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A B S T R A C T

This paper further develops a new way of modelling evolutionary game models with an emphasis on

ecological realism, concerned with how ecological factors determine payoffs in evolutionary games. Our

paper is focused on the impact of strategically neutral growth limiting factors and background fitness

components on game dynamics and the form of the stability conditions for the rest points constituted by

the intersections of the frequency and density nullclines. It is shown that for the density dependent case,

that at the stationary state, the turnover coefficients (numbers of newborns per single dead adult) are

equal for all strategies. In addition, the paper contains a derivation of the EESS (eco-evolutionarily stable

states) conditions, describing evolutionary stability under limited population growth. We show that

evolutionary stability depends on the local geometry (slopes) of the intersecting nullclines. The paper

contains examples showing that density dependence induces behaviour which is not compatible with

purely frequency dependent static game theoretic ESS stability conditions. We show that with the

addition of density dependence, stable states can become unstable and unstable states can be stabilised.

The stability or instability of the rest points can be explained by a mechanism of eco-evolutionary

feedback.

� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Current developments in evolutionary biology emphasize the
role of relationships between selection mechanisms and ecological
factors (Schoener, 2011; Morris, 2011; Pelletier et al., 2009). This
perspective is very interesting from the point of view of formal
modelling, which can contribute to this research program not only
by quantitative predictions, but also by rigorous conceptualization
of the analyzed mechanisms. Thus, this direction should also be
considered in the development of modelling approaches such as
evolutionary game theory. Recent developments in this field,
focused on the realistic modelling of the turnover of individuals
(i.e. the dynamics of the replacement of the dying adult individuals
by newly introduced juveniles), can be useful in pursuing this goal.
In this study we will analyze the interplay between selection
dynamics of strategy frequencies and the ecological dynamics
shaping the population size. In addition we will investigate the
relationships between game theoretic equilibrium conditions and
nullclines of the selection and ecological dynamics.
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In the classical approach to evolutionary game theory (Maynard
Smith, 1982; Hofbauer and Sigmund, 1988, 1998), a well-mixed
population with clonal reproduction and no mutation evolves under
natural selection. The strategies are heritable phenotypic traits or
different behavioral patterns and payoff functions describing their
fitness. The merits and limitations of such an approach are
discussed in Maynard Smith (1982) (for interesting general work
based upon similar principles but with an infinite strategy set, see
for example Gorban, 2007; Meszena et al., 2006; Oechssler and
Riedel, 2001). An abstract ‘‘fitness’’ is expressed as an infinitesimal
growth rate r and described in undefined ‘‘units’’, which are the
currency in which evolutionary ‘‘costs’’ and ‘‘benefits’’ are counted.
The basic model of the game dynamics of k competing strategies are
replicator dynamics, defined on the k � 1 dimensional simplex.
Table 1 contains the list of important symbols. Then qi = ni/

P
jnj (ni is

the number of carriers of the ith strategy) is the frequency of the ith
strategy and ri(q) is its payoff function:

q̇i ¼ qi riðqÞ�
X

j

rjðqÞ

0
@

1
A for i ¼ 1; . . .; k�1: (1)

In the classical approach to evolutionary game modelling there is
no explicit analysis of the impact of limitations of the population
ary stability under limited population growth: Eco-evolutionary
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Table 1
Important symbols.

n Population size

qi Frequency of the ith strategy

K Carrying capacity (maximal environmental load)

