will be discussed further in Chapter 5. It has also been 

validated by examining the simulation’s predictive power (Vesti et al 2002); by extrapolating the linear fit 

and adding noise, how well do the simulated noisy fields match the actual field from the patient in 

question? Unsurprisingly, it was found in this study that when no noise (in the form of short-term 

fluctuation) was added in, the predictions were more accurate than when noise was added to the 

predictions. The study also drew the conclusion that short-term fluctuation is a far more important factor 

for determining total variability than long-term fluctuation, conforming to the empirical findings of 

Flammer et al (1984). This gives further support for the principle of simply adding one form of noise to 

simulated fields, in the form of short-term fluctuation affecting each point in the field individually and 

independently rather than affecting all the points by the same amount, especially when the noise has been 

assumed to be normally distributed. 

 

Computer simulation of visual fields has also recently been used to examine testing strategies for a single 

field test (Artes et al 2003). This simulation sets the sensitivity at intermediate points in the series by 

linear interpolation as before, and then for each stimulus which would be presented during the field test 

(by whichever testing strategy is being considered at the time), determines probabilistically whether or 

not that stimulus was seen based on the sensitivity of the point and the variability (taken as being the 

slope of the frequency-of-seeing curve, as described in Section 1.2.1). The non-standard noise distribution 

which results, whilst possibly being more realistic than a normal distribution, makes theoretical 

comparisons between methods of the sort employed in Section 4.2 impossible. However it does appear 

promising in terms of the resulting shape of the noise distribution (something which will be examined 

further in Chapter 7), and takes account for the differences in the shape of the noise distribution caused by 

the choice of testing strategy. It is reasonable to hope that features from this simulation model could in the 

future be incorporated into the Virtual Eye model described in the next section, to create an improved 

model which could be used to examine field progression. 

 

2.2 The ‘Virtual Eye’ Simulation Model 

 

In order to address the problems being looked at in this work, an improved simulation model was 

required. Any test results are only as good as the methods used to obtain them. So, an advanced 

simulation, hereafter referred to as the Virtual Eye, was developed; using the ‘FieldSim’ as a starting 

point, but taking into account new developments in the theory of visual fields as well as learning from the 

model developed by Spry et al (2000). The Virtual Eye was developed using SPlus computer software. 

The user inputs: 

1. The length of the series desired; 

2. The number of tests per year to be simulated (tests are assumed to be equally spread in time); 

3. The noise-free initial and final fields in the series (or equivalently the noise-free initial field and 

the rate and pattern of loss over time). 

The model then assumes that the sensitivities at each point deteriorate linearly over time; and so the 

noise-free sensitivities at any point in time can be found by interpolating between the initial and final 

fields in the series. This assumption of linear deterioration is in keeping with the simulations by Spry et al 
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(2000) and Artes et al (2003), and uses the results from McNaught et al (1995) showing that a linear 

model was preferable to a polynomial or exponential model in terms of its predictive power for future 

field results (since more complicated models such as higher-order polynomials tend to model the noise 

rather than the underlying trend). 

 

Next, the Virtual Eye adds noise to each point of each generated noise-free field in turn. It does this by 

replacing the sensitivity value at the point in question with a Monte-Carlo randomly generated value, 

sampled from the normal distribution whose mean is equal to the noise-free sensitivity, with a standard 

deviation as given by Equation 2.1. This means that the noise increases as the sensitivity decreases in the 

manner described by Henson et al (2000), and hence in a more accurate manner than that used in the Spry 

et al simulation model. So, for example, if the true sensitivity at a point is 28dB, then the simulated 

sensitivity is drawn randomly from a normal distribution with mean 28dB and standard deviation 2.72dB. 

Only one estimate of the noise is used, in effect the sum of the short-term and long-term variability 

components. Note that the use of Equation 2.1 to describe the noise means that the level of noise attained 

by a perfect testing strategy (i.e. one with an unlimited number of stimulus presentations per point) is 

being considered; different testing strategies will add different amounts of noise to this figure. 

 

The Virtual Eye makes the simplifying assumption that the noise at neighbouring points is independent, 

given the noise-free sensitivity at those points. We are not assuming that actual (noise-free) progression is 

independent between points – it will not be. However because we have specified this progression exactly, 

the noise-free behaviour of neighbouring points is irrelevant. This means that we are effectively 

considering only the short-term fluctuation rather than the long-term fluctuation, something which, as 

explained above, is reasonable. This has two benefits. Firstly, the programming is much simpler, because 

points can be considered individually, which also puts much less pressure on the computer’s memory. 

Secondly, conclusions can be drawn based on the proportion of points, for example, being flagged as 

progressing; if the whole eye needed to be considered as one entity then presentation and interpretation of 

the results would be far more complicated. However, there are times when it becomes necessary to 

simulate an entire visual field, rather than just an individual point (as in Chapters 4 and 6). The method 

used is unchanged. The actual (noise-free) field at each point in time is specified, and then noise added to 

each point in the field in turn. Although the simulation model is no more complicated in this case, more 

care must be taken with the extraction and interpretation of results. At the moment we have no model of 

how defects spread to neighbouring points; but the method used here negates this potential problem. 

 

Another feature of note for the Virtual Eye is a simple correction for the censored nature of the decibel 

values caused by the instrument used for clinical testing. That is, if a generated value is below 0dB or 

above 36dB then it is assigned to be precisely 0dB or 36dB respectively. Also, the dB values are all 

rounded to the nearest integer (as they would appear from a Humphrey perimeter). The ‘visual fields’ are 

represented, stored and output as numerical arrays on which further analysis can be carried out. 

 

The principles are best illustrated by an example. The results from a simulation can be displayed as 

individual plots of sensitivity values against time of follow up. In Figure 2.2, the top row shows the actual 

sensitivity values as specified for a stable eye. This is defined to be one which shows only the expected 
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age-related deterioration of 0.1dB/year (Heijl et al 1991b). The lines are those produced by linear 

regression based on the first three points of the series, then the first four points, and so on; so the graphs 

show how the results would change as more tests were carried out in subsequent years and added on to 

the end of the series.  

 

Each point on the graph can be thought of as a threshold deviation (dB) from baseline labelled as 0 dB on 

the vertical axes. No assumption is made about the actual starting sensitivity. For this illustration it is 

assumed that the visual field tests are taken at yearly intervals. The criteria for a point being flagged as 

progressing are specified as a regression slope worse than –1dB/year which is also statistically significant 

at the 1% level. 

 

Figure 2.2: Illustrative series for a stable Virtual Eye, with an age-related decline of 0.1dB/year. 

 

Subsequent rows illustrate three different examples of possible artificial series; noise has been added to 

the actual noise-free values in the top row. It is now seen that due to the effect of the noise, it is possible 

for the series to be labelled as progressing according to the specified criteria even though we know that 

the point is actually stable. As time goes on, the diagnosis will get more accurate, with fewer stable series 

being falsely labelled as progressing. 

 

In Figure 2.3, the actual sensitivity of the point (as seen in the top row) is deteriorating at a rate of 

2dB/year. This represents approximately twenty times the normal rate of decay (Heijl et al 1991b), and 

double the criteria for progression of 1dB/year which we are using for PLR (see above). When noise is 

added, the point is regularly labelled as being stable, even though we know this not to be the case. This is 

either because the slope is not sufficiently steep, or because the series is too noisy for the slope to be 

statistically significant. 
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Figure 2.3: Illustrative series for a Virtual Eye progressing at 2dB/year. 

 

Naturally, in both stable and progressing cases, as the series gets longer a higher proportion of series will 

be correctly flagged. 

 

The Virtual Eye can be easily incorporated into other purpose-written SPlus programs. These programs 

can then calculate the linear regression slope and p-value based on the noisy series; thus the result of 

applying PLR to the series can be generated, to determine which points would be flagged as progressing 

according to different (user-defined) criteria. This forms the basis for all the simulation experiments 

carried out in later chapters. Experiment-specific details, such as the initial field and the exact PLR 

criteria used to flag points as progressing, are included in the description of each experiment. 

 

An example of the use of the Virtual Eye is given in Appendix 1; this shows the SPlus program used to 

implement the Virtual Eye to carry out the experiment described in Chapter 4. 

 

Naturally, the Virtual Eye can be used to simulate an entire visual field rather than just one point. Figure 

2.4 shows three series of greyscales, representing annual field testing over a six year period. The first 

column is a noise-free series with six points progressing at 2dB/year, and all other points remaining 

stable. The second and third columns are produced by using the Virtual Eye simulation to add noise to 

each point in each field; it becomes very difficult to distinguish the series based on the eye with six 

progressing points (the middle column) from the series based on a completely stable eye (the right-hand 

column). 
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Figure 2.4: Three series of visual fields, demonstrating the effect of the Virtual Eye simulation. The left-hand column shows a noise-

free field in which six points (those highlighted in red in the final field of the series) are deteriorating at 2dB/year over six years. 

The middle column shows the same series when noise has been added by the Virtual Eye; note that now only four of the six 

progressing points are identified by PLR after six years. The right-hand column shows a stable series after noise has been added by 

the Virtual Eye; note that five points are still (incorrectly) flagged as progressing by PLR. Comparing the middle and right-hand 

columns shows the difficulty of separating progressing from stable eyes, especially when based solely on examining the greyscales 

by hand. 
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3. Frequency Of Testing 

 

In this chapter, the Virtual Eye described in Section 2.2 is used to determine the optimum number of 

visual field tests which should be carried out per year to detect glaucomatous progression. Too few tests 

may result in progression being missed, or alternatively falsely identified; whilst too many tests per year 

places an undue burden on the patient and clinic in terms of time, inconvenience and resources. 

Previously, Viswanathan et al (1997c) concluded, based on patient data, that an increase in the frequency 

of visual field testing from one examination per year to three per year provides more rapid, more sensitive 

diagnosis of progressive glaucoma. This was done by analysing series of visual fields, with three tests 

carried out per year; and then repeating the analysis on ‘thinned’ series, with only one of the tests per year 

included. One hundred and nine retinal locations which were deteriorating significantly by at least 

1dB/year were studied. The results of the analyses on the two series were then compared, and it was 

found that over a four year period, the ‘thinned’ tests identified only 45.4% of the deteriorating points 

flagged by the full series, and there was a mean delay of 1.1 years in initial detection. The work presented 

in this chapter seeks to replicate and extend those results, based on computer-simulated data. This work 

formed a paper published in the British Journal of Ophthalmology in May 2002 (Gardiner & Crabb 

2002a). 

 

3.1 Method 

 

Series of noise-free individual sensitivity values over a period of 6 years were generated using the Virtual Eye 

described in the previous chapter. These series were either designated as ‘Stable’, having an age-related 

deterioration of 0.1dB/year (according to Heijl et al 1991b); or ‘Progressing’, deteriorating at 2dB/year. Next, 

at each test date (with these dates being determined by the number of tests being carried out each year, which 

were assumed to be equally spaced through the year), a noisy sensitivity reading was generated by using the 

Virtual Eye to randomly sample from a Normal distribution, with a mean value equal to the calculated actual 

sensitivity at that time. As with all Virtual Eye experiments, we utilise the simplifying assumption that the 

amount of noise present in each reading is as determined from Equation 2.1 throughout the series. In fact, 

some patients, and some points within each patient’s visual field, will be noisier than others, as explained in 

Chapter 1.2.1. 

 

The criteria for flagging a point as progressing were defined as being a slope of at least –1dB/year, 

statistically significant at the 1% level. These criteria have been used in several published studies using PLR 

(Wild et al 1997; Viswanathan et al 1997c; Membrey et al 2000; Membrey et al 2001). The minimum slope 

guards against significant age-related decline, and has also been shown to be related to other methods of 

pointwise change detection (Fitzke et al 1996; McNaught et al 1996). PLR was then carried out on the first 3 

readings to see if they would be flagged as progressing or not. This was then repeated for the first 4 readings, 

then 5 readings and so on. This way it can be seen how the diagnosis (progressing or stable) would change 

over time as more readings were added to the series. Then, the percentage of correctly diagnosed series (out 
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of 1000) at each point in time was calculated. This experiment was repeated for different numbers r of 

readings per year. 

 

3.2 Results 

 

We compare the number of series of points which would be flagged as progressing at each point in time, 

when simulated as above, for different numbers r of readings per year. The upper graph in Figure 3.1 is 

for stable points, for which the correct diagnosis is given by the points not being flagged as progressing 

(hence the lower the percentage being flagged as progressing the better). The lower graph is for points 

with an actual deterioration of 2dB/year; here the correct diagnosis is given by the points being flagged as 

progressing (hence the higher the percentage the better). 

 

For example, if a point is actually progressing, and is being tested twice per year, then after three years 

the point has a 71.8% chance of being flagged as progressing. At the same time, a stable point will be 

flagged as progressing 5.4% of the time. Therefore if there is a small local defect of say five points that 

are actually progressing, then in these circumstances, PLR will flag as progressing (according to these 

criteria) on average three or four of these truly progressing points; it will also flag two or three of the 

other 49 points elsewhere in the eye which are actually stable. 

 

Clearly, as the number r of tests per year increases, so does the proportion of points flagged as 

progressing. This confirms the intuitive notion that a progressing eye will be detected quicker with more 

frequent testing. However, there are also an increased number of early false positives; that is, more stable 

points are being flagged as progressing. More frequent testing will result in a higher number of incorrect 

decisions being made for non-deteriorating patients when the follow-up is relatively short. Over the first 

two years of testing, doubling the frequency of testing also doubles the proportion of false positive 

results, that is stable points being incorrectly flagged as progressing by PLR. More than three years have 

passed before the lines converge, and this higher error rate disappears; but by this time the sensitivities 

are also converging, and so the benefits of carrying out more tests per year have vanished. Under the 

conditions of this experiment, it is never worthwhile carrying out more than three tests per year; the extra 

expense and inconvenience to the patient of doing so brings no reward. 
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Figure 3.1: The effect of changing the frequency of testing on the proportion of points flagged as progressing, when the noise-free 

behaviour of the eye is Stable (top) and Progressing (bottom). 
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3.3 Conclusions 

 

This experiment has shown that although increasing the number of tests per year speeds up the detection 

of progression (in the lower graph in Figure 3.1), it does so at the expense of, initially at least, falsely 

flagging far more stable points as progressing (in the upper graph of Figure 3.1); the extra tests are 

actually making the performance worse. This is because the noise becomes far more significant than the 

amount of change that may or may not have occurred over the shorter period of time. If the PLR slope 

based on one test per year for five years is k, then the same sensitivities compressed into just one year (i.e. 

five tests per year) would give a PLR slope of 5k, even though the eye may not actually be deteriorating 

any faster. 

 

The first priority is, in many cases, specificity; because this reduces the chances of incorrect changes in 

clinical management. If, for example, there is a 3% probability that any given stable point will be 

incorrectly flagged as progressing (which is the level of false positives seen after as much as three or four 

years of follow-up in Figure 3.1), then the chance of at least one point out of the 52 test locations in a  

24-2 Humphrey visual field (excluding the physiological blind spot) being incorrectly flagged is: 

 

Prob(≥1 Incorrect Point) = 1 – Prob(A Given Point is Incorrect)
52

 

 = 1 – 0.97
52

 

 = 79.5% 

 

This alarmingly poor performance is improved dramatically by a seemingly small improvement in the 

specificity at one point, as seen in Table 3.1: 

Prob(Given Point is FP) Prob(≥1 Point is FP) 

3% 79.5% 

2% 65.0% 

1% 40.7% 

Table 3.1: The effect of changes in the specificity of a single point on the specificity of the entire visual field. 

 

Hence we have shown that having an increased number of tests per year reduces specificity when the 

follow up is relatively short. Although the graphs in Figure 3.1 do converge as the series lengthens, a 

clinical management decision based on a significant slope would be unwise with frequent testing in say 

the first two or three years. One strategy is to use one or more confirmation fields which may or may not 

be part of the actual follow up; this is addressed in the experiment described in Chapter 4. 

 

The second clinical priority is to improve the sensitivity of the test; in other words detecting true visual 

field progression. From the lower graph in Figure 3.1 it is clear that the detection of progressing points 

with just one test carried out per year is extremely poor given the level of noise used in the simulation. 

