END OF CHAPTER EXERCISES

Chapter 18 : Pricing Interest Rate Derivatives

Financial Engineering : Derivatives And Risk Management

(Keith Cuthbertson, Dirk Nitzsche)

1. Why might you use Black's model to price a 1-year option on a T-bond where the underlying bond is a 15-year T-bond, but not where the underlying bond is a 1 -year Tbond?
2. Price the following swaption using Black's model. The swaption is a 4-year swap, starting in 3 years, payments are annual and the principal in the swap is $\$ 100,000$. The volatility of the swap rate is 20% p.a. It is a payer swaption with a strike (swap) rate of 7.5%. The yield curve is currently flat at 8% (continuous compounding).
3. Intuitively, how is the one-period interest rate lattice, in the no-arbitrage approach, consistent with the observed term structure of interest rates and their volatility? (Assume volatility is the same for all one-period rates in the lattice).
4. What advantages does a trinomial lattice have over a binomial lattice when used in pricing interest rate derivatives?

Data for Questions 5, 6 and 7

You are given the following data to be used in answering Q5-Q7. The interest rate lattice over 3 periods is:

		16%	
			(0.216)
		14%	
		12%	(0.36)
	(0.6)		13%
		10%	(0.432)
	8%	(0.48)	9.0
	(0.4)		(0.288)
		7%	
		(0.16)	6%
			(0.064)

The risk neutral probability of an 'up' move is $q=0.6$ and for a 'down' move is $(1-q)=0.4$. The figures in parenthesis are the probability of reaching each node, times the number of ways to reach that node. They are therefore the BOPM terms :

$$
\mathrm{q}_{k}^{n}=\binom{n}{k} q^{k}(1-q)^{n-k}
$$

Hence for $\mathrm{n}=2$, and $\mathrm{k}=1$ 'up' moves, we are at the node 'ud' (or equivalently 'du')
and

$$
\begin{array}{ll}
\text { and } & q_{1}^{n}=q_{u d}^{n}=\binom{2}{1}(0.6)^{1}(0.4)^{1}=0.48 \\
\text { similarly } & q_{2}^{n}=q_{u u}^{n}=\binom{2}{2}(0.6)^{2}(0.4)^{0}=0.36
\end{array}
$$

5. What is the price of a two-year European cap with $\mathrm{K}_{\mathrm{c}}=10 \%$?
6. How would your analysis in pricing the 2-year cap change, if the cap were an American style option?
7. What is the 'price' (i.e. the FRA rate) for a 2 -year FRA, where the actual cash payout occurs at $\mathrm{t}=3$? This is sometimes called a 'delayed settlement FRA'.