Wi(q) Fertility payoff of the ith strategy

si(q) Prereproductive survival payoff function of the

ith strategy

Vi =
P

jqjsi(ej)Wi(ej) Mortality–fertility trade-off function (example of

fertility payoff)

t1 Rate of occurrence (intensity) of the game event

t2 Rate of occurrence of the background event

WB Average background event fertility

mB = 1 � bB Average background event mortality

u = t2/t1 Average number of background events between

two focal events

F = uWB Rate of the average background fertility

C = umB Rate of background mortality

g(n, q) Function describing the right hand side of the

frequency equation

f(n, q) Function describing the right hand side of the

population size equation

V1(q) General fertility payoff of the first strategy

related to the focal game

s1(q) General survival payoff of the first strategy

related to the focal game

B1(q) = V1 +F General fertility factor of all events of the first

strategy

M1(q) = 1 � s1 + C General mortality factor of all events of the first

strategy

BðqÞ ¼ q1B1 þ ð1�q1ÞB2 Average fertility factor

MðqÞ ¼ q1M1 þ ð1�q1ÞM2 Average mortality factor

ruðqÞ ¼ BðqÞ�MðqÞ Rate of the unsuppressed growth

S Hawk-Dove example survival payoff matrix

F = WP Hawk-Dove example fertility payoff matrix

d = 1 � s Probability of death during a contest in a

Hawk-Dove game

q̃ðnÞ Frequency nullcline

ñðqÞ Density nullcline
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size. In more complex approaches (Cressman, 1992; Cressman
et al., 2001; Cressman and Garay, 2003a,b; Argasinski, 2006)
density dependence has been taken into consideration. The specific
case of selectively neutral density dependence, which means that
the growth suppression acts on all strategies in the same way, was
analyzed in Argasinski and Kozłowski (2008). It was shown there
that the classical approach (1) can be problematic, when growth
limitation, related to the logistic equation, is implemented. The
dynamics stop when the carrying capacity is reached. This is
caused by the fact that both birth and death rates are suppressed,
leading to a population of immortal individuals. This problem can
be solved by using the assumption that only the birth rate is
suppressed by juvenile recruitment survival, which leads to a
generalization of the replicator dynamics completed by the
equation for the population size (Argasinski and Broom, 2012).
In this approach payoffs are described explicitly as demographic
vital rates (mortality and fertility), not as an abstract fitness. Thus
assume that Wi(q) is the fertility function, suppressed by the
density dependent juvenile recruitment function (1 � n/K) (where
n =

P
jnj and K is the carrying capacity describing the maximal

population load, Hui, 2006), and di(q) = 1 � si(q) is the adult
mortality. This leads to the following:

q̇i ¼ qi WiðqÞ�
X

j

WjðqÞ

0
@

1
A 1� n

K

� �
� diðqÞ�

X
j

djðqÞ

0
@

1
A

2
4

3
5

for i ¼ 1; . . .; k�1;

(2)

ṅ ¼ n 1� n

K

� �X
j

WjðqÞ�
X

j

djðqÞ

0
@

1
A; (3)
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where the bracketed term from (1) splits into two brackets
describing differences in fertilities and mortalities. The replicator
system (2) is completed by Eq. (3) describing the changes of the
population size caused by selection of the strategies. A similar
method was applied in a number of papers (Hauert et al., 2006,
2008; Argasinski and Kozłowski, 2008; Zhang and Hui, 2011;
Argasinski and Broom, 2012; Huang et al., 2015; Gokhale and
Hauert, 2016). In this approach population size does not converge
to an arbitrary carrying capacity as in many models (for example
Cressman and Křivan, 2010; Křivan, 2014) but to a dynamic
equilibrium between mortality and fertility (this is often called an
emergent carrying capacity, Bowers et al., 2003; Sieber et al.,
2014). The general selective properties of this approach were
presented in Argasinski and Broom (2013), where the simplified
version of (2) and (3) with payoffs as constants was analyzed. It
was shown there that when the population reaches the close
neighbourhood of the population size equilibrium (nullcline of the
equations for n), then newborns form the pool of candidates from
which individuals replacing the dead adults in their nest sites will
be drawn. This mechanism was termed the ‘‘nest site lottery’’. This
process promotes the strategies that maximize the number of
newborns replacing each single dying adult (termed the ‘‘turnover
coefficient’’), however among strategies maximizing this quantity
it is profitable to maximize the mortality (the number of dead
adults) and thus also the number of newborns replacing them.
Therefore, we have a two stage fitness measure.