Even with two tests per year, points deteriorating at 2dB/year would only be picked up on in 75% of cases 

after three years; by this time a loss of 6dB has occurred, which is severe enough that any decent method 

should have identified it. Clinically, this means that a substantial fraction of visual field locations have to 
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be truly deteriorating before progression can be reliably detected. Therefore, approximately three tests per 

year, resources permitting, seems to achieve a better success rate at determining which points are 

progressing and which are not. This supports and extends the findings on patient data in glaucoma from 

Viswanathan et al (1991c). 

 

The Virtual Eye model provides a much-simplified version of reality. The assumption of noise being 

normally distributed, though commonly used, is unproven, and the amount of noise present in readings 

may well be larger than the estimates used here (Flammer et al 1984; Heijl et al 1989; Chauhan & 

Johnson 1999b; Hutchings et al 2000; Spry et al 2001). The question of estimating the distribution and 

magnitude of the noise will be examined in Chapter 7. As the amount of noise increases, the performance 

of PLR becomes even worse than in Figure 3.1. Several years’ worth of follow-up is needed before 

satisfactory results can be obtained. Clinically, it is common practice to use confirmation fields to look 

for points that are persistently progressing (Hitchings et al 1994; Leske et al 1999; Membrey et al 2000; 

Membrey et al 2001; Westcott et al 2001; Heijl et al 2002; Kim et al 2003); this issue will be addressed 

further in Chapter 4. The uses of confirmation fields, and different levels of noise, were tried using the 

Virtual Eye and although the values for specificity and sensitivity altered, the qualitative results (most 

importantly the recommendations on ideal frequency of testing) were unchanged. For clarity, the simplest 

case, without confirmation fields, has been described in this chapter. 

 

It is also common practice to look for clusters of points that are all progressing, rather than individual 

points. While this is beyond the scope of this model (because the spatial pattern of deterioration is not 

clearly known, and varies according to the location in the eye), it is still desirable to have an accurate 

determination of progression for each of the points in the cluster. The findings, in the present form, may 

have limited clinical generalisability; but it is believed that the conclusions drawn from them are more 

widely applicable. Non-glaucomatous change (e.g. effect of concomitant cataract) is currently 

indistinguishable from glaucomatous change using PLR and so cannot be included in the Virtual Eye 

simulation. Nevertheless use of simulation enables results to be found which would be extremely hard to 

achieve using patient data, because for a real-world patient, the underlying noise-free state of the eye is, 

as yet, unknown. 

 

It is clear that the current PLR methodologies still need improvement. Methods are needed which are 

more sensitive without compromising specificity; this way, accurate results and faster diagnoses could be 

obtained with just one or two tests per year over shorter periods of time than at present. This relies 

primarily on reducing the amount of noise present in the readings, something which will be addressed 

later in this thesis in Chapters 5 and 6. 

 

This experiment gives rise to the conclusion that three tests per year is a good compromise between 

sensitivity and specificity. There are certainly large benefits to be had in sensitivity when compared with 

carrying out just one test per year. 
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4. Confirmation Fields Methods 

 

There is currently no agreement over which of the several different PLR criteria are the best. Indeed, the 

method that is most suitable for use will depend on the purpose to which the results are to be put. When 

the outcome of an eye being labelled as progressing would be the patient undergoing a risky or costly 

change in clinical management, a method should be used which is known to falsely label very few stable 

eyes as progressing (i.e. a high degree of specificity). Conversely, when failing to treat a progressing eye 

would be much more damaging than treating a stable eye (perhaps because the patient is already blind in 

the other eye, for example), it is better to use a test which will correctly flag progressing eyes quicker (i.e. 

a more sensitive test). Clearly, the key is which way the method flags eyes in the middle-ground, which 

could be judged to be either progressing or stable; normally tests which are more sensitive are less 

specific, and vice-versa. There is no consensus on what value of regression slope and p-value constitutes 

progression; and whether it should be maintained in subsequent fields. Indeed the latter idea of 

‘confirmation fields’ or ‘confirmation criteria’ has been shown to improve the specificity of other 

methods for detecting visual field progression (Schulzer et al 1994; Chauhan et al 1999a) but has yet to be 

formally examined for PLR; yet such criteria are still used ‘ad hoc’ to demonstrate the ‘benefits’ of 

treatment changes in glaucoma (Membrey et al 2001). In this chapter, a selection of seven different 

methods for using confirmation fields to decide on the diagnosis in PLR are evaluated both theoretically 

and using the Virtual Eye. Two of these methods are new and have not been examined before. This work 

formed a paper published in Investigative Ophthalmology & Visual Science in May 2002 (Gardiner & 

Crabb 2002b). 

 

4.1 The PLR Methods Examined 

 

Seven different PLR methods of determining whether a point in an eye is progressing or not, given the 

sensitivities at n time points (equally-spaced visual field tests in time), will be compared; the aim being to 

rank them according to their specificity and sensitivity. We define these as: 

 

1. Standard Criteria: a point is flagged as progressing if it shows a significantly negative slope at the 1% 

level, together with an observed slope of at least -1dB/year in the sensitivity; this will be written as Zn=1. 

The significance level is calculated by comparing the slope to the t-distribution, with (n-1) degrees of 

freedom. This is the simplest commonly used PLR method used in published studies (Birch et al 1995a; 

McNaught et al 1996; Smith et al 1996; Katz et al 1997; Nouri-Mahdavi et al 1997; Viswanathan et al 

1997a; Viswanathan et al 1997c; Wild et al 1997; Viswanathan et al 1999; Spry et al 2000; Hofmann et al 

2001) and is used clinically as an indicator for change in some centres (Kamal & Hitchings 1998).  

 

2. Two out of Two: a point is flagged as progressing if it satisfies the standard criteria, and continues to 

satisfy them on addition of a further observed (confirmation) point; i.e. Zn=1 and Zn+1=1. This was used 

by Hitchings et al (1994). 
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3. Three out of Three: a point is flagged if it satisfies the standard criteria, and continues to satisfy them 

after the addition of each of a further two observed (confirmation) points in turn; i.e. Zn=1, Zn+1=1 and 

Zn+2=1. This approach, applied to a form of Glaucoma Change Probability analysis, has being used in a 

clinical trial to evaluate the role of immediate intra-ocular pressure reduction in glaucoma (Leske et al 

1999; Heijl et al 2002), and has been used in a study to determine the prevalence of glaucomatous 

progressive functional damage (Kim et al 2003). 

 

4. Two out of Three: a point is flagged if it satisfies the standard criteria, and continues to do so on the 

addition of either the following one point or two points; i.e. Zn=1 and either Zn+1=1 or Zn+2=1 (or all 

three). This has recently been used in a study comparing PLR and the AGIS visual field score (Westcott 

et al 2001). 

 

5. Three out of Four: a point is flagged if it satisfies the standard criteria, and continues to do so with the 

addition of two of three successive points to the series; i.e. Zn=1 and at least two of Zn+1=1, Zn+2=1 and 

Zn+3=1. This method has been used in studies examining the treatment of normal tension glaucoma 

(Membrey et al 2000; Membrey et al 2001). 

 

And our two new proposed methods: 

 

6. Two Omitting: a point is flagged if it satisfies the standard criteria, and the slope obtained by adding 

one confirmation point but excluding point n also satisfies the criteria; this will be written as Zn=1 and 

Z’n+1=1. 

 

7. Three Omitting: a point is flagged if it satisfies the standard criteria, and the two slopes obtained by 

using points 1 to (n-1) and either point (n+1) or point (n+2) both satisfy the criteria; i.e. Zn=1, Z’n+1=1 

(when point n is omitted) and Z’n+2=1 (when points n and (n+1) are both omitted). 

 

The logic behind these new methods is that if the latest sensitivity reading in the series is significantly 

worse than preceding readings purely by chance because of the noise, then a confirmatory regression, 

carried out once the following point has been added to the series, will be biased by this low sensitivity 

reading; and so omitting the point will give a more conservative estimate of the true rate of progression. 

As seen in Figure 4.1, when the point is actually stable, there will be less chance of it incorrectly being 

flagged as progressing, i.e. fewer false positives. 

 

 

Figure 4.1: The effect of omitting a point from the regression on the PLR slope. 
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4.2 Theoretical Comparison 

 

4.2.1 Assumptions 

Several simplifying assumptions need to be made to make the theoretical problems tractable. Firstly, the 

noise is assumed to be normal (as with the Virtual Eye simulation); this is a reasonably accurate 

assumption but may be less true when the sensitivity is at the extremes of the range of measurement 

values because of the censoring nature of the instrument. In other words a point with a sensitivity of say 

5dB will have positively skewed noise, since no readings below 0dB are possible; whilst a stimulus seen 

at dim levels such as 36dB will have negatively skewed noise. The mean for this normal distribution is 

estimated based on the readings taken so far. Secondly, it is assumed that the visual fields for each patient 

are taken at regularly spaced intervals. Both of these assumptions are in keeping with published work 

(Spry et al 2000).  

 

Since it is known that a more specific method of determining progression will always be less sensitive if 

the level of noise is unchanged (methods of reducing the amount of noise are a separate issue entirely), it 

is only necessary to look at the specificity of each method; that is, how many stable eyes will be 

incorrectly flagged as progressing. 

 

4.2.2 Derivation 

Suppose we have a series of visual fields, taken at times t1, t2... tn. At a given point in the field, the 

deviations from the age-corrected normal sensitivities are X1, X2... Xn. Rather than the raw values, it is 

chosen to work with the deviations Xi below the age-corrected normal sensitivities; if the expected 

sensitivity at that point for a patient of this age is SE, then Xi = SE – Si. This means that at a stable point, 

the true (noise-free) deviation will remain constant; and so the Xi will all have the same distribution. If the 

point is progressing, the Xi will increase over time. 

 

Now, according to our first assumption described above, we can say that for a stable eye, the Xi will be 

normally distributed about a constant c; Xi~N(c, �2). Note that the assumption is that the actual deviation 

of the point is constant, but we do not assume that the first or last readings are exactly equal (unlike in 

Spry et al 2000), because those two readings will also have noise, and so the readings will not be the same 

as the actual deviation in the eye. The constant c is estimated by �, the mean of the readings taken so far; 

so that the sum of the first (n-1) readings will be (n-1)�. But the PLR slope will be unaffected by the 

addition of a constant to each reading Xi; and so if we define Yi=Xi-�, we can carry out PLR on the Yi to 

produce the same results; then Yi~N(0, �2) and the sum Y1+Y2+…+Yn-1=0. So, the Yi are pure noise; as if 

there were no noise, Yi would equal 0 for each i=1…n-1. We are also assuming (as mentioned above) that 

ti=i; i.e. the readings have been taken at equally spaced time intervals. 

 

Now, let �n be the PLR slope based on the first n readings in the series, and using our new Two Omitting 

method the new PLR slope is �n+1. Now for a pointwise linear least-squares regression, the slope is 

calculated by the equation 
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Equation 4.1 

where the sums are taken over 1 to n. 

 

Because ti=i in this case, and using the substitution Yi=Xi-c, we can simplify this to 
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Equation 4.2 

 

Next, using our new Two Omitting method, we can calculate the new PLR slope �n+1 (based on the values 

at points 1, 2,… (n-1) and (n+1)) from Equation 4.1, giving: 
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Equation 4.3 

 

We are interested in the case where Xn has been added to the series, and has made the PLR slope 

significant; and the clinician wishes to carry out a confirmation test. So we know that �n > �n-1; or 

equivalently, from Equation 4.2, 
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Equation 4.4 

 

Now from our definition of Yi, given the first (n-1) readings, we know that the expected values E(Yn)= 

E(nYn)= E(Yn+1)= E((n+1)Yn+1)=0. Remembering that 0
1

1

=�
−

=
i

n

i

Y , we see from Equation 4.2 and 4.3 that 

when 0
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Equation 4.5 

 

Also, since �n>0 (since the PLR slope satisfies the progression criteria), if 0
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Equation 4.6 

 

where the final inequality is true whenever n�2. 

 

Therefore in either case, the Two Omitting method for PLR would be expected to give a slope closer to 

the actual slope of zero for a stable eye than the more standard Two out of Two method. 
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Now, the advantage to assuming the Yi to be Normally distributed is that any linear combination of them 

will also be Normally distributed; in particular, �n+1 and �n+1 both are. The variance of �n+1 is: 
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Equation 4.7 

 

where �2 is the variance of each Yi (assumed earlier to be constant). Similarly, 
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where the last inequality follows from Equation 4.4. Similarly, when 0
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Equation 4.9 

 

with the last inequality following from Equation 4.2 as before. 

 

So, the slope �n+1 would be expected to be less steep (from Equations 4.5 and 4.6) than �n+1; and also less 

significant (from Equations 4.8 and 4.9) (if �n+1>0; if �n+1<0 then the slope will not be flagged as 

progressing anyway); showing that our new Two Omitting method is more specific than the current Two 

out of Two method. 

 

Naturally, it is straightforward to extend these two results to prove that the Three Omitting PLR method is 

more specific than the Three out of Three method. 

 

It is obvious (and easily provable) that Three out of Four will flag more points as progressing than Three 

out of Three; since any series which satisfies the criteria for the latter method necessarily satisfies the 

criteria for the former method. So we can sum up all the information in Figure 4.2; where when a line 

connects two methods, it means that the upper method has been shown from theoretical results to be more 

specific than the lower method. 

 

 

Figure 4.2: Theoretical relative specificity and sensitivity of the different PLR methods. 
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4.3 Virtual Eye Simulation Experiment 

 

4.3.1 Method 

We simulate sets of readings for a whole visual field in two circumstances: 

 

Stable Eye:  

A Humphrey 30-2 visual field for a ‘Virtual Eye’ was constructed and is shown in greyscale form at the 

top of Figure 4.3. This left eye has an early to moderate inferior arcuate scotoma and some general 

depression of sensitivity in the superior field. This field has an abnormal Humphrey mean deviation of 

approximately –4dB. The individual pointwise sensitivities that make up this field are assumed to be the 

‘true’ physiological values for this eye. These will not generally be identically the same as the measured 

or estimated values derived at a visual field test. Three typical examples of the latter, where noise has 

been added to the true visual field, are shown as greyscales at the bottom of Figure 4.3. 

 

 

Figure 4.3: The effect of adding noise to the actual input sensitivity values for each point in a Virtual Eye. Visual fields are 

represented as 30-2 Humphrey greyscales with darker areas indicating lower sensitivity readings at that point. The three noisy eyes 

generated are noticeable different both from each other, and also from the true physiological values represented by the top greyscale. 

 

One extra feature of the stable Virtual Eye used for this experiment is that a normal age related decline of 

0.1dB per year was subtracted from the true value in all cases. This means that if the initial true sensitivity 

is 28dB, then the measured sensitivity at that point recorded five years after the first test is given by the 

simulated value drawn randomly from a Normal distribution with mean 27.5dB and standard deviation of 
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2.84dB. The standard deviation is calculated from Equation 2.1 in Chapter 2; imitating the established 

fact that variability is dynamic, increasing as the sensitivity declines. 

 

Deteriorating Eye:  

The stable Virtual Eye described above forms the basis and starting point for the deteriorating eye. A 

progressive visual field defect is then added to sites in and around the initial inferior arcuate defect. More 

precisely this means that six points (with starting sensitivities of 32, 28, 24, 20, 16 and 12 dB) in the 

visual field are each given a rate of loss of 2dB per year. The consequence of this magnitude of 

progression on the noise-free eye over a six-year period is illustrated in Figure 4.4 (naturally, the 

simulation subsequently adds noise to each point to generate visual field series). This is the same eye 

shown earlier in Figure 2.4. 

 

 

Figure 4.4: The progression in our noise-free eye, as used in the Virtual Eye simulation. 

 

The visual field at six years would have a Humphrey MD of approximately –5 dB, as compared to -4dB 

initially. This level of deterioration could be considered clinically moderate and with noise added in, it is 

doubtful that progression would be diagnosed by visual inspection or monitoring changes in global 

indices. Nevertheless, the cluster of points are decaying at more than 10 to 20 times age related values 

(Heijl et al 1991b; Spry & Johnson 2001), and the threat of the progressing defect to the functionally 

important area of fixation means that it is precisely the type of progression that we suggest any decent 

pointwise method should detect with reasonable sensitivity and specificity. 

