# END OF CHAPTER EXERCISES <br> Chapter 8 : Options Pricing 

Financial Engineering : Derivatives And Risk Management
(Keith Cuthbertson, Dirk Nitzsche)

1. Would you pay more for a call option on a stock where the underlying stock had an annual return volatility of $20 \%$ p.a. rather that one which had an annual volatility of $10 \%$ p.a. ? Briefly explain.
2. Intuitively, why is an American call or put option worth more than a similar European option?
3. How would you (delta) hedge either a long call or a long put on a stock (over a small interval of time)?
4. In the BOPM, give an intuitive interpretation of the formula for premium on a put option, on a stock, with two periods to expiration :

$$
P=\frac{1}{R^{2}}\left[q^{2} P_{u u}+2 q(1-q) P_{u d}+(1-q)^{2} P_{d d}\right]
$$

where $q=(R-D) /(U-D), R=1+r$ and $r=$ risk-free rate .
5. What is put-call parity and why is it useful?
6. The current stock price $S=100$. The stock can increase or decrease by $10 \%$ per period. The risk free rate is $5 \%$ per period. Using the BOPM show at each node of the binomial tree, the stock price and the value of a put which expires in two periods and has a strike price of $K=100$. Also, calculate the hedge ratios at each node and show that the hedged portfolio has the same value at the two nodes at $\mathrm{t}=1$.
7. Calculate the Black-Scholes price for a European call option on a stock with 6-months to maturity. Assume, $S=100, r=10 \%$ p.a. (continuously compounded), $K=100$ and $\sigma=20 \%$ p.a. What happens to the call premium if the next day the volatility increases to $\sigma=30 \%$ p.a. ? Use put-call parity to find the put premia.