The previous paper, Argasinski and Broom (2012), was focused
on the description of the above approach using demographic
parameters, mortality as the probability of death (or equivalently
survival) and fertility as per capita number of offspring. This
allows for a description of the abstract and unclear parameters
such as ‘‘fitness’’ or ‘‘growth rate’’ by clear and measurable
parameters. In addition, the new approach is focused on
the detailed description of the structure of cause-effect chains
underlying the particular interactions. For example, the modelled
interaction described by the game theoretic structure can be
composed of several mortality and fertility stages following each
other. This aspect can be illustrated by the simplest case of a
single pre-reproductive mortality stage preceding the fertility
stage. Then only survivors of the interaction can reproduce,
which should be incorporated into the payoff functions. Thus
the fertility payoffs Wi(q) will be replaced by the mortality–
fertility trade-off function Vi(q) =

P
jqjsi(ej)Wi(ej) (where ej is

the vector describing the jth pure strategy) describing the
reproductive success of the survivors. The new conceptual
framework was applied to the classical Hawk-Dove game to
illustrate the advantages over the classical approach.

The general framework was clarified in a second paper
(Argasinski and Broom, submitted for publication) focused on
the derivation of the game theoretic model from the general
population dynamics model also describing factors other than the
modelled type of interaction. For example individuals playing the
Hawk-Dove game during the mating conflict (the modelled focal
interaction) can also be killed by predators (background interac-
tions without relation to the strategies in the focal game). This
leads to a model of a population of individuals playing different
types of games describing different interactions occurring at
different rates (see Appendix 1 for more details). Thus, by analogy
with chemical kinetics (Upadhyay, 2006), the game theoretic
structure is equivalent to stoichiometric coefficients describing the
outcomes of a single reaction between particles (in our case,
interactions between individuals) and the rate of occurrence is
equivalent to the reaction rate. The new framework focuses on
births and deaths (described by separate payoff functions) as the
aggregated outcomes of the physical interactions between
individuals and the elements of the environment. This is why it
ary stability under limited population growth: Eco-evolutionary
.doi.org/10.1016/j.ecocom.2017.04.002
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was described as the ‘‘event-based approach’’ in the previous
papers. This approach is focused on the development of the
mechanistic interpretations of the theoretical notions which was
emphasized by Geritz and Kisdi (2012). However, in game
theoretic analysis we are interested in one particular type of
interaction referred to as a focal game (or a few chosen types
affected by an analyzed phenotypic trait in a more general case)
while the aggregated outcomes of the other games will constitute
the background fitness. In effect (3) should be completed by the
background fertility F(1 � n/K) and the background mortality C
(see Appendix 1 for details). In addition, the ‘‘nest site lottery’’
operates not only on the demographic outcomes of the modelled
game, but on outcomes of all interactions, which means that the
aggregated fertility outcomes of events constituting the back-
ground fitness (other games played by individuals) are also the
subject of this mechanism.

The values of the background payoffs can seriously affect the
game dynamics as shown in Argasinski and Broom (submitted for
publication). In Argasinski and Broom (2012) it was also shown
that under the influence of neutral density dependence, the
behaviour of the system is different from that in the model
with unlimited growth. The main difference is that in the model
with unlimited growth there are only equations describing the
evolution of strategy frequencies, while in the density dependent
model there is an additional equation describing the size of
the population and fertilities are affected by juvenile mortality
described by logistic suppression. In effect, in the density
dependent model, the stable frequency becomes a function of n

describing the nullcline constituting the manifold of game
theoretic Nash equilibria (population states with equal growth
rates for all strategies). In addition, the equation for the
population size leads to another nullcline being a function of
the population composition and is affected by background
payoffs. This nullcline has a very important biological meaning
since it describes the ecological equilibria, conditional on the
current strategic composition. In the game theoretic literature it
is often referred as the stationary density surface (Cressman
et al., 2001; Cressman and Garay, 2003a,b). Thus, the global
stationary states are intersections of these nullclines, which
can be stable or unstable.