 

As with the stable eye, the important feature of this type of simulation is the noise and this is added to 

points in the visual field as described in Chapter 2. For example, the progressing point at (–3°, –3°) on the 

Humphrey visual field starts with a true value of 32 dB. The measurement at this point is imitated by the 

simulated value drawn randomly from a Normal distribution with mean 32 dB and standard deviation of 

1.97dB. After a period of follow-up of three years, the true value at this point is 26 dB and the simulated 

measurement is given by the value drawn randomly from a Normal distribution with mean 26 dB and 

standard deviation of 3.20dB.Visual field series for this deteriorating eye can be generated in a similar 

fashion to those for the stable eye. 
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One thousand series from the stable eye and one thousand series from the progressing eye, all with two 

tests per year over a six year follow up period (thirteen fields in total for each series), were generated. 

Then PLR was applied to each of the 74 non-blind spot locations within each 30-2 visual field series, 

sequentially for each test starting from the fourth test (i.e. using the first one and a half years of readings 

from the series) and finishing at the thirteenth test (using all six years of readings). Then, each criterion 

for determining progression was used in turn, and the eye labelled as progressing if one point in the field 

satisfied that particular criteria. The test at which the eye was first detected as progressing was recorded. 

For those methods using at least two fields (one confirmation field), it means that the fifth field was the 

earliest that progression can be flagged; and for those using two confirmation fields it means the sixth test 

was the earliest possible. Also note that if, for example, the Two out of Two criterion is satisfied by using 

the ninth and tenth fields, then the visual field series was only labelled as progressing at the tenth field. 

 

The SPlus program, incorporating the Virtual Eye, which was written to carry out this experiment is given 

in Appendix 1. 

 

4.3.2 Results 

The graphs in Figures 4.5 and 4.6 show the cumulative percentage of visual field series of the Virtual Eye 

(out of one thousand) that were flagged as progressing at, or before, each point in time using the specified 

methods. In each graph, the uppermost line is flagging most eyes as progressing, whether this is incorrect 

(for a stable eye; this method is then the least specific) or correct (for a deteriorating eye; this method is 

the most sensitive). For example, Figures 4.5 and 4.6 show that after three years of follow up the 

Standard Criteria had already falsely labelled 74.6% of the stable visual field series as progressing. After 

six years virtually all of the stable eyes had been falsely labelled as progressing. In contrast the Three 

Omitting method had falsely labelled just 11.6% of the stable eyes after six years. The sensitivity 

(proportion of correctly labelled progressing eyes) of the Standard Criteria and the Three Omitting 

methods after six years were 97.1% and 65.7% respectively (a significant but much smaller difference). 

 

Figure 4.5 shows that out of the three methods which use one confirmation fields (Two out of Two, Two 

out of Three and Two Omitting), the Two Omitting method gives a significant improvement in specificity, 

while the accompanying loss in sensitivity is much less marked. Figure 4.6 shows that, similarly, out of 

the three methods which use two confirmation fields (Three out of Three, Three out of Four and Three 

Omitting), the Three Omitting method gives a significant improvement in specificity, while the 

accompanying loss in sensitivity is much less marked. So it is clear that, as predicted theoretically, our 

new Two Omitting and Three Omitting methods are the most specific out of those using one and two 

confirmation fields respectively; the currently-used methods can incorrectly flag twice as many stable 

eyes as being progressing. These two new methods improve the specificity of PLR, without having a 

severe negative effect on the sensitivity. 
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Figure 4.5: The relative specificity and sensitivity (respectively) of four different PLR methods, as determined by the Virtual Eye 

simulation. 

 

Figure 4.6: The relative specificity and sensitivity (respectively) of the remaining three different PLR methods, plus the Standard 

Criteria method again for reference, as determined by the Virtual Eye simulation. 
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4.4 Conclusions 

 

When choosing a method for determining whether a visual field is progressing or stable, the specificity 

and sensitivity both have to be taken into account. PLR has previously been shown to be a sensitive 

technique for detecting visual field progression in patients with glaucoma (Birch et al 1995; Smith et al 

1996; Katz et al 1997; Viswanathan et al 1997a; Nouri-Mahdavi et al 1997). Confirmation tests (or fields) 

require more patient examinations but afford better specificity. Out of the seven PLR methods we have 

examined in this chapter, the Standard Criteria method was the most sensitive (it successfully detected 

progressing eyes quicker); whereas the Three Omitting method was the most specific (it wrongly 

identified fewest stable eyes as being progressing). This work has also highlighted that fulfilling the 

Standard Criteria for PLR at just one point in the visual field without any confirmation criteria is 

clinically unreliable as a means of diagnosing progression, because of its absurd levels of specificity; and 

as discussed in Section 3.3, specificity is crucial to any good method. 

 

Statistically speaking, there is very little justification for classifying a point within a visual field as either 

stable or progressing; any cut-off point will be in essence arbitrary. The rationale behind such a 

distinction is that if one or more points are progressing, then treatment is needed. However, a clinical 

decision of whether to treat will be based on much more complex factors than whether the slope satisfies 

one strict criteria; for example the history of the patient and their family, and the condition of the other 

eye. Although we have chosen, in accordance with published studies, to use a significant slope of  

-1dB/year to indicate progression, this figure is still fairly arbitrary; as is describing a typical progressing 

point as being one with a deterioration of -2dB/year. Any software used clinically for the analysis of 

visual field data should allow the user to alter the level of slope required for a point to be flagged, 

according to their own clinical judgment based on other factors; this can be done with some software, for 

example Progressor (Fitzke et al 1996). Also, when comparing two treatments, for example, it may be 

better to compare the distribution of slopes of points, rather than a perfunctory comparison of the 

proportion of slopes that satisfy such criteria.  

 

This study has been confined to a consideration of different PLR methods. No comparison is made 

against non-linear or non-pointwise methods. There is disagreement over whether or not PLR really is the 

best method of determining progression, but it is a commonly examined method (Hitchings et al 1994; 

McNaught et al 1995; Smith et al 1996; Katz et al 1996; Fitzke et al 1996; McNaught et al 1996; 

Viswanathan et al 1997a; Viswanathan et al 1997c; Nouri-Mahdavi et al 1997; Bhandari et al 1997; Wild 

et al 1997; Kamal & Hitchings 1998; Viswanathan et al 1999; Membrey et al 2000; Spry et al 2000; 

Membrey et al 2001; Hoffman et al 2001), and as such any potential refinements to the method should be 

considered. Moreover, PLR may be suitable for examining any deepening of an existing defect; but its 

effectiveness at examining enlargement of defects is more open to question. Potential disadvantages of 

PLR are not addressed by the current study. However, the conclusion that omitting techniques may be of 

benefit to regression methods has wider applications than the limited set of conditions used here. For 

example, different levels of noise, different defect sizes and different rates of progression would all affect 

the quantitative results in Figures 4.5 and 4.6; but they would not affect the qualitative comparisons 
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between the methods. The simulation should be viewed as an example, which supports the theoretical 

comparisons between the methods. 

 

Another way of evaluating the new method would be to use real patient data. However, when the actual 

state of the eye is unknown (as in the case of real patient data), there is currently no gold standard against 

which to judge different techniques. A further advantage of the techniques used here is that they are not 

limited to glaucomatous eyes; and so the methods developed and the principles behind confirmation 

techniques could be applied in other situations in related fields. Nevertheless, before recommending any 

methods for widespread use, their usefulness and practicality would need to be tested in a clinical 

situation. 

 

In such a clinical situation, the interpretation of any method will remain a subjective matter; but using the 

approach described in this chapter provides decent estimates of sensitivity and specificity for particular 

methods, arming the clinician to make more informed patient management decisions than with other PLR 

methods. It is very clear from these results how much specificity is gained by adopting a confirmation 

approach. We have demonstrated that (when the criteria of -1dB/year and a 1% significance level are 

fixed) any gain in specificity when the PLR method is changed will be accompanied by a loss of 

sensitivity. But because of the disproportionate effect of a small change in specificity at each point, as 

demonstrated in our results, and because progressing eyes may often form a small proportion of the study 

population, seeking out specific methods is generally more important than sensitivity. For this reason, the 

new Three Omitting method is suggested as an alternative to current confirmation methods applied to 

PLR, and may be a suitable option when PLR methods are used in clinical trials. 
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5. Derivation Of Filter 

 

Reliable detection of glaucomatous visual field defects, and follow-up of current defects to determine 

whether or not they are spreading or deepening, is crucial for the correct management of patients. Yet this 

is extremely difficult given the inaccuracy of threshold perimetry (in terms of the high inter-test and intra-

test variability) and the various components of variability (or noise) associated with the perimetric 

process (Flammer et al 1984; Chauhan & House 1991; Wild et al 1991; Spenceley & Henson 1996; Spry 

& Johnson 2002), as discussed in Section 1.2.1. Therefore, it is sought to find ways of reducing the noise 

present in the readings. Reducing this noise is particularly relevant when detecting visual field 

progression (Spry & Johnson 2002); this is because true change in a glaucomatous
 
visual field has to be 

larger than the noise before it becomes statistically distinguishable (Heijl et al 1989; Chauhan & Johnson 

1999b). Improved methods of data acquisition such as SITA (Bengtsson et al 1997) and SITA Fast 

(Bengtsson & Heijl 1998) have tended to focus on reducing the time of perimetric examination rather 

than making the measurement more accurate (Wild et al 1999b; Artes et al 2002). Carrying out more 

readings during the testing procedure is also clearly undesirable. Far better would be to process the data in 

such a way that the noise would be reduced, without any additional testing time. One way of doing this 

relies on exploiting the relationships between the actual sensitivities of different points; in essence, if one 

point has a reduced sensitivity, then its neighbours are more likely to also have reduced sensitivities. This 

principle points towards spatial filtering of the data as a possible solution. 

 

The work in this chapter and in Chapter 6 formed a paper published in Vision Research (Gardiner et al 

2003). It was presented by the author at the Research Students’ Conference in Probability and Statistics at 

Warwick University, UK from 18-21 March 2002; at ARVO (the Association for Research in Vision and 

Ophthalmology) conference in Fort Lauderdale, Florida, USA from 5-10 May 2002; and at the 

International Perimetric Society conference in Stratford-upon-Avon, UK, from 26-29 June 2002. 

 

5.1 Previous Work 

 

Spatial filtering is an image processing technique widely used to improve the quality of digital 

information. Spatial filtering applied to perimetric threshold sensitivity values using a Gaussian filter 

(fully described elsewhere (Fitzke et al 1995; Crabb et al 1995), and illustrated in Figure 5.1) has been 

shown to reduce test-retest variability and measurement noise (Crabb et al 1997). In the latter paper, the 

authors showed that when the first five visual fields in a series were used to predict the field one year 

later, 72% of the predicted sensitivity values were within ±5dB of the corresponding measured threshold; 

this improved to 83% after application of a Gaussian filter to the first five fields in the series. Similarly, 

when a field two years after the fifth test was predicted, the performance improved from 56% to 73% 

after Gaussian filtering (based on the same criterion). Moreover, benefits from post-test filtering of the 

data are accrued without any extra patient testing or alteration to the perimetric process. 
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Figure 5.1: How the filtered sensitivity is calculated by the Gaussian filter. In this method, the raw sensitivity value is replaced by 

one derived from a linear combination of the sensitivities at the nine points in a square centred on the point of interest. This is 

repeated for each point in the field in turn, each time looking at the points in a square surrounding the point of interest. 

 

However, there are problems with the basic Gaussian filter when applied to perimetric data. The visual 

field test locations, unlike say pixel values in digital images, are not physiologically linked in a ‘grid-like’ 

fashion to their immediate neighbours as indicated by the matrix of values on the visual field chart, and 

the Gaussian filter takes no account of the actual anatomical structure of the optic disc. For example, 

glaucomatous defects are generally limited to either the superior hemifield or the inferior hemifield; they 

rarely cross the horizontal meridian that passes through the fovea (Lachenmayr & Vivell 1993). Yet the 

Gaussian filtered value at a point adjacent to this meridian is based in part on values from the opposite 

hemifield. There is general (albeit vague) agreement about the shape of the retinal nerve fibre layer 

(RNFL), and that the shapes of glaucomatous defects follow the nerves; the Gaussian filter ignores this 

information. It has been reported that applying the Gaussian filter to data may reduce the proportion of 

false positives (i.e. the number of healthy points flagged as being part of a defect), but it also reduces the 

detection of true positives, blurring out true defects. Spry et al (2002) found that when small defects of 

two or three horizontally adjacent locations progressing at -1dB/year were simulated, the Gaussian filter 

consistently reduced the sensitivity of PLR, for example after eight tests from around 20% to just 2-3%. 

Sensitivity was only improved by Gaussian filtering when large defects (nine or eighteen locations) 

progressing rapidly (-2.5dB/year) were considered. An example of a greyscale where a glaucomatous 

localised defect is being blurred out by Gaussian filtering is shown later in this chapter in Figure 5.3. This 

chapter aims to derive a filter taking into account the true structure of the retinal nerve fibre layer, which 

will reduce the noise without obscuring true defects. 

 

5.2 Mathematical Derivation 

 

The filter is based entirely on real patient data, as described in Section 5.3. It aims to find the 

relationships between sensitivities at different points in the visual field, and build the filter based on that 

information. 
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First, the covariances and correlations between sensitivities at each pair of points in the eye were found. 

The covariance between sensitivities at points A and B is given by 

)()()(),( BABABA SESESSESSCov −=  

Equation 5.1 

where E(SA) is the expected (mean) value of the sensitivity at A, etc. Now, suppose we could accurately 

predict the sensitivity at point A by a linear combination of the sensitivities at all the other points; 
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Equation 5.2 

for some constants k1, k2, …; then from Equation 5.1, 
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Equation 5.3 

We choose to perform regressions on the covariances in Equation 5.3 rather than on the basic sensitivities 

in Equation 5.2. This is because an apparent relationship between two points, X and Y say, may actually 

be the product of relationships between each of these points and some third point Z; looking at 

covariances takes account of this second order of complexity. 

 

Before performing multiple regressions to find these coefficients ki for each point A, a few constraints 

were placed on the regressions. Firstly, each ki had to be non-negative. Secondly, the expected (mean) 

predicted value must equal the mean raw value for the filter to make sense; so  
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Finally, if the correlation between the sensitivities at point A and point i was low (less than 0.7), ki was set 

to equal zero, as those points were considered to be unrelated (this was done purely for computational 

reasons. In tests on small samples with fewer points it had no effect on the outcome; the regression still 

identified the same points as being good predictors with associated high values of ki. In fact a small 

minority of the ki were constrained to be zero because of this rule; far more were found to be zero after 

the regressions were carried out). 

 

So, for each point A, regressions were performed on these series of equations (one equation for each point 

B) to produce constants ki, and hence an algorithm for predicting the sensitivity at point A based on those 

at points elsewhere in the visual field. 

 

The next stage is to produce the filtered value 
f

AS  for the sensitivity at point A; which should be a 

combination of the predicted sensitivity and the raw sensitivity at that point: 

AA

f

A ScScS )1(ˆ −+=  

Equation 5.4 



 - 55 - 

The value of c in Equation 5.4 will vary according to the position in the eye; some points are more 

predictable than others, and these points should have a correspondingly high value of c, hence giving 

more weight to the predicted value. (Note that in the Gaussian filter, c=12/16 for all points not adjacent to 

either the edge of the field or the blind spot, as shown in Figure 5.1). Further, the more points that are 

used in the prediction (i.e. the greater the number of non-zero ki), the more accurate this predicted value 

will be, in terms of reduced variability. Now, if the predictions were entirely accurate, the variance of the 

filtered value would be: 
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Equation 5.5 

where �2 is the variance of the noise at each point, assumed for this to be constant throughout the eye. 

Now, we want to choose c to minimise this variability in the filtered value from Equation 5.5, and so 

reduce the noise as much as possible. Mathematically, the minimum of a function occurs when its 

differential equals zero. So, differentiating: 
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Equation 5.6 

So, we have a prescription from Equation 5.6 for choosing c if the predicted values were completely 

accurate. However, this is clearly not the case; indeed, the predictions at some points will be closer to the 

raw values than elsewhere in the visual field. So, the correlations CorrA between the predicted and raw 

values at each point A were found by calculating the predicted sensitivity at point A for each visual field 

in the database; so )ˆ,( AAA SSCorrCorr = . This then provides a measure of the predictability of point 

A; the higher this correlation is, the more accurate the predicted sensitivity and so the more weight should 

be given to it in the filter. Now, � was found in Equation 5.6 based on the assumption that the predicted 

values were 100% accurate; so in the final filter, the weighting given to the predicted sensitivity in the 

filter, is given by c= � x CorrA. So, having found the ki for point A by multiple regressions based on 

Equation 5.3 (as described above), the final filtering algorithm for point A is: 
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Equation 5.7 
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Obviously, the ki differ according to which point in the visual field is being considered (point A); and so 

the filter is, in effect, a matrix containing the coefficients for filtering each point in the field, coefficients 

which vary from point to point. 

 

5.3 The Data Used 

 

The work is based on a visual fields database consisting of patients seen by the Moorfields Eye Hospital 

Glaucoma Service in London, UK. This means that the filter is based on, and designed for use in, a 

tertiary glaucoma referral service. It would be feasible to utilise the methods in Section 5.1 to produce a 

family of filters for different situations, such as population screening events or general ophthalmic clinical 

settings; however the process would be hindered by the increased proportion of non-glaucomatous 

defects. It would be expected that the results would be extremely similar. 

 

The database contains 98,821 visual fields, taken from 14,675 individual suspected glaucoma patients. 

Fields were measured using the Humphrey Visual Field Analyser (Humphrey Instruments Inc, Dublin, 

California, USA), as described in Section 1.2. The data goes back as far as 1985; it consists of both 30-2 

fields and more recently 24-2 fields (all standard white-on-white, full threshold tests), although only 

complete 24-2 fields (i.e. the non-edge points in the 30-2 fields) were used. This database, consisting of 

around five million individual threshold values, provides an excellent and unmatched resource giving a 

comprehensive and representative cross-section of all tests carried out at glaucoma clinics. The database 

was cleaned to remove duplicated visual fields; and each patient given a unique ID number. This way, the 

data was completely anonymised. Visual fields from right eyes were transposed, and their mirror images 

used instead as ‘left’ eyes. 

 

When deriving the new filter, no patients were excluded. It was sought to use as representative a sample 

as possible of all the patients entering the clinic, on an “intention-to-treat” basis. This means that the data 

used is not restricted to patients who actually have glaucoma, merely patients who are sent to the clinic 

because it is believed at the time that they may have glaucoma. A filter derived purely on data from 

glaucomatous patients may not be accurate for healthy eyes, and vice-versa; so all available data was used 

in the belief that this gives added weight to our results. This means that the results are truly representative 

of the average test carried out in a glaucoma clinic. 

 

It is important to note that unreliable fields, or fields from patients presenting at the glaucoma clinic who 

turn out to have other pathologies (e.g. pituitary tumours, myelinated nerve fibres etc), were not removed 

from the database prior to analysis. This is because we seek to represent the typical test carried out at a 

glaucoma clinic, and so these patients should not be ignored. The principle of “intention-to-treat” is well 

founded, and is very commonly used throughout the scientific and statistical literature. 

 

A further important distinction should be drawn between using every available test from each patient 

(making the results representative of the average visual field test carried out in a glaucoma clinic) and 
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using one randomly selected field from each patient (which would make the results representative of the 

average patient seen by a glaucoma clinic). Since patients with true glaucoma would be expected to have 

more fields in the database than patients with other pathologies, and since it is more important to deal 

with patients with glaucoma who make repeated visits to the clinic, the choice was made to use all the 

fields from each patient. 

 

There are arguments both for and against these positions, as set out below. 

 

5.3.1 Use of Unreliable or Non-glaucomatous Fields 

The purpose of the work is to develop a spatial filter that takes into account the structure of the RNFL, but 

the large database may include patients with defects that do not respect this anatomic structure, caused by 

diseases such as pituitary tumours and other neurological defects. These patients should be a small 

minority of those in the database, because the data comes from a glaucoma referral service. Moreover, the 

non-exclusion of unreliable visual fields may also produce defects which do not resemble the true 

structure of the RNFL. The effect of these fields on the derivation of the filter would be to reduce the 

covariances in Equation 5.1 between points which are actually anatomically close in the RNFL, while 

slightly increasing the covariances between anatomically distant points. In effect, the clarity would be 

marginally reduced; it makes it less certain which points are related and which are not. The process of 

carrying out regressions on the covariances will reduce the effect of this loss of clarity further. It will have 

a minimal effect on the final filter, but potentially not a negligible effect. 

 

The database will inevitably contain a proportion of normal fields. These would not be expected to 

provide as much information, if any, about the functional correlate of the RNFL anatomy. The effect of 

including these fields will be to raise all the pair-wise covariances between points. The subsequent 

regressions carried out on the covariances should largely eliminate this effect, since points anatomically 

close will still have a higher covariance than points anatomically distant, assuming that including normal 

fields has raised all covariances by the same amount. This assumption, though reasonable, has not been 

tested. 

 

Against these arguments, including all patients will increase the available amount of data. The size of the 

database is considerable, so removing these patients would still leave a database of a more than 

acceptable size (an order of magnitude larger than used in most published studies); but it is always better 

to use as much data as possible. 

 

Excluding unreliable fields brings the question of what should constitute an unreliable field; what should 

the cut-off point be for parameters such as False Negatives and False Positives? Similarly, there is no 

clear definition as to what constitutes a glaucomatous defect, and so choosing a cut-off point for whether 

a defect is glaucomatous or from another disease would be problematic. Again, the question arises as to 

how to distinguish between normal and glaucomatous fields; even if it were feasible to examine each field 

individually, agreement between clinicians is poor, and any rigid statistical cut-off point would be, in 

essence, arbitrary. 
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“Intention to treat” is a well-established principle in medical statistics; indeed drug regulatory bodies 

often insist on it. The aim of this study is to develop a filter for use in a glaucoma clinic, and if unreliable 

and non-glaucomatous patients are present (as is the assumption behind the other side of the discussion), 

the filter must also work for those patients. Similarly, excluding healthy eyes may possibly result in a 

filter applicable only to damaged eyes, but unreliable on healthy eyes, which make up the majority of the 

population. Whether this would be the case or not would be interesting to test, by deriving a filter from 

the same methods but based solely on glaucomatous eyes, and comparing the results; however this again 

would cause the problem of defining a healthy or glaucomatous eye, as mentioned above. 

 

If healthy eyes were to be excluded because they bring negligible information about the structure of the 

RNFL, then logically would eyes which are severely diseased and with zero or near-zero sensitivity 

throughout the eye (or even throughout one hemifield) also have to be excluded? Further, if for example 

an arcuate defect is present in the upper hemifield, but the lower hemifield is perfectly normal, would the 

lower hemifield be excluded? 

 

Excluding unreliable fields may give a more accurate picture of the relationships between points. 

However, it would do so at the expense of losing information about the noise. By definition, unreliable 

fields are those with more significant – and therefore more interesting – noise. 

 

In conclusion, it is the author’s belief that any detrimental effects which these fields have on the results 

are minimal, as explained above, because of the regressions carried out. Contrastingly, the benefits they 

bring (principally a more representative database), and the problems caused by omitting them (such as 

choosing the cut-off points), are both significant. So, in balance, it was concluded that the arguments 

against excluding patients outweigh the arguments for. 

 

5.3.2 Use of All Fields from Each Patient 

Data from fields obtained from a single subject over time are correlated with each other, thus they are 

inputting the same or related defects multiple times in the derivation of the new filter, introducing a bias 

that may not reflect the anatomy of the RNFL. It is certainly true that the same defect from the same 

patient eye will appear more than once in the database, and this may bias the filter structure towards the 

spatial relationships between test locations for individuals with more visual field tests in the database.  

 

However, selecting one field at random from each patient would bias the database towards healthy eyes or 

eyes in the early stages of disease, because eyes tested only once or twice (and so likely to be healthy eyes 

which did not require further testing) would make up a far larger proportion of the database. This would 

greatly worsen any problems associated with including healthy or non-glaucomatous eyes in the database, 

as described in Section 5.3.1. Also, as before, the size of the database would also be greatly reduced, from 

98,821 fields down to 14,675 fields. While still a very large database, this reduction is significant. 
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It is more crucial that the filter works on patients who attend regularly over a period of many years, since 

they are generally the patients who have progressive glaucoma, or are most at risk of progression. 

Improving their test results is more important than improving the test results of a patient with no defect 

who only comes to the clinic once. Therefore it is logical to give more weighting to patients with longer 

series of visual fields; this is best achieved by including all fields for each patient. A key potential use for 

the filter is to improve methods for detecting progression. In these circumstances, a series of several fields 

is present. Again, this makes it more important to accurately reflect the structure of such eyes. 

 

As stated earlier, using every field for each patient produces a filter representative of the average test 

performed in the clinic, rather than representative of the average patient. It is our belief that this makes 

the filter more useful more of the time. It will also lessen the effect of eyes with non-glaucomatous 

defects, as discussed in Section 5.3.1. Any negative effects caused by the decision above to include all 

patients, irrespective of normality, other diseases and unreliability, will be reduced still further by using 

all the visual fields. 

 

Using every field for each patient would seem liable to bias the results in favour of reproducing the 

structure of patients who attend repeatedly; principally those patients who have progressing glaucomatous 

defects. This is not necessarily a bad thing. The arguments on either side are not definitively conclusive. 

However, especially in view of the first decision above, it was decided that the arguments for including 

every field outweighed the arguments for using just one field per eye per patient. 

 

5.4 The Filter 

 

The filter conforms to the accepted physiological shape of the retinal nerve fibre layer. Figure 5.2 shows 

the points that are used to filter a few ‘Central Points’ (i.e. those points with a non-zero ki when the 

relevant Central Point is ‘point A’ in the derivation in Section 5.2). If a point is connected to the Central 

Point by a line, it indicates that that point is a predictor for the Central Point; the thicker the line, the 

larger the effect it has on the prediction (i.e. the higher ki is for that point), as shown in the key on the 

right. The remaining contribution to the filtered value comes from the Central Point itself. It is seen that 

predictors are not necessarily neighbours of the Central Point (as they would be if the Gaussian filter was 

being considered), but they follow the expected arcs. As seen in Figure 5.1, this diagram for the Gaussian 

filter would simply connect each Central Point with all of its immediate neighbours. 
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Figure 5.2: An illustration of the shape of the filter. The grey area represents the blind spot. 

 

For example, for point 49 (the Central Point nearest the bottom right in Figure 5.2), the filter is given by: 

495453504843413449 218.0078.0055.0180.0219.0164.0031.0016.0 SSSSSSSSS
f +++++++=

 

Furthermore, points on opposite sides of the horizontal meridian only turn out to be significant predictors 

on one occasion (not including the points beyond the blind spot, to the far left in Figure 5.2). This is very 

promising, since the derivation of the filter at no point took account of the relative positions of point in 

the visual field. The only location where a point does turn out to be a significant predictor of a point on 

the opposite side of the horizontal meridian is at the nasal step, as shown on the right hand side of Figure 

5.2. This observation is interesting in itself, since nasal step defects are seen to cross the horizontal 

meridian in clinical practice. One possible explanation is the anatomical notion that some nerve fibres 

from upper and lower hemiretinas interdigitate at the temporal end of the horizontal raphe (Vrabec 1966; 

Sakai et al 1987); alternatively, the phenomenon could be caused by local effects from the glaucomatous 

process or a testing artefact. Also, the filter as derived above always assigns a sensitivity of zero to the 

point labelled in grey in Figure 5.2, which corresponds to the blind spot (10 to 15 degrees temporal of the 

fovea, just below the horizontal meridian); again, this was not pre-determined by the method of deriving 

the filtering algorithm. 

 

Clearly, the noisier the initial (raw) visual field is, the more obvious to the naked eye will be the 

difference caused by filtering. The effects of the filter are subtle; although improvements undetectable 

when simply viewing greyscales of the data may have much larger effects over time when a computer 

analysis, such as PLR (Fitzke et al 1996) or the Glaucoma Change Probability (Heijl et al 1991a), is used. 

However, there are cases when the benefits are clear. Figure 5.3 shows a 24-2 greyscale from an eye, 

taken from a textbook example (Budenz 1997), noted as having moderate to early glaucoma. There is a 

scotoma superior to the nasal horizontal meridian partially obscured by the noise present throughout the 

field. Filtering emphasises this defect, at the same time as removing most of the random noise elsewhere 

in the field. In contrast, the Gaussian filter almost entirely blurs out this defect. Note also that, unlike the 

Gaussian filter, the new filter leaves the blind spot intact. 
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Figure 5.3: The effect of the new filter on a visual field exhibiting a scotoma in the superior hemifield, compared with the effect of 

applying the Gaussian filter to the same data. 

 

So, the new filter not only appears to conform to the presumed shape of glaucomatous defects, but also 

appears to reduce the noise in the case of this example. However, more formal testing is naturally 

required. This will be addressed in Chapter 6. 

 

In order for this filter to be used clinically, it must be implemented into currently-available software. 

Appendix 2 gives details of the coding necessary to implement the filter into the Progressor program, 

replacing the Gaussian filter. It is hoped that this will be included in any versions of Progressor which are 

released to clinicians in the future. 

 

An example of a visual field from the demonstration patient provided by Progressor is shown on the left 

in Figure 5.4; the effect of applying the spatial filter to this visual field is shown in the greyscale on the 

right. The result is a clearer, less noisy picture, without the glaucomatous defect being blurred out and 

disappearing. 
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Figure 5.4: An example of the use of Progressor to apply the filter to a visual field from one of the program’s demonstration 

patients. The same field is shown twice, with the raw field on the left and the filtered field on the right. 
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6. Testing The Filter 

 

There are two key questions that need to be addressed when considering the effectiveness or otherwise of 

the new filter derived in Chapter 5. Firstly, does the filter reduce noise; this after all is the purpose of the 

filter. Secondly, does the filter blur out actual glaucomatous defects, a criticism which has previously 

been levelled at the Gaussian filter (Spry et al 2002). Two methods are described below for testing the 

filter. The first uses the longitudinal properties of the database to assess its effect on pointwise linear 

regression (PLR); the second and main examination of the technique uses the Virtual Eye simulation 

developed in Chapter 2. 

 

6.1 Longitudinal Data 

 

PLR, as described in Section 1.3, examines how the sensitivity at a given point in the visual field changes 

over time by fitting a linear regression model to the series of sensitivity values for each individual point in 

the field. It would be expected that if the noise were reduced, the sensitivity values would conform more 

closely to the trend over time; that is, the fit of a linear regression model would be improved. If the 

between-test variability is taken as being the sum of short-term variability and long-term variability, as 

described in Section 1.2.1, then the filter would be hoped to greatly reduce the short-term variability 

component. Indeed, the Gaussian filter has previously been shown to improve the consistency over time 

of visual fields (Fitzke et al 1995; Crabb et al 1995). 

 

The database described in Section 5.3 contains a number of eyes which have been tested repeatedly over a 

long period, in some cases as many as forty times over fifteen years. This longitudinal feature of the data 

was not used in the derivation of the filter (which treated each visual field as being equally important). 

So, it is proposed that using this feature could provide one indication of the effectiveness of the filter, 

without the results being biased by being taken from the same database. 

 

For this purpose, all series of length at least twenty (i.e. twenty visual fields taken from the same eye of 

the same patient on different dates) were extracted from the database. There were 303 such series. For 

those series of longer lengths, only the first twenty fields were taken. Now, the idea of filtering is to 

reduce the noise present in the readings; so if this has happened, there should be less variability over time 

in the sensitivity of a given point; the correlation between the sensitivity and the date of testing will 

increase. This is the same as saying that the R-Squared value obtained when carrying out linear regression 

to find the rate of change at that point will improve upon filtering. So, for each series of twenty fields, this 

analysis was carried out at each of the 54 points in the central 24-2 field in turn; giving a total of 

303x54=16362 R-Squared values. The same analysis was then repeated after filtering the data (by each of 

the two filtering methods – using the Gaussian filter, and using the new filter developed in the previous 

chapter – in turn). 
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A high R-Squared value, or equivalently a high correlation between the sensitivity at a point and time, 

indicates that there is little between-test variability at that point, as the sensitivities closely follow the 

overall trend over time. As seen from the density functions shown in Figure 6.1, the R-Squared values 

generally increased after filtering, whether it is using the Gaussian filter or the new filter. 