The density and frequency nullclines describing the ecological
and game theoretic equilibria are important for the mechanistic
interpretation of the phenomenon in terms of feedbacks. New
phenomena can emerge, for example the existence of a stable pure
Hawk solution in addition to the stable mixed equilibrium
(Argasinski and Broom, 2012). The additional stable rest point is
caused by neutral density dependence. This paper contains a
general analysis of system stability and a mechanistic explanation
of the interplay between the convergence to the selection
equilibrium describing the stable population composition (de-
scribed by the frequency nullcline) and the convergence to the
ecological equilibrium describing the stable population size
(described by the density nullcline). The study shows when the
stability is fully determined by the behaviour along the nullclines
and the problem can be reduced to the static game theoretic
analysis limited to simple algebraic inequalities, and when the full
dynamic model involving differential equations should be
applied.

2. Results

2.1. Selectively neutral density dependence and the concept of eco-

evolutionary feedback

Now let us focus on the impact of selectively neutral density
dependence acting as juvenile mortality. The Hawk-Dove example
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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presented in Argasinski and Broom (2012) is a case where there is a
single equation for strategy frequencies, and the space of the
population composition is the unit interval. We are interested in
the rest points of the system and their stability. Since we have a
system of two equations, one on q and one on n, we can expect two
nullclines obtained by calculation of the zero points of the
equations.

2.2. General form of the analyzed models

Argasinski and Broom (2012) contains the derivation of both
attracting nullclines for frequency, and density equations (de-
scribed below) for the Hawk-Dove example, and the calculation of
their intersections. However, a rigorous stability analysis was
limited to the case when the system is in ecological equilibrium
(Theorem 2 of that paper). In this paper we carry out the analysis of
the general stability conditions free from this restriction, find some
surprising results, and demonstrate that the previous analysis is
insufficient to fully explain the behaviour of the system in some
cases.

In this section we start from the general dynamical system for
two strategies from Argasinski and Broom (2012). Assume that
q = (q1, 1 � q1) is the vector of frequencies describing the strategic
composition of the population. Then Vi(q) and si(q) = 1 � di(q)
describe the fertility and adult survival payoffs related to the focal
interactions, being the subject of game theoretical analysis. The
logistic coefficient (1 � (n/K)) describes the density dependent
juvenile survival and background fertility F and mortality C
describe the impact of other factors (such as other games involving
other strategies or phenotypic traits). This leads to the following
general set of equations:

q̇1 ¼ q1 ðV1ðqÞ�
X

j

qjVjðqÞÞ 1� n

K

� �
þ ðs1ðqÞ�

X
j

qjsjðqÞÞ

0
@

1
A; (4)

ṅ ¼ n F þ
X

i

qiViðqÞ
  !

1� n

K

� �
þ
X

i

qisiðqÞ�1�C

  !
; (5)

see Appendix 1 for a detailed derivation and description of
possible specific modelling approaches that can be considered
with the above general framework. Then q̃ðnÞ is the nullcline of
Eq. (4), ñðqÞ is the nullcline of Eq. (5) and their intersection is
the point ðn̂; q̂Þ. To analyse the underlying dynamics, the above
system can be presented in the most general form without the
distinction between focal interactions, described by game payoffs,
and the background fertility and mortality rates. Then the system
(4) and (5) can be denoted in terms of general birth and death rates,
Bi(q) = Vi(q) + F � 0 and Mi(q) = i � si(q) + C � 0 (since fecundities
and mortalities are always non-negative) describing the demo-
graphic outcomes of all interactions (including focal game payoffs
and background payoffs F and C respectively). Then BðqÞ ¼
q1B1ðqÞ þ ð1�q1ÞB2ðqÞ � 0 and MðqÞ ¼ q1M1ðqÞ þ ð1�q1ÞM2ðqÞ � 0
are the mean general fecundity and mortality, respectively. This
leads to the system:

q̇1 ¼ gðn; qÞ ¼ q1 B1ðqÞ�BðqÞ
� �

1� n

K

� �
� M1ðqÞ�MðqÞ
� �� �

; (6)