 

 

Figure 6.1: Frequency Distribution of R-Squared values for series of Raw sensitivities (dashed line); Gaussian-filtered sensitivities 

(dotted line) and Filtered sensitivities (solid line). 

 

Out of the 16362 regressions performed (54 points from each of 303 series of fields), 1164 series of raw 

sensitivities (7.1%) had an R-Squared value of greater than 0.5; whilst 2446 series of filtered sensitivities 

(14.9%) had a similarly high R-Squared value.  The 95% confidence interval for the mean of the changes 

in R-Squared values brought about by filtering was (0.066, 0.070), highly statistically significant 

(p<0.001) according to a paired t-test. This suggests the process of filtering (by either method) is 

significantly reducing the noise, as the sensitivities are more consistent over time. 

 

6.2 Virtual Eye Simulation 

 

It has previously been reported that although the Gaussian filter may reduce noise, it also reduces the 

signal, as described by Spry et al (2002) and discussed in Section 5.1; i.e. methods which use filtering 

will be less successful at detecting localised defects than methods based on the raw data. It was decided to 

investigate this by looking at the effect of filtering on simulated visual field series, using pointwise linear 

regression (PLR) as the testing tool.  

 

6.2.1 The Simulated Visual Fields 

The simulated data was generated using the “Virtual Eye” described in Chapter 2. Series of six fields 

(from annual testing over a period of five years) were simulated based on input noise-free visual fields; 
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the simulation adds random noise to each point of each of the six fields in the series. It was sought to 

make these noise-free series as simple as possible, to simplify and clarify the results obtained. So, each 

point in the field was assigned as one of: 

 

1. Stable: the sensitivity remains constant at 30dB throughout the series, before noise is added. 

2. Defective: the noise-free sensitivity is reduced by 2dB per year, from 30dB to 20dB over the five 

years. 

3. Border: the noise-free sensitivity is reduced by 1dB per year, from 30dB to 25dB. 

 

This process was first carried out on a stable visual field; i.e. one where all 54 points in the visual field 

(including the two points coinciding with the blind spot) were Stable. 

 

Next, localised defects were chosen with reference to the map of the physiological optic nerve head 

(ONH) locations for each visual field test point produced by Garway-Heath et al (2000b), shown in 

Figure 6.2. The rationale for using this map is that localised defects are more likely to occur in clusters 

determined by the anatomical entry position of nerve fibre bundles into the optic disc. This rationale 

partly satisfies the need for determining localised defects separate from one based on perimetric data 

alone, avoiding the use of purely arbitrary and subjective defects such as those used by Spry et al (2002). 

Using the map, a ‘Central Point’ was chosen, and its location in the ONH noted. This point and all other 

points located within ±5 degrees of the Central Point in the ONH were assigned as being Defective points 

with a glaucomatous loss of 2dB per year. Further points between six and ten degrees away from the 

Central Point (in terms of ONH location) were assigned as being Border points, with a glaucomatous loss 

of 1dB per year. Points elsewhere in the eye were assumed to be Stable. 

 

   268 262 252 245   

  264 274 281 275 260 246  

 271 285 291 296 298 283 253 229 

278 287 291 298 312 329 318 . 218 

83 76 68 55 34 11 13 . 167 

 85 78 66 56 48 60 95 136 

  88 81 77 80 93 112  

   93 95 100 108   

Figure 6.2: The optic nerve head location, in degrees, for each non-blind spot visual field test point in a right eye. The temporal 

meridian (9-o’clock position) was designated as 0°, and degrees counted clockwise from there. Reproduced from Garway-Heath et 

al (2000). 

 

Each of the 54 points in the standard visual field was considered in turn as the Central Point, with the 

exceptions of the two points forming the blind spot. Some examples of defects generated in the manner 

described are shown in Figure 6.3. 
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Figure 6.3: The shapes of some of the 52 generated defects tested, superimposed onto a Humphrey 24-2 visual field. The black 

square in each case is the Central Point. Dark grey squares represent the Defective points (within five degrees of the Central Point in 

the ONH); light grey squares represent the Border points (between six and ten degrees away from the Central Point in the ONH). 

The large grey circle towards the left of each field represents the location of the physiological blind spot. 

 

Anderson’s criteria (Anderson & Patella 1999) define a clinically significant progressing localised defect 

as being a cluster of three or more points that have sensitivities occurring in fewer that 5% of the normal 

population, at least one of which must occur in less that 1% of the population, according to the pattern 

deviation probability plot. Hence, localised defects generated in this way which were found to consist of 

fewer than three adjacent points, and therefore not constituting an identifiable defect according to 

Anderson’s criteria, were separated out and will be commented further upon later (this comprised six 

‘defects’ consisting of a solitary point, and six ‘defects’ of just two points, one example of which is 

shown in the centre of Figure 6.3). 

 

Finally, the process was carried out on a field with a non-glaucomatous defect (as shown in Figure 6.4), 

consisting of three Defective points with one Border point at each end. This was done in the hope that a 

filter designed to identify glaucomatous defects will not pick up defects which would not occur in 

glaucoma. Such a defect may be genuine, caused by for example a neurological disease; but since the 

purpose of this work is to more readily identify the existence and progression of glaucomatous defects, 

and it is not designed for use when other suspected conditions are being looked for, it is desirable that 

such non-glaucomatous defects be blurred out. 

 

 

Figure 6.4: The shape of the non-glaucomatous defect used, superimposed onto a Humphrey 24-2 visual field. As before, the grey 

circle represents the physiological blind spot. 

 

Each input series was simulated five thousand times. After each run, points were tested to see whether 

they would be flagged as progressing using PLR. The criteria for a progressing point used in these 

simulation experiments were a deterioration of at least 1dB/year, statistically significant at the 1% level. 
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This criteria has been used in published studies (Viswanathan et al 1999; Nouri-Mahdavi et al 1997; 

Membrey et al 2001). This analysis was repeated after filtering each field in the noisy simulated series 

using each of the Gaussian and our new filter in turn. So for each of the five thousand runs for each input 

series, the points were tested three times. In this way, the sample probabilities of the points being flagged 

as progressing based on each of the Raw, Gaussian and Filtered data were calculated. In the case of the 

input localised defects, the probabilities of the Central Point being (correctly) flagged as progressing in 

each case will hereafter be referred to as the three Detection Rates for that defect. 

 

6.2.2 Results from the Virtual Eye Experiments 

When the stable eye was tested (i.e. one where, before the addition of noise, all the points remain at a 

sensitivity of 30dB throughout), the proportion of points still being flagged as progressing (all of which 

are therefore false positives) fell dramatically from 0.59% to 0.04% upon applying our new filter. This 

means that the probability of at least one of the 52 non-blind spot points being wrongly flagged as 

progressing has fallen from 26.5% to just 2.1%. This is further evidence that the filter is reducing the 

noise and increasing specificity, as found in Section 6.1. 

 

For each of the artificial localised defects based on the ONH structure (as in the examples in Figure 6.3), 

the percentage of the five thousand runs of the simulation which resulted in the Central Point satisfying 

the standard criteria for progression under PLR (i.e. a slope of at least –1dB/yr, statistically significant at 

the 1% level) was calculated. This percentage was found after the same five thousand noisy series had 

been filtered using the Gaussian filter (marked as ‘Gaussian’), and using the new filter (marked as 

‘Filtered’), as well as before filtering (marked as ‘Raw’). The results are shown in Figure 6.5. 

 

The detection rates for the Central Points vary considerably after filtering, since they depend in part on 

the status (Stable, Defective or Border) of neighbouring points. Without any filtering, the detection rates 

are consistently around 20% for the Central Point and other Defective points (which are deteriorating at 

2dB/yr) and around 8% for the Border points (which are deteriorating at 1dB/yr); because PLR without 

filtering regards each point as being independent, this value is approximately constant. It is seen that in 

almost all cases, the percentage of Central Points correctly identified as progressing increased 

significantly after filtering. Further, the new filter is performing much better than the Gaussian filter in 

this regard; it was common for defects to be blurred out by the Gaussian filter. The mean detection rate 

for the localised defects was 19.9% for the unfiltered, raw data; rising to 29.9% after application of the 

Gaussian filter, and 38.0% after using our new filter. This indicates a dramatic improvement in sensitivity 

when the field is filtered before it is analysed. 
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Figure 6.5: Percentage of Central Points correctly flagged as progressing for each of the tested defects. Each column contains three 

symbols, representing the detection rates for the raw data, the data after application of the Gaussian filter, and the rate after 

application of our new filter; there is one column per point tested. The points have been split into the two hemifields. The points are 

in each case shown in order of increasing detection rate after application of the Gaussian filter (rather than in order of location), to 

make the figure clearer to understand. No relationship was found between the area of the field which a point was in and the effect of 

filtering on the detection rate. 

 

As mentioned in Section 6.2.1, of the 54 possible Central Points in the central visual field, fourteen 

resulted in defects consisting of fewer than three adjacent points and so did not satisfy the criteria of 

Anderson & Patella (1999) (comprising the two points coinciding with the physiological blind spot, six 

solitary point ‘defects’, and six ‘defects’ consisting of two points). Because they did not produce realistic 

glaucomatous defects (according to this definition), results from these fourteen Central Points are not 

included in Figure 6.5. However, this does not necessarily mean that these small defects were not picked 

up. Indeed, the two-point localised defect in the centre of the field next to the blind spot, illustrated by the 
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central field in Figure 6.3, resulted in the detection rate increasing from 19.9% to 37.1% after filtering. 

Certainly, as with any type of spatial filtering, if a defect consists of only one solitary point its detection 

rate will decrease. However, one deteriorating location may not constitute clinical glaucomatous 

progression.  

 

Of more concern are the five Central Points for which the detection rate in Figure 6.5 appears to be 

reduced by filtering. These five defects are those shown in Figure 6.6. In each case, the apparent 

reduction in the detection rate caused by filtering is explained by the differences in shape between the 

defect being tested (generated from the ONH map) and the shape of the filter at that point which is shown 

in the bottom row of Figure 6.6 (generated from visual field data). A large proportion of the filtered value 

for the Central Point is based on points not appearing in the defect; over 50% for defects A, D and E, and 

between 40% and 50% for defects B and C. These five isolated cases may appear to behave in this way 

because of the method used for generating simulated defects, and are not necessarily reason to doubt the 

usefulness of the filter; they may reasonably be assumed to be the result of the difference between 

functional and structural relationships, as discussed in Section 1.2, and the subject of continuing work in 

the field (Shareef et al 2002). 

 

 

Figure 6.6: The five generated localised defects whose detection rate appears to be reduced by filtering in Figure 6.5, using the same 

symbols as in Figure 6.3. The lower line shows the points involved in the filtering algorithm for that particular Central Point; the 

thicker the line, the more effect the point has on the filtered value for the Central Point, as in Figure 5.2. 

 

Furthermore, in the first three cases, the overall detection rate taken over all the points which are 

deteriorating at 2dB/yr (the Central Point, represented by the black square, and the Defective points 

represented by dark grey squares), rather than just the Central Point, has actually improved. With defect 

A, the average detection rate has in fact increased from 19.9% to 29.1% after filtering (Gaussian: 22.3%); 

although the Central Point itself is being flagged as progressing less frequently, the rest of the defect is 

more likely to be picked up, and so the overall detection rate has still improved. Similarly for defect B, 

where the average has increased from 19.6% to 21.5% (Gaussian: 23.6%); and for defect C, where the 

average has increased from 20.1% to 31.5% (Gaussian: 26.9%). 

 

The defect shown in Figure 6.4 was tested in the same way. Averaged over the three Defective points, the 

filter reduced the percentage of runs of the simulation which resulted in points being flagged as 

progressing from 19.7% to 10.0%; blurring out non-glaucomatous defects, as hoped. The Gaussian filter 

did not have this beneficial effect; in fact it increased the proportion flagged from 19.7% to 29.6%.  
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6.3 Conclusions 

 

The principle of filtering real-world data is long established as a tool for reducing noise. Indeed, even in a 

standard measurement of the visual field with a Humphrey perimeter, double determinations of the 

sensitivity are carried out at certain points in the field; and while this is done principally to provide an 

estimate of the variability present in the readings, it also provides a basic form of filtering, as clinicians 

may base their judgment on the mean of these double determinations. The semi-Bayesian approach of 

using the prior expected sensitivity at a point to predict it before it is measured is also utilised in the SITA 

algorithm (Bengtsson et al 1997). Spatial filtering, in the form of a Gaussian filter, has also been applied 

to visual field data with the benefit of reducing between test variability and improving the predictability 

of future visual field changes (Fitzke et al 1995; Crabb et al 1995; Crabb et al 1997). However, a recent 

study using a computer simulation of progressive glaucomatous visual field loss (Spry et al 2002) 

concluded that Gaussian filtering does not offer a consistent benefit over the analysis of raw visual field 

data, and in some instances significantly inhibits the ability to detect small, gradual progressive field 

changes. In support of these findings, our testing of the Gaussian filter on our selection of localised 

defects also showed that, in some (but not all) cases, it blurred out smaller progressive defects. With our 

new improved filtering algorithm, the detection of progressing points not only did not worsen, but it 

actually improved significantly, even in cases of very small clusters of progressing points. The new filter 

also offers dramatic improvement in specificity when compared with unfiltered fields (reducing the false 

positive rate from 0.59% to 0.04%), vital for pointwise methods for detecting progression. Indeed, a 

seemingly small improvement in specificity may be more important than a larger improvement in 

sensitivity, as shown in Section 3.3 (although here we are in the happy position of improving both!). 

 

For any new method to become widespread in clinical use, it must be widely tested and demonstrated to 

provide a notable improvement on the current methodology. Opinions will naturally differ on what 

criteria are necessary for such a new method to be adopted. In this paper, a simulation method has been 

used to test the filter. Simulation, which is becoming an increasingly utilised tool in visual field problems 

(Johnson et al 1992; Glass et al 1995; Spenceley & Henson 1996; Spry et al 2000; Spry et al 2002; 

Gardiner & Crabb 2002 a,b; Vesti et al 2002; Artes et al 2003), was used to test not only whether the 

noise was being reduced by filtering, but also whether true localised defects were being blurred out. The 

details of the simulation used, and its benefits and disadvantages, are discussed in Chapter 2 and in 

Section 3.3. With any simulation, the results should be viewed qualitatively rather than quantitatively, due 

to uncertainty over such issues as the amount of noise used etc. Nevertheless, these experiments have 

clearly shown that defects are emphasised by the new filter, whilst there are less false positives from 

stable points and non-glaucomatous defects. 

 

The use of a map of the ONH for generating localised defects (Garway-Heath et al 2000) has the notable 

advantage that it is not wholly based on perimetric results, thus making it suitable for independently 

selecting progressive defects. The rare instances of progressive defects where the new filter did not 

emphasise progression may tell us more about that lack of relationship between functional and structural 
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change; or equally, may be a result of correlations forged as part of the testing strategy of the perimeter 

itself in establishing thresholds. Some correlation between points, whether contiguous or not, may well be 

the result of the testing strategy and not of the physiological connections. The effect of this is that the 

range of defects generated may not be entirely realistic or comprehensive. Further, it means that the 

detection rate being reduced by filtering in the cases of two of the tested defects (defects D and E in 

Figure 6.6) need not be considered a problem with the filter; more, it may point to a difference between 

the structural and functional maps of the eye at those points. It is perfectly believable, and in fact to be 

expected, that there will be a few points in the eye where the results from this testing technique would not 

be perfect even if the filter were. This is a limitation of using this method for choosing realistic localised 

defects; yet this is preferable to choosing defects in a completely subjective manner based on common 

beliefs about visual fields, which would be biased towards the expected shapes. 

 

Naturally, any further testing is to be welcomed. It would be desirable to also test whether or not localised 

defects are blurred out by filtering by looking at real patient data. This is hampered by the lack of a 

definition in the literature of what constitutes an expected defect; progressing or otherwise (hence why 

our simulation uses shapes of the localised defects generated by looking at a physiological map of the 

ONH). One possibility is to look at the predictive power of trend analysis methods, in the hope that this 

power would increase once the data had been filtered; however to do this would require a clean, 

independent database, and so it has not been carried out to date. Despite these inherent problems, and 

although the results of simulation should not be underestimated, they still need to be confirmed by clinical 

observations. 

 

It should be emphasised that the filter described here is designed solely for suspected glaucoma patients. 

It is based on data from a glaucoma clinic, and so resembles the shapes of glaucomatous defects. This 

means that it is unsuitable for use when other conditions are suspected; neurological defects, for example, 

will be blurred out by the use of this filter, as demonstrated by the effect of the filter on the defect shown 

in Figure 6.4. Of course, when the issue is whether the patient has glaucoma or not, or whether their 

glaucoma is progressing, it is entirely desirable that non-glaucomatous defects be blurred out. 

 

Even without further testing, there is sufficient evidence presented here to say that the new filter shows 

clinical potential, especially since it requires no changing of visual field testing or extra patient test time. 

It is to be hoped that the filter technique described here, and implemented into the Progressor program by 

the code given in Appendix 2, could in the future become a widely accepted tool in glaucoma clinics. 
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7. Modelling Noise 

 

When using simulation techniques as a substitute for real patient data, as in the Virtual Eye, it is naturally 

essential that the noise is modelled in the best possible manner. The Virtual Eye, in common with other 

simulations (Crabb et al 1999; Spry et al 2000; Vesti et al 2002), assumes the noise to be normally 

distributed about zero. However, this assumption is not strictly accurate. From studies looking at the test-

retest variability of visual fields (Heijl et al 1989; Artes et al 2002), it is known that the noise becomes 

increasingly negatively skewed as the sensitivity decreases. The assumption of normality appears 

reasonable for an eye which is healthy or shows only a small defect; but for more advanced defects the 

assumption breaks down. Artes et al (2002) report that for an initial baseline sensitivity of between 8dB 

and 10dB, measured using the SITA Standard testing strategy, the distribution of the retest sensitivity has 

a lower quartile of 4dB and an upper quartile of 20dB, with a median of 14dB; not only is this clearly 

non-symmetrical, but it is also not centred on the initial baseline sensitivity. The change in the 

distribution of the noise with the SITA testing strategy may be partly because the algorithm tries to fit the 

data to one of two models, either normal or defective, rather than a continuum of states. 

 

This non-normality may be due in part to the convention of using the decibel scale to measure sensitivity. 

As described in Chapter 1.2, the sensitivity S in decibels (dB) is given by S = 10 * log (1/L), where L is 

the stimulus intensity measured in Lamberts (1Lambert = 10,000 apostilbs). This means that a small 

change in decibels may correspond to a large reduction in the numbers of light-sensitive cells when 

sensitivity is near normal, and a small reduction in the numbers of light-sensitive cells when the 

sensitivity is low (Garway-Heath et al 2000a). Intuitively, this would seem to indicate that the noise 

should be of a log-normal distribution, if the errors in measuring (albeit indirectly) the cell numbers were 

normally distributed. Yet this is also not the case; the testing strategies employed by automated 

perimeters (including, but not limited to, the Full Threshold strategy described in Chapter 1.2) are based 

on the scale being linear, and the strategy inevitably effects the distribution of the noise. Therefore, a new 

improved model for decibel noise which would be applicable at all sensitivity levels is desirable. 

 

7.1 Using The Filter To Estimate Noise 

 

Previously, noise has been estimated by looking at test-retest variability. An eye is tested twice within a 

short period of time (typically a week), and the visual fields compared. This is too short a time period for 

any significant change to have occurred, and so the difference between the two fields must be due to 

noise. There are two major problems with this approach: 

 

– Firstly, it is not known what the true physiological sensitivity of each point is; it may be that, for 

example, the first and second readings are both too high (because of the inherent noise). This 

means that getting an accurate profile of the noise when the actual sensitivity is, say, 20dB is 
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impossible; instead, it is only possible to obtain a profile of the noise when the first noisy 

reading is 20dB. 

 

– Secondly, the test-retest variability is taken as being the difference between the first and second 

sensitivity readings. However, since both readings are noisy, this measure in fact gives the 

difference between the noise components of the two readings; and so it gives, in terms of the 

variance, double the actual noise of each individual reading. 

 

An ideal measurement of the noise present would look at the difference between the actual physiological 

sensitivity and the threshold estimate produced from the visual field test. Of course, there is currently no 

way of knowing the actual sensitivity; but the filter developed in Chapter 5 is designed to come closer 

than any current measure. It would be over-optimistic to expect any spatial filter to remove all the noise 

from a visual field reading, but it is feasible (and backed up by the testing in the previous chapter) that it 

removes the majority of the noise. Therefore, it is proposed that the difference between the raw and 

filtered sensitivities at each point be used as a measure of the noise at that point. This would be expected 

to slightly under-estimate the noise, not least because the filtered value is based in part on the raw value. 

However, it alleviates the two problems mentioned above, and should give a far more accurate picture of 

the distribution of the noise at different sensitivity levels. Crabb et al (1995) considered this idea using a 

simple median filter, where the differences between raw and filtered values were summarized in a 

measure called the local spatial variability; this measure was found to be closely correlated with short-

term fluctuation measures made by the HFA, in groups of normal and glaucomatous eyes. 

 

Moreover, because only one visual field is required to obtain an estimate of the noise (rather than two 

fields separated by a sufficiently short time interval for test-retest noise estimation), a much larger sample 

size can be used when deriving the estimated noise distributions; in fact the entire database of visual 

fields could be used. However in this case, because some patients have more visual field readings present 

in the database (described in Section 5.2) than others, and because the noise profile of individual patients 

could vary, it was chosen to use only the last eight visual fields from each eye from each patient (eyes 

which did not have at least eight complete visual fields were excluded); this way, no individual patient 

will have an undue effect on the results. This is particularly important because the patients who have very 

long series of visual fields in the database are typically those who have deteriorating glaucoma, and so 

their eyes may exhibit higher levels of noise than stable eyes; including all fields from each patient would 

therefore bias the results. The final eight fields for each patient were used instead of just one field per 

patient, because otherwise there would be too few fields left with moderate to advanced damage, 

therefore making it very difficult to obtain an accurate picture of the noise at lower sensitivities. This still 

left 15608 visual fields from the database, taken from 1951 different eyes. 

 

7.2 Estimates Of The Noise 

 

Each visual field in the database was considered in turn. The field was first filtered using the spatial filter 

described in the previous two chapters. Then, the estimated noise at each point was calculated as the 
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difference between the raw and filtered sensitivities at that point. These estimated values for the noise 

were separated according to the filtered value, rounded to the nearest half decibel; so, for example, one 

column of the output contained the noise estimates for all points whose filtered value was between 21.25 

(inclusive) and 21.75dB (exclusive). 

 

Following this procedure, the distribution of the noise estimates (raw value minus filtered value) can be 

shown for different rounded filtered sensitivity values; three examples are given in Figure 7.1. 

 

Figure 7.1: The empirical distribution of the noise estimates for different filtered sensitivity values. The red line shows the pdf for 

the noise estimates when the filtered sensitivity is between 32.25 and 32.75dB; the green line is for filtered sensitivities between 

26.75 and 27.25dB; and the blue line is for filtered sensitivities between 16.75 and 17.25dB. 

 

It can be seen that as the filtered sensitivity decreases, the distribution not only becomes more spread out 

(indicating a higher level of noise, as would be expected from Henson et al (2000) and others, and 

discussed in Section 2.1); but also the distribution becomes negatively skewed (the left tail is longer than 

the right tail, whilst the mode of the distribution is to the right of the centre). A similar graph of the pdf 

when the filtered sensitivity is even lower, say 5dB, would exhibit a markedly negatively-skewed 

distribution, but with a large peak at -5dB corresponding to the censoring of the raw values (which cannot 

be below 0dB). These qualitative findings are in keeping with published work based on test-retest 

variability (Heijl et al 1989; Heijl et al 1991; Chauhan & House 1991; Chauhan & Johnson 1999b; 

Henson et al 2000; Artes et al 2002), and so support the idea of using the filter to derive noise estimates. 

As predicted above, the method described here produces lower estimates of the amount of noise than the 

estimates based on test-retest variability, because it is estimating the amount of noise for just one reading 

rather than the difference between the amounts of noise at two consecutive readings. 

 

The non-normality of the noise distribution could have major consequences. Firstly, if a better model can 

be found, it would clearly improve computer simulation techniques such as the Virtual Eye, making them 

truer to life. This would strengthen the arguments discussed in Chapter 2.1 for using simulated data rather 

than actual patient data when evaluating testing strategies. Secondly, if the noise distribution deviates 

significantly from a normal distribution, this has far-reaching implications for the diagnostic tools 
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analysing visual field data; the validity of pointwise linear regression relies on the implicit assumption of 

normality, since the least-squares regression assumes normal errors. If a mathematical model for the noise 

can be derived, then the extent of the deviation from normality can potentially be assessed. 

 

7.3 Pearson Densities 

Karl Pearson showed that given the first four sample moments, a continuous density function can be 

constructed that is consistent with those four moments (Rose & Smith 2002). Pearson density functions 

are the family of solutions p(x) to the differential equation: 
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that yield well-defined density functions (Johnson & Kotz 1969). The shape of the resulting distribution 

will depend on the Pearson parameters (a, c0, c1, c2). These parameters can be expressed in terms of the 

first four moments of the distribution. 

Given a random sample (X1, X2, …, Xn) of size n, the rth sample moment is given by: 
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as a measure of the sample kurtosis (a measure of the peakedness and tail weight of the distribution).  
 

The Pearson parameters (a, c0, c1, c2) in Equation 7.3.1 can be expressed in terms of these moments. The 

calculations are greatly simplified by choosing to work about the mean (i.e. subtracting the mean from 

each value in the sample); this yields a distribution with the same second, third and fourth moments as the 

empirical sample distribution, but a different mean value. This is easily corrected by adding a constant at 

the end to correct the mean value, so that all four moments are correct. Because this method is simpler, 

and so has less chance of rounding or calculation errors, it is this method which will be used. The 

formulae are then: 
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Equations 7.3.2 

 

There are in fact seven different types of Pearson density, depending on the values of �1 and �2 (or 

equivalently on the values of m2, m3 and m4). In this case, as will be seen in the next section, the kurtosis 

is large (average 5.3), consistent with a peaked distribution with long tails; and the skewness is quite 

small (in the range [-1,+1]) and so the data is fitted by a Type IV Pearson distribution. This type occurs 

when the quadratic expression (c0 + c1 x + c2 x
2) does not have real roots, and it has the solution: 
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Equation 7.3.3 

over the range (-�, �); where numerical integration is required to find the constant of integration C[S], 

for example by use of the trapezium rule. 

 

Pearson densities, and a computer program called mathStatica (Wolfram Research Inc., Illinois, USA) 

capable of calculating them, are described fully by Rose & Smith (2002). 

 

7.4 Modelling The Noise 

 

The sample variance, skewness, etc of the noise distribution vary as the sensitivity varies. If these can be 

modelled, then an estimated Pearson distribution for the noise can be derived from them. 

 

As described in Section 7.2, sample noise distributions were found for each interval of filtered 

sensitivities from [-0.25, 0.25) to [32.25, 32.75). For each of these intervals, the sample mean, variance, 

skewness and kurtosis were calculated. These were then plotted against sensitivity (where the sensitivity 

in the middle of each interval was used for the plot, i.e. 17, 17.5, etc). This produced the graphs in Figure 

7.2. 
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Figure 7.2: Graphs of the four distribution measures. 

 

A major problem is the censoring nature of the perimeter. A sensitivity reading of 0dB actually means 

‘less than or equal to 0dB’. This is why in graphs of test-retest variability, there is always a peak 

corresponding with the retest sensitivity reading being zero. When the initial sensitivity is low (say 

10dB), the probability of the retest sensitivity being below zero becomes highly significant. For example, 

Figure 7.3 shows the distribution of the noise when the rounded filtered sensitivity is 9.5dB (with 9.5dB 

added to each reading to give an indication of the scale of the distribution of the raw sensitivities). 

 

Figure 7.3: Empirical pdf of the raw sensitivity when the filtered sensitivity is between 9.25 and 9.75dB, showing the peak 

corresponding with the censoring effect at zero. 

 

This makes modelling the noise distribution at low sensitivities unfeasible. The way to get around this 

problem is to model the noise distribution at higher sensitivities, and then extrapolate these modelled 

distributions to obtain a prediction of the distribution at lower sensitivities; before censoring these 

predictions and checking the fit against the empirical distributions. Therefore, the model will be based 

only on those noise estimates derived from points whose filtered sensitivity (rounded to the nearest half 
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decibel) was greater than 16dB. This removes points whose raw sensitivity was 0dB, or whose filtered 

sensitivity was based in part on one or more points whose raw sensitivity was 0dB. The cut-off point of 

16dB is chosen as the point at which the data in the graphs in Figure 7.2 deviated from the clear trends 

(the exponential rise in the variance, and the linear decrease in the skewness, as the sensitivity decreases). 

This still leaves 644099 point noise estimates with a sufficiently high filtered sensitivity for the model to 

be based upon. 

 

For the variance, there is a clear exponential curve above 16dB (agreeing with Henson et al (2000), 

although as explained earlier the magnitude of the noise estimates obtained here, and hence the variance, 

is smaller). This gives a line of best fit of: 

S
eVariance

1920.087.448 −=  

Equation 7.4.1 

where S is the filtered sensitivity. The R-Squared value for this line is 99.3%, showing an exceptional fit 

to the data. Below 16dB, the variance appears to decrease; this is the result of the censoring at zero, since 

the variability of points below zero has been removed, hence reducing the sample variance. 

 

Similarly, the positive skewness at lower sensitivities is caused by removing the left-hand tail of the noise 

distribution and replacing it with an artificially high density at zero; the censoring effect will clearly make 

the skewness of the data in Figure 7.3 higher than it would otherwise have been. For the higher 

sensitivities, there is again a clear pattern in the skewnesses above 16dB; in this case, a linear fit is 

appropriate, with a very good fit indicated by an R-Squared value of 87.8%: 

5041.10519.0 −= SSkewness  

Equation 7.4.2 

 

The kurtosis does not show any significant trend as the sensitivity changes (amongst sufficiently high 

sensitivities as before); instead it hovers between four and eight. Due to this lack of a trend, rather than 

fitting a line of best fit (which would have a very poor R-Squared value) it was chosen to use the mean 

value for the kurtosis; so it will henceforth be assumed that the kurtosis is constant at 5.305 (to 3 decimal 

places). Thankfully the kurtosis has far less effect on the shape of the resulting Pearson distribution than 

the variance or skewness, so this assumption is not too critical. 

 

These modelled estimates for the skewness and kurtosis ensure that a Pearson density will be of Type IV 

(as described in the Chapter 7.3) whenever the true sensitivity is greater than 8dB, which is sufficient for 

our purposes. The model for the noise developed here will not be well-defined at lower sensitivities; but it 

will still be an improvement on the normally-distributed noise currently used, which is only a valid model 

down to at best 20dB (and, more conservatively, down to just 25dB). Clinically – and hence in any 

simulation experiments – points whose sensitivity is below 20dB are still of interest; yet points whose 

sensitivity has deteriorated below 8dB are so badly damaged that their future status becomes less 

important. 

 

Modelling the mean is harder. The mean is less affected by the censoring at zero than the variance or 

skewness. Yet a linear model for the mean only fits the data down to a sensitivity of around 18dB, a 
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higher sensitivity than would be achieved if the non-linearity of the data was purely caused by the 

censoring at zero. So a non-linear model is required which will fit the data down to 8dB (the lower limit 

of the model). Now, the values for the mean noise shown in the top left graph in Figure 7.2 seem to 

oscillate about zero as the sensitivity increases from 8dB towards 35dB. Further, if it were possible to 

continue the graph further right towards infinity, the mean noise would be expected to asymptotically 

tend towards zero (rather than � or -�), because the variance of the noise would reduce to zero. Therefore 

a damped oscillation model suggests itself; the best fit is given by: 

( ))4866.1(2034.0sin5414.6 )4866.1(1154.0 +−= +−
SeMean

S
 

Equation 7.4.3 

 

The goodness of fit of this model can be illustrated by plotting modelled values for the mean noise and 

comparing with the empirical estimates, as in Figure 7.4. 