ṅ ¼ f ðn; qÞ ¼ n BðqÞ 1� n

K

� �
�MðqÞ

� �
; (7)

where Eq. (6) is written focusing on the first strategy; an analogous
equation would denote the frequency of the second strategy.
We will also use the auxiliary terms (as we see in the associated
appendices), ruðqÞ ¼ BðqÞ�MðqÞ which is the rate of unsuppressed
growth and L ¼ BðqÞ=MðqÞ which is the turnover coefficient.
ary stability under limited population growth: Eco-evolutionary
.doi.org/10.1016/j.ecocom.2017.04.002
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2.3. Properties of the stationary points related to the turnover of

individuals

In many models q̃ðnÞ and ñðqÞ defined as the respective
nullclines will exist (in some cases they will be attracting
nullclines). Expressing q1 as a function of n (according to the
implicit function theorem), the nullcline q̃ðnÞ is defined by the
value of q1 for which g(n, q) = 0 (the right-hand side of Eq. (6) is
0 for any given n). It is possible that there is more than one such
solution, and so more than one such nullcline. Similarly, expressing
n as a function of q for f(n, q) = 0, the nullcline ñðqÞ is defined by
the value of n for which the right-hand side of Eq. (7) is 0 for any
given q. The nullclines, representing the equilibria of interplaying
processes (strategic selection and convergence to the ecological
equilibrium) will play important roles in the derivation of the static
game theoretic conditions (the inequalities for payoffs of the
strategies that should be satisfied for evolutionary stability). Those
conditions will extend the classical ESS concept to the ecological
concept. In addition, on the nullcline representing the equilibria of
one process, the dynamics is determined by the opposite process,
for example on the density nullcline the dynamics is driven by
game dynamics only. The question arises, when can the behaviour
of the complicated dynamical system be described by a set of
algebraic inequalities?

Now let us analyze the properties of the stationary points of
systems of this type. In classical evolutionary game theory, at the
stationary points (Nash equilibria) there is equality of fitness
among all strategies present in the population; we note that this
property becomes trivial after the addition of density dependence
since all growth rates are equal to zero at the stationary states.
The new framework presented here is defined with respect to
fertility and mortality separately. Thus the question arises: is there
a characterization of the stationary points in the new theory
equivalent to the equality of fitness in classical theory? Here the
notion of the turnover coefficient Bi(q)/Mi(q), describing the
number of newborn candidates replacing a single dead individual,
should be recalled. The name ‘‘turnover coefficient’’ was intro-
duced, and the properties of this term were analyzed, in Argasinski
and Broom (2013). Similar notions can be found in older papers, for
example in Rosenzweig and MacArthur (1963) and Cheng (1981),
and an analogous notion describing the ratio of energy allocated to
reproduction to mortality can be found in papers related to life
history theory (Taylor and Williams, 1984; Kozłowski, 1992;
Kozłowski, 1993; Kozłowski, 1996; Werner and Anholt, 1993;
Perrin and Sibly, 1993; for an overview see Kozłowski, 2006). The
turnover coefficient can be useful for the characterization of the
stationary points of the dynamics even in the general case of k

strategies (not only two as in the other results in this paper). This is
summarized by Theorem 1.

Theorem 1. Any intersection of the nullclines is an equilibrium point,

and at such an intersection:

(a) The turnover coefficients of all strategies are equal:

BiðqÞ
MiðqÞ

¼
BjðqÞ
MjðqÞ

¼ BðqÞ
MðqÞ

: (8)

(b) The focal game-specific demographic payoffs Vi(q) and si(q) satisfy

the following condition

ViðqÞ
MðqÞ
BðqÞ

� 1�siðqÞð Þ ¼ VjðqÞ
MðqÞ
BðqÞ

� 1�sjðqÞ
� �

: (9)

For a proof see Appendix 2.
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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Condition (b) can be interpreted as equality of the suppressed
Malthusian growth rates related to the focal game (the reciprocal
of the population average turnover coefficient MðqÞ=BðqÞ ¼
ð1�sðqÞ þ CÞ=ðVðqÞ þ FÞ is the density dependent juvenile re-
cruitment survival probability). Note that this property should be
satisfied in general for any number of strategies.

Corollary 1. If the focal game-specific turnover coefficients satisfy

ViðqÞ
ð1�siðqÞÞ

¼
VjðqÞ
ð1�sjðqÞÞ

¼ BðqÞ
MðqÞ

; (10)

then the relationship from point (b) is satisfied (but not necessarily

vice versa).

Thus the condition of equality of the turnover coefficients can
be extended on the focal game payoff functions, but it is not
general. We can imagine stationary points where point (b) from
Theorem 1 is satisfied but there is no equality of the focal game
turnover coefficients. A question arises about the stability of the
stationary points where all strategies have equal turnover
coefficient. For the general case this can be very complex, thus
we start from the basic models and focus on the stability of the
stationary states for two competing strategies. Consider the phase
space q � n, consisting of all possible values of q and n. On the
nullclines q̃ðnÞ and ñðqÞ the right-hand side of the Eqs. (6) and (7)
respectively equals zero, and these nullclines divide the phase
space into regions of growth and decline for q1 and n. When the
right-hand side of Eq. (6) is negative we have that q1 > q̃ðnÞ is the
region of decline for q1.

We note that in the method of static game theoretic analysis
presented in Argasinski and Broom (2012), the attractor popula-
tion size ñðqÞ was substituted into the right hand side of
Eq. (6). Substitution of ñðqÞ into q̃ðnÞ leads to the inequality
q1 < ð > Þq̃ðñÞ describing the regions of growth (decline) of q1 lying
on the density nullcline ñðqÞ. In Argasinski and Broom (2012) the
inequality q1�q̃ðñÞ has the form of a quadratic equation (see
Theorem 2 and Appendix 5). Zeros of this equation are intersec-
tions of the density and frequency attracting nullclines. Thus under
the assumption of ecological equilibrium, this method shows
which intersection is stable and unstable. This is a rigorous analysis
but it is strictly limited to the attracting density nullcline.
The question arises, when can this reasoning be extended to the
neighbourhood of the attracting density nullcline? There are
relationships between the density and frequency nullclines, but
these cannot necessarily be extrapolated to the general neighbour-
hood of their intersections. This is summarized by technical
Lemma 1, where we assume the standard notation for partial
derivatives gq = @g/@q1, gn = @g/@n, fq = @f/@q1 and fn = @f/@n of the
right hand sides of Eqs. (6) and (7).

Lemma 1. Assume that the attracting density nullcline and frequency

nullcline exist and they intersect. Then:

(a) if gqðn; q̃ðnÞÞ < 0 (the frequency nullcline is an attractor of the

frequency dynamics) then if the intersection is stable (unstable) on

the density nullcline, it is stable (unstable) on the frequency

nullcline.

(b) if gqðn; q̃ðnÞÞ > 0 (the frequency nullcline is a repeller of the

frequency dynamics) then if the intersection is stable (unstable) on

the density nullcline, it is unstable (stable) on the frequency

nullcline.