 

Figure 7.4: Comparing the empirical estimates of the mean noise (shown by crosses) with estimates calculated from the model 

(shown by dots) at different sensitivities. 

 

Intuitively it would seem that the noise distribution should have a mean of zero for all sensitivities. Yet 

this is clearly not the case. The reasons for this are explained below in Chapter 7.4.1. 

 

Now, having predicted these four parameters of the noise distribution for a given input sensitivity (from 

Equations 7.4.1-3, and the given constant value for the kurtosis), the moments of the noise distribution 

can be calculated as follows: 

MeanSm =)(1  

VarianceSm =)(2  

( )32

3 )( VarianceSkewnessSm ×=  

2

4 )( VarianceKurtosisSm ×=  

Equations 7.4.4 
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Next, going back to Equations 7.3.2, the Pearson parameters can be easily calculated. These parameters 

can then be put into Equation 7.3.3 to find distribution pS(x) at sensitivity S, using numerical integration 

to find the constant of integration and ensure a well-defined distribution function. 

 

The mean of this distribution can be calculated from �= dxxxpSS )(µ (estimated numerically by use 

of, for example, the trapezium rule). The distribution must be shifted along the axis so that the mean value 

for the distribution becomes equal to the desired mean value for the noisy sensitivity readings, namely 

))(( 1 SmS + . The distribution for the noisy sensitivity readings is therefore given by 

))(()( 1 SSS SmSxpxq µ+−−= , where x is the input. Now, if the output sensitivity is less than 

zero, then because the perimeter censors the data (it cannot measure sensitivities below 0dB), these 

sensitivities must be set equal to zero. So the final distribution for the simulated output sensitivity 

readings is given by: 
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Equation 7.4.5 

 

In summary, the steps for simulating the distribution of noisy sensitivity readings, given that the input 

noise-free sensitivity is SdB, are: 

Step 1. Calculate the predicted variance and skewness of the distribution using Equations 7.4.1 and 

7.4.2. 

Step 2. Convert these, and the permanent estimate of 5.305 for the kurtosis, into the second, third 

and fourth moments of the distribution using Equations 7.4.4. 

Step 3. Use these estimated moments to derive estimates for the Pearson coefficients, using 

Equations 7.3.2. 

Step 4. Insert these coefficients into Equation 7.3.3 to produce the distribution pS(x). 

Step 5. Use the trapezium rule to estimate the constant of integration C[S] (converting pS(x) into a 

well-defined distribution) and the mean µS of the distribution. 

Step 6. Calculate the desired mean of the distribution from Equation 7.4.3. 

Step 7. The modelled noisy sensitivity distribution, including censoring, is then given by fS(x) as 

defined in Equation 7.4.5. 

 

7.4.1 The sample mean of noise estimates 

This sub-section attempts to explain why the sample mean noise counter-intuitively changes with 

sensitivity. It is clear from Figure 7.2 that as the filtered sensitivity decreases, the mean sample noise 

initially increases; that is, the raw sensitivity becomes increasingly likely to be higher than the filtered 

sensitivity. On further reduction of the filtered sensitivity, the mean noise then becomes negative; the raw 

sensitivity is now likely to be lower than the filtered sensitivity. This is not a characteristic of the filter; 

rather, it is a product of the choice to categorise points according to their filtered value. 
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Indeed, when the same analysis is carried out using the Gaussian filter (which is known to blur out low 

sensitivity points, as shown by Spry et al (2002)), the same findings occur; a medium sensitivity 

Gaussian-filtered value (around 20dB) is likely to have come from a point whose raw sensitivity was 

slightly higher. However when the noise is categorised according to the raw sensitivity of the point, rather 

than the filtered value, the opposite occurs; as the raw sensitivity decreases from 30dB towards 20dB, the 

mean sample noise decreases, indicating that the Gaussian filtered sensitivity becomes increasingly likely 

to be higher than the raw sensitivity. How can this be? 

 

What the results are saying is that when the filtered sensitivity (using either the Gaussian filter or the new 

filter developed in this work) is 20dB, it is more likely that the raw sensitivity at that point was 22dB than 

that it was 18dB. When the raw sensitivity is 20dB, it is more likely that the filtered sensitivity will be 

22dB than that it will be 18dB. 

 

To explain this phenomenon, Bayes’ Law must be taken into consideration. Over the entire database, a 

sensitivity of 22dB is more common than one of 18dB. Thus, the probability that the raw sensitivity is 

22dB (written below as P(R=22)) is larger than the probability that the raw sensitivity is 18dB (written as 

P(R=18)). Therefore, writing R for the raw sensitivity and F for the filtered sensitivity: 

 

)18()22( =>= RPRP  

)1820()18()2220()22( ===>=== RgivenFPRPRgivenFPRP  

�� ′′==′=

===
>

′′==′=

===

RdRRgivenFPRRP

RgivenFPRP

RdRRgivenFPRRP

RgivenFPRP

)20()(

)1820()18(

)20()(

)2220()22(
 

)2018()2022( ==>== FgivenRPFgivenRP  

 

(note that P(F=20 given R=22) is not identical to P(F=20 given R=18) because of the skewness in the 

noise distribution, but they are similar enough for this effect not to outweigh the inequality) 

 

Similarly, over the entire database, a filtered sensitivity of 22dB is more common than one of 18dB. So 

by the same logic: 

 

)18()22( =>= FPFP  

)1820()18()2220()22( ===>=== FgivenRPFPFgivenRPFP  

)2018()2022( ==>== RgivenFPRgivenFP  

 

This is why, whatever the filtered sensitivity is, the raw sensitivity at that point is (on average) likely to be 

closer to the centre of the distribution of raw sensitivities. Therefore, despite initially appearing curious, 

the change in the sample mean of the noise estimates as the sensitivity changes is not a cause for alarm. It 

is only correct that this effect should be taken into account when modelling noisy sensitivities, hence the 

adjustment to the desired mean, caused by Equation 7.4.3, which appears in Equation 7.4.5. 
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7.5 Examples 

 

Three examples of using this new model for the noise will be given; when the actual sensitivity is 30dB 

(healthy), 20dB (damaged) and 10dB (severely damaged). The equivalent values for a standard normal 

distribution (N(0,1)) are also given for reference. Fitting these sensitivity values into Equations 7.4.1 and 

7.4.2 (Step 1) and Equation 7.4.3 (for later use in Step 6) gives the following estimates for the 

characteristics of the noise distributions (to four decimal places): 

 

Sensitivity 30dB 20dB 10dB Normal 

Mean -0.0209 0.5163 -1.2529 0 

Variance 1.4144 9.6478 65.8075 1 

Skewness 0.0529 -0.4661 -0.9851 0 

Kurtosis 5.305 5.305 5.305 3 

Table 7.1: Estimated distribution characteristics for the three example sensitivities of 30dB, 20dB and 10dB. 

 

Now, using Equations 7.4.4 (Step 2), values can be estimated for the second, third and fourth moments of 

the noise distributions (again, to four decimal places): 

 

Sensitivity 30dB 20dB 10dB Normal 

m2 1.4144 9.6478 65.8075 1 

m3 0.0890 -13.9677 -525.8878 0 

m4 10.6134 493.7930 22973.9536 3 

Table 7.2: Estimated distribution moments for the three example sensitivities. 

 

From these values, the Pearson coefficients are calculated (Step 3) according to Equations 7.3.2: 

 

Sensitivity 30dB 20dB 10dB Normal 

a 0.0149 -0.3706 -2.8356 0 

c0 0.8568 6.1165 51.4785 1 

c1 0.0149 -0.3706 -2.8356 0 

c2 0.1314 0.1220 0.0726 0 

Table 7.3: Estimated Pearson coefficients for the three example sensitivities. 

 

Clearly the main difference between these noise distributions and a standard normal distribution is the 

increase in variance which occurs when the sensitivity decreases; however there is also a noticeable 

change in the skewness and related moments and coefficients. Next, using Equation 7.3.3, we can derive 

the estimated density functions (Step 4). So the densities are: 
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Equations 7.5.1 

 

(note that the constants of integration, C[10], C[20] and C[30], will not be the same). Next, the constants 

of integration and the means of these distributions must be found; this is done by evaluating pS(x) at x=40, 

39.5, 39, … and then using the trapezium rule (in this case with step size of 0.5, although obviously other 

step sizes could be used) to calculate C[S]-1=�pS(x)/2 (so that the constant of integration will normalise 

the distribution), and µS=�xpS(x)/2. This gives: 

 

Sensitivity 30dB 20dB 10dB 

C[S]-1 4.6673 0.00551 1.088 x 10-6 

µS -3.913 x 10
-7 

0.00107 0.2861 

Table 7.4: Estimated distributional constants obtained from numerical integration for the three example sensitivities. 

 

Finally, Step 7 uses Equation 7.4.5 to give the final distribution of the simulated noisy sensitivities for 

each of the three input sensitivities. 

 

These final distributions can be compared with the respective empirical distributions, as shown 

graphically in Figure 7.5. There are two points which must be taken into consideration when carrying this 

out: 

1. As described in Section 7.4, the empirical distributions contain all estimates of the noise when 

the filtered sensitivity is between (for example) 19.75 and 20.25dB. To show accurately the 

distribution of noise, whilst still giving an appropriate indication of the scale, in the graphs 

below it is assumed that the filtered sensitivity is exactly 20dB in each case. The data for the 

empirical distribution of raw sensitivities has been adjusted accordingly. 

2. Since the filtered sensitivity is only spread over a 0.5dB range, and the raw sensitivities are 

almost always integer decibel values (the only possible exception being when a point was 

measured twice during testing and the two readings averaged), the noise (raw-filtered) cannot 

take values in the whole range. For example, if the filtered sensitivity is from the range [29.75, 

30.25) then the noise will always be in the range [z-0.25, z+0.25) where z is any integer. 

Therefore although the bars contain the ranges [0, 0.5); [0.5, 1); [1, 1.5) etc, in reality the noise 

estimates in those ranges will always be within [0, 0.25); [0.75, 1); [1, 1.25) etc. 

 

For clarity and easier interpretation, a line graph has been used in Figure 7.5 for the empirical 

distributions rather than a histogram. In each case, the red line represents the empirical distribution of 

noisy sensitivities whose filtered sensitivity is within the given range (subject to the correction mentioned 

in point 1 above); the blue line represents the modelled pdf for noisy sensitivity values at the given input 

sensitivity; and the yellow line, included for reference, represents the pdf of a normal distribution of the 

same variance as the model, with a mean equal to the input sensitivity (and thus equal to the pdf of noisy 

sensitivity values which would be obtained from using the currently-used model based on noise being 

normally distributed). 
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Figure 7.5: Comparing the pdf of the modelled distribution of noisy sensitivities (blue line) to the empirical pdf (red line), with the 

normal distribution (yellow line) for reference. The top graph shows this for an input sensitivity of 30dB; the middle graph for 

20dB; and the bottom graph for 10dB. Note that the scales on the axes differ for each graph. 
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In each of the three examples illustrated in Figure 7.5, the model appears to fit the empirical distribution 

well. Importantly, this is still the case at 10dB, where the model is based on extrapolated data (recall that 

the models for the variance and skewness are based on data at sensitivities of 16dB and above). This 

supports the decision to extrapolate the trends downwards to remove the effect of the censoring. 

 

7.6 Testing The Model 

 

From a visual inspection of the three graphs in Figure 7.5, the fit in each case appears to be better with the 

model developed in this chapter (shown by the blue line in each case) than with the alternative normally 

distributed model (shown by the yellow lines). However a more formal test of goodness-of-fit is required. 

One method is to examine the Pearson chi-squared statistics.  

 

Given an input sensitivity S, write Oi for the empirical number of points whose filtered sensitivity is S 

(when rounded to the nearest 0.5dB as before) and whose (rounded) raw sensitivity is i. Write Mi for the 

number of points expected to have a (rounded) noisy sensitivity of i according to the model developed 

here, when the input sensitivity is S; and similarly Ni for the number expected according to the alternative 

model of normally-distributed noise. Then the two test statistics can be calculated: 
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Equations 7.6.1 

where the sums are carried out over all sensitivities i for which Mi and Ni respectively are non-zero (or for 

computational purposes, where the pdf using each model gives a density greater than 0.001). A larger 

value for the test statistic indicates a worse fit to the empirical data. This can be done for every input 

sensitivity S, and so the two models compared over the full range of sensitivities, as in Figure 7.6. Note 

that to interpret the test statistics fairly, it is necessary in each case to divide the statistics by the number 

of points falling into that category (i.e. the number of points whose filtered sensitivity is in the range  

[S-0.25, S+0.25)); this corrects the statistics so that they are all the same magnitude, without affecting the 

comparison between the two models. In effect it is altering the statistics so that the empirical and 

modelled pdfs are being compared, rather than the actual number of points. 
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Figure 7.6: Comparing the test statistics (as defined in Equation 7.6.1) for the normally-distributed noise model (crosses) and the 

model derived in this chapter (circles). 

 

It is clear to see that the normally-distributed noise model does not fit the empirical data as well as the 

model derived in this chapter. The difference is even more marked at lower sensitivities, where the fact 

that the model derived in this chapter is taking into account the skewness becomes more significant. A 

simple paired t-test on the chi-squared statistics confirms that the test statistics are much lower using the 

newly-derived model (with a p-value of less than 0.001). 

 

The normal distribution model performs reasonably well at higher sensitivities; however it can be 

concluded that the new model fits the empirical distribution of noisy sensitivities better than the normal 

distribution and over a wider range of sensitivities, and so can improve upon the currently-used 

simulation models. Whether the improvement justifies changing the simulation models is less clear, 

largely because of the difficulties with sampling from the new distributions; this can be done with some 

software packages such as mathStatica (Wolfram Research Inc) (Rose & Smith 2002) which can generate 

Monte-Carlo random samples from any arbitrary distribution. The process will become more feasible 

over the coming years as the speed of computers increases and the software available improves. 
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8. Conclusions 

 

Glaucoma is a leading cause of blindness and visual disability. The advent of automated perimetry has 

offered the prospect of a more objective analysis of visual field loss in glaucoma, and currently provides 

the most reliable strategy for the clinical follow-up of the disease. However, because of the large amount 

of variability present in perimetric readings, it is often difficult to determine whether a localized 

glaucomatous defect is present in an eye, and whether such defects are progressing. Answering these two 

questions reliably is crucial for making patient management decisions. 

 

One way of determining whether a diseased eye is progressing is by Pointwise Linear Progression (PLR); 

whence each point in the perimetric visual field is considered individually and its change over time 

examined. While this method is not universally accepted as the best way to follow eyes over time, largely 

because it does not take into account the spreading of defects to neighbouring points, it is non-

controversially useful because of its objectivity and because (unlike some other methods) it considers all 

the available data from a series of tests. 

 

PLR is a relatively new method, and as such its development and refinement is ongoing. In Chapter 3, a 

‘Virtual Eye’ simulation model was used to examine the optimum frequency of testing which will 

produce reliable results, in terms of the sensitivity and specificity of distinguishing progressing eyes from 

stable eyes. The conclusion was suggested that testing eyes three times per year provided the best 

compromise between sensitivity and specificity for points progressing at 2dB/year; for other rates of 

deterioration more or less frequent test intervals may be optimum. 

 

In Chapter 4, the same Virtual Eye simulation model and theoretical modeling were both used to examine 

the use of confirmation fields; that is, whether a point which appears to be progressing should be re-tested 

at a later date before progression can reliably be diagnosed. The work showed that confirming 

progression was indeed desirable, as otherwise the specificity was unacceptable. It was also proposed that 

this process could be further improved by omitting from the confirmation testing the test result which had 

first suggested progression. 

 

These two experiments combine to give a prescription for carrying out perimetric visual field testing 

which, if followed, would improve the ability to distinguish between progressing and stable points in an 

eye. Given that a diagnosis of progression may result in treatment being applied, possibly including 

surgery, such an improvement is crucial. 

 

In Chapter 5, a data-based spatial filter was developed with the aim of reducing the amount of noise 

present in visual field tests. Successfully reducing the variability will aid both identifying localized 

glaucomatous defects, and also determining whether they are progressing or not. Testing of the filter in 

Chapters 5 and 6 showed very promising results in this regard; indeed it is realistic to hope that the filter 

presented here may be utilised clinically in the medium term. 
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Chapter 7 used the filter to produce a statistical model for the noise present when estimating the 

sensitivity of a point in the visual field by automated perimetry. This model could replace the existing 

assumption of normality present when simulating visual field data, as in the Virtual Eye, although there 

are practical problems with carrying this out and the benefits are not overwhelming. 

 

The key contributions to work in this field are: 

– Producing a simulation model which can be used as a test-bed for examining visual field testing 

without requiring large amounts of patient data, and whilst knowing the actual noise-free status 

of the eye; 

– Examining the methodology for using PLR to analyse visual field data, and suggesting 

improvements in terms of the frequency of testing and the use of confirmation fields; 

– Producing a spatial filter which, from testing carried out to date, appear to dramatically reduce 

the noise present in visual field readings, hence making glaucomatous defects easier both to 

identify and to follow over time. 

 

Potential future work includes: 

– Incorporating the model for the noise developed in Chapter 7 into the Virtual Eye simulation 

model. This would currently involve re-writing the Virtual Eye into another software package 

capable of sampling from the new distribution; in the future it is to be hoped that the process will 

become easier in other packages. 

– Examining non-linear, non-polynomial models for the deterioration of pointwise sensitivity over 

time. For example, survival analysis techniques of proportional hazards models could be 

considered, or the use of logistic regression techniques to transform sensitivity values into a 

more amenable scale. 

– Producing a model for the spread of glaucomatous defects to neighbouring points. One 

possibility could be to use the filter to spread a defect to related points in the RNFL, repeatedly 

at set time intervals. 

– Testing the filter on a different database to the one used to derive the filter. This could be done 

by for example comparing the predictive power of PLR on series of filtered and unfiltered fields. 
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Appendix 1 – Virtual Eye Program 

 
 

Below is the code for an SPlus program which uses the Virtual Eye (as described in Chapter 2) to 

simulate series of visual fields, which are then tested for progression using each of the seven criteria 

detailed in Section 4.1; this is the experiment described in Section 4.3.1. This gives results as in Section 

4.3.2; each column in the results matrix ‘Graphs’ contains the number of simulated points flagged as 

progressing using one of the seven criteria. 

 

 

#Detection of linear progression 

#model 

 

 

#Variable settings 

################## 

 

#Number of fields================= 

#7 fields (7=3yrs; 9=4yrs; 11=5yrs) 

flds<-15 

tim<-c(seq(0,(flds[1]/2)-0.5,0.5)) 

 

#Settings 

f1<-c(NA,NA,NA,NA,NA) 

#set initial deviation 

f1[1]<-0 

#set Rate of loss per year (dB) 

f1[2]<-0 

#set change ch1 values to dummy  

ch1<-c(0,0) 

#set number of simulations 

simx<-1000 

#p-value 

pvalue<-0.01 

#vector for sensitivity values 

hdat1<-rep(NA,flds[1]) 

 

#Results matrix. 

#Column 1 for Standard Criteria 

#Column 2 for Two out of Two 

#Column 3 for Three out of Three 

#Column 4 for Two out of Three 

#Column 5 for Three out of Four 

#Column 6 for Two omitting 
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#Column 7 for Three omitting 

Graphs<-matrix(0,flds[1],7) 

#####VIRTUAL EYE SIMULATION======================= 

 

for (m in 1:simx[1]) 

{ 

 ###matrix for results (prog/stable) 

 resx<-matrix(0,flds[1],5) 

 

 #####Generate data############### 

 ###set change variable 

 ch1[1]<-0 

  

 for (k in 1:flds[1]) 

 { 

 ###simulate from normal dist mean/SD 

 hdat1[k]<-round(rnorm(1,f1[1]+ch1[1],exp(3.27-(f1[1]+ch1[1]*0.081)))) 

 ###linear reduction ******** 

 ch1[1]<-ch1[1]+(f1[2]/2) 

 } 

 

 

 #####Carry out regressions necessary for each method### 

 for(upto in 3:flds[1]) 

 { 

  ###subset of values used for the fit 

  subset<-c(rep(T,upto),rep(F,flds[1]-upto)) 

  

  ###linear regression analysis########### 

  tester <- lm(hdat1 ~ tim, subset=subset) 

  #calculate standard error (5 and 6 df for n=7) 

  se1<-sqrt((sum(tester$resi * tester$resi)/(upto-2))/(var(tim) * (upto-

1)))  

  #calculate P-value (slope / serror) 

  #NB. pt=function for calculating p-values from t distn df=n-2. 

  p1<-2*(1-pt(abs(tester$coef[2]/se1[1]),(upto-2))) 

 

  ###results matrix####################### 

  resx[upto,1]<-round(tester$coef[2],2) 

  resx[upto,2]<-round(p1,2) 

 

  ###Code to detect significant changes (p=pvalue)### 

  if (resx[upto,2] <= pvalue & resx[upto,1] >= 0.9) resx[upto,3]<-1 

    

  #####Results using first 5 determination methods### 

  if (resx[upto,3]==1) Graphs[upto,1]<-Graphs[upto,1]+1 
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  if (resx[upto,3]==1 && resx[upto-1,3]==1) Graphs[upto,2]<-

Graphs[upto,2]+1 

  if (resx[upto,3]==1 && resx[upto-1,3]==1 && resx[upto-2,3]==1) 

   Graphs[upto,3]<-Graphs[upto,3]+1 

  if (resx[upto,3]==1 && (resx[upto-1,3]==1 || resx[upto-2,3]==1)) 

   Graphs[upto,4]<-Graphs[upto,4]+1 

  if (resx[upto,3]==1 && ((resx[upto-1,3]==1 && (resx[upto-2,3]==1 || 

   resx[upto-3,3]==1)) || (resx[upto-2,3]==1 && resx[upto-3,3]==1)))  

   Graphs[upto,5]<-Graphs[upto,5]+1 

 

 

 

   #####Repeat, omitting penultimate point 

  if (upto>3) 

  { 

   ###subset of values used for the fit 

   subset[upto-1]<-F 

  

   ###linear regression analysis, omitting point### 

   tester <- lm(hdat1 ~ tim, subset=subset) 

   #calculate standard error (5 and 6 df for n=7) 

   se1<-sqrt((sum(tester$resi * tester$resi)/(upto-3))/(var(tim) * 

(upto-2)))  

   #calculate P-value (slope / serror) 

   #NB. pt=function for calculating p-values from t distn df=n-2. 

   #n=number of points used = upto-1. 

   p1<-2*(1-pt(abs(tester$coef[2]/se1[1]),(upto-3))) 

 

   ###results matrix####################### 

   resx[upto,1]<-round(tester$coef[2],2) 

   resx[upto,2]<-round(p1,2) 

 

   ###Code to detect significant changes (p=pvalue)### 

   if (resx[upto,2] <= pvalue & resx[upto,1] >= 0.9) resx[upto,4]<-1 

   

   #####Results using 6th determination method### 

   if (resx[upto,4]==1 & resx[upto-1,3]==1) Graphs[upto,6]<-

Graphs[upto,6]+1  

  } 

   

 

 

  #####Repeat again, omitting penultimate two points 

  if (upto>4) 

  { 

   ###subset of values used for the fit 

   subset[upto-2]<-F 
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   ###linear regression analysis, omitting points### 

   tester <- lm(hdat1 ~ tim, subset=subset) 

   #calculate standard error (5 and 6 df for n=7) 

   se1<-sqrt((sum(tester$resi * tester$resi)/(upto-2))/(var(tim) * 

(upto-1)))  

   #calculate P-value (slope / serror) 

   #NB. pt=function for calculating p-values from t distn df=n-2. 

   p1<-2*(1-pt(abs(tester$coef[2]/se1[1]),(upto-2))) 

 

   ###results matrix####################### 

   resx[upto,1]<-round(tester$coef[2],2) 

   resx[upto,2]<-round(p1,2) 

  

   ###Code to detect significant changes (p=pvalue)### 

   if (resx[upto,2] <= pvalue & resx[upto,1] >= 0.9) resx[upto,5]<-1 

    

   #####Results using 7th determination method### 

   if (resx[upto,5]==1 && resx[upto-1,4]==1 && resx[upto-2,3]==1) 

    Graphs[upto,7]<-Graphs[upto,7]+1 

  } 

 } 

 

 

print(m) 

###close m loop 

} 

################################ 
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Appendix 2 –Progressor Code 

 

Below is the new function written into the C++ code for the Progressor program to implement the new 

filter derived in Chapter 5. Because of its size, the matrix of values containing the filter (a 76x76 matrix 

called ‘filter’) has been omitted where shown below; one row of this matrix (row 12) has been shown as 

an example. This function filters the sensitivity values for one eye; a nearly-identical function in the 

corresponding program file filters sensitivity values for the other eye. Additionally, the programming for 

the user interface was altered, so that the new filter is utilised instead of the Gaussian filter. The program 

was then compiled and successfully tested; indeed it was used to produce Figures 5.3 and 5.4. 

 

 

 

void CLeftView::OnFilterNew() 

{    

 WORD filter[76][76] ={ ###### Rows of matrix omitted ###### 

                         

{0,0,0,0,0,11,10,2,0,0,0,14,20,21,0,1,0,0,0,0,16,0,3,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0}, 

                         

   ###### Rows of matrix omitted ######}; 

 

 WORD total[76] = 

{0,0,0,0,0,100,98,100,98,0,0,101,99,100,98,101,99,0,0,99,103,100,102,100,10

2,104,100,0,0,100,88,98,105,100,102,101,101,93,0,100,0,96,103,102,100,102,1

02,94,0,100,101,99,100,100,102,102,101,0,0,101,102,98,102,100,100,0,0,100,1

00,97,99,0,0,0,0,0}; 

 

  int fx; 

 WORD divisor; 

 DWORD filtered; 

  

 int current_field, no_of_fields, pointno; 

  

 WORD matrix[76]; 

 

  

 CProwin01Doc* pDoc = GetDocument(); 

 

 CStatusBar* pStatus = (CStatusBar*) AfxGetApp()->m_pMainWnd-

>GetDescendantWindow(AFX_IDW_STATUS_BAR); 

  

 if ( m_bRightEye ) 
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  {no_of_fields = pDoc -> m_rightpointArray.GetSize() / 76; 

  if (!no_of_fields)return; 

   BeginWaitCursor(); 

   if (!(pDoc -> m_rightGaussianFiltered)) 

    {pStatus->SetPaneText(0,"Applying filter...",TRUE); 

    pStatus->UpdateWindow(); 

     

    for (int i = 0; i < pDoc -> m_rightpointArray.GetSize(); i++) 

      pDoc -> m_rightUndoArray.SetAtGrow(i, pDoc -> 

m_rightpointArray[i]); 

  

   for ( current_field = 0; current_field < no_of_fields; 

current_field++ )   

    {for ( pointno = 0; pointno < 76; pointno++) 

     matrix[pointno] = MISSING_VALUE; 

      

    for ( pointno = 0; pointno < 76; pointno++) 

     { matrix[pointno] = pDoc -> m_rightpointArray.GetAt( pointno + 

current_field * 76);} 

  

    for ( pointno = 0; pointno < 76; pointno++) 

      {if ( matrix[pointno] == MISSING_VALUE )continue; 

      divisor = 0; 

      filtered = 0; 

      for ( fx = 0; fx < 76; fx++) 

        {if (matrix[fx] != MISSING_VALUE) 

         {filtered += matrix[fx] * filter[pointno][fx]; 

         divisor += filter[pointno][fx]; 

        } 

       } 

      if (pointno == 40) {filtered = 0;} 

       else if (divisor!=0) {filtered /= 100 * divisor / 

total[pointno];} 

       else {filtered = MISSING_VALUE;}; 

      pDoc -> m_rightpointArray.SetAt( pointno + current_field * 

76, filtered); 

    } 

   } 

   pDoc -> Regress(); 

   //pDoc -> SetModifiedFlag(); 

   pDoc -> m_rightGaussianFiltered = 1; 

   pDoc -> UpdateAllViews(NULL,1L,NULL); 

    

  } 

  else 

   {pStatus->SetPaneText(0,"Removing filter...",TRUE); 

   pStatus->UpdateWindow(); 
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   for (int i = 0; i < pDoc -> m_rightpointArray.GetSize(); i++) 

     pDoc -> m_rightpointArray[i] =  pDoc -> m_rightUndoArray[i]; 

    

   pDoc -> m_rightUndoArray.RemoveAll(); 

   pDoc -> Regress(); 

   //pDoc -> SetModifiedFlag(); 

   pDoc -> m_rightGaussianFiltered = 0; 

   pDoc -> UpdateAllViews(NULL,1L,NULL); 

  } 

 } 

 else 

  {no_of_fields = pDoc -> m_leftpointArray.GetSize() / 76; 

  if (!no_of_fields)return; 

   BeginWaitCursor(); 

   if (!(pDoc -> m_leftGaussianFiltered)) 

    {pStatus->SetPaneText(0,"Applying filter...",TRUE); 

    pStatus->UpdateWindow(); 

     

    for (int i = 0; i < pDoc -> m_leftpointArray.GetSize(); i++) 

      pDoc -> m_leftUndoArray.SetAtGrow(i, pDoc -> 

m_leftpointArray[i]); 

  

   for ( current_field = 0; current_field < no_of_fields; 

current_field++ )   

    {for ( pointno = 0; pointno < 76; pointno++) 

     matrix[pointno] = MISSING_VALUE; 

      

    for ( pointno = 0; pointno < 76; pointno++) 

     { matrix[pointno] = pDoc -> m_leftpointArray.GetAt( pointno + 

current_field * 76); 

    } 

  

    for ( pointno = 0; pointno < 76; pointno++) 

      {if ( matrix[pointno] == MISSING_VALUE )continue; 

      divisor = 0; 

      filtered = 0; 

      for ( fx = 0; fx < 76; fx++) 

        {if (matrix[fx] != MISSING_VALUE) 

         {filtered += matrix[fx] * filter[pointno][fx]; 

         divisor += filter[pointno][fx]; 

        } 

       } 

      if (pointno == 40) {filtered = 0;} 

       else if (divisor!=0) {filtered /= 100 * divisor / 

total[pointno];} 

       else {filtered = MISSING_VALUE;}; 

 - 96 - 

      pDoc -> m_leftpointArray.SetAt( pointno + current_field * 

76, filtered); 

     } 

   } 

   pDoc -> Regress(); 

   //pDoc -> SetModifiedFlag(); 

   pDoc -> m_leftGaussianFiltered = 1; 

   pDoc -> UpdateAllViews(NULL,2L,NULL); 

    

  } 

  else 

   {pStatus->SetPaneText(0,"Removing filter...",TRUE); 

   pStatus->UpdateWindow(); 

     

   for (int i = 0; i < pDoc -> m_leftpointArray.GetSize(); i++) 

     pDoc -> m_leftpointArray[i] =  pDoc -> m_leftUndoArray[i]; 

    

   pDoc -> m_leftUndoArray.RemoveAll(); 

   pDoc -> Regress(); 

   //pDoc -> SetModifiedFlag(); 

   pDoc -> m_leftGaussianFiltered = 0; 

   pDoc -> UpdateAllViews(NULL,2L,NULL); 

  } 

 } 

 if (pDoc -> m_bProgIndDlgDisplayed) pDoc -> m_pProgIndDlg -> 

OnInitDialog(); 

 if ((m_bRightEye && pDoc -> m_rightGaussianFiltered) || (!m_bRightEye && 

pDoc -> m_leftGaussianFiltered)) 

  pStatus->SetPaneText(0,"Filter applied. For Help, press F1",TRUE); 

 else pStatus->SetPaneText(0,"Filter removed. For Help, press F1",TRUE); 

 pStatus->UpdateWindow(); 

 EndWaitCursor();  

     

} 
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