For a proof see Appendix 3.
Thus in the case when the frequency nullcline is the attractor of

the frequency dynamics, which implies that in the density
independent case it will be a stable rest point, stability on the
ary stability under limited population growth: Eco-evolutionary
.doi.org/10.1016/j.ecocom.2017.04.002
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attracting density nullcline can be extrapolated to the attracting
frequency nullcline. This property can be useful for the derivation
of the static conditions for Eco-Evolutionary stability. Part (b) of
Lemma 1 shows that the general situation is more complicated. It
shows that in the case of an unstable frequency nullcline the
selection process and the ecological process will always act
antagonistically. If one process will lead to stabilization of the rest
point the second process will act towards destabilization. Thus we
need some additional criteria describing this antagonistic rela-
tionship. The potential complexity of behaviour will be shown by
numerical examples in the next section.

2.4. Numerical examples and their analysis

This section contains numerical simulations of the updated
Hawk-Dove game (52) and (53) (see Appendix 4 for details) to
show the dynamics induced by the eco-evolutionary feedback
mechanism. For simplicity we set the background fertility F to be
equal to zero. In Theorem 2 in Argasinski and Broom (2012)
the local stability of intersections on the stable density nullcline for
the Hawk-Dove game was analyzed. However the trajectories of
Fig. 1. The dynamics of a Hawk-Dove population. Initial conditions (qh(0) = 0.02, n(0) = 2

d = 0.5, C = 0.01. The trajectories converge to a surface lying in the very close neighbo

equilibrium q̂ ¼ 0:0202. The Hawk invasion barrier is q ¼ 0:9897. Thus in a stable mixed e

a population if their number exceeds 100 per single Dove. The general flow is indicate

nullclines will show the direction, along the respective nullcline, towards the stable in

Fig. 2. The dynamics of a Hawk-Dove population. Initial conditions (qh(0) = 0.02, n(0) = 1

d = 0.8, C = 0.06. At lower densities convergence to the attracting density nullcline is 

converge to the attracting surface placed between the density and frequency nullcl

q ¼ 0:9837. The flow indicated by the arrows, as in the previous figure, supports the p

Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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the population away from this nullcline prior to convergence are
also interesting and will have ecological interpretations. In
Argasinski and Broom (2012) numerical simulations showed the
interplay between selection dynamics and the dynamics of the
population size. It was shown that ecological dynamics can
seriously affect the rules of the game while frequency dynamics
determine the population size. This was mechanistically explained
in that paper by the impact of density dependent juvenile
mortality. In this section we will focus on the relationship between
the trajectories, population size and the geometry of the attracting
nullclines q̃ðnÞ and ñðqÞ, to reveal new details of this process which
were not shown in Argasinski and Broom (2012).

In Argasinski and Broom (2012) results of the numerical
simulations emphasized the role of the intersections of both
nullclines. In this paper we want to show the trajectories prior to
convergence. To emphasize the role of both nullclines, in Figs. 1–4,
model parameters are chosen to set both intersections at values of
frequencies qh close to 0 and 1. This allows us to maximize the area
falling between the nullclines which are very close to each other in
the cases when intersections are relatively close (see for example
Fig. 4). Some of the numerical simulations support the intuition
50), (qh(0) = 0.3, n(0) = 200) and (qh(0) = 0.7, n(0) = 300). Model parameters: W = 7,

urhood of the attracting density nullcline and follows it converging to the mixed

quilibrium there is approximately one Hawk per 50 Doves and Hawks can take over

d by the arrows. Note that the orthogonal projection of the arrows lying on both

tersection. This illustrates point (a) from Lemma 1.

47), (qh(0) = 0.3, n(0) = 147) and (qh(0) = 0.6, n(0) = 147). Model parameters: W = 7,

not strong. The frequency attracting nullcline is passed by the trajectories which

ines. The mixed equilibrium is q̂ ¼ 0:0762, while the Hawk invasion barrier is

redictions from point (a) of Lemma 1.
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Fig. 4. The dynamics of a Hawk-Dove population. Initial conditions (qh(0) = 0.2, n(0) = 20), (qh(0) = 0.87, n(0) = 2000) and (qh(0) = 0.9, n(0) = 450). Model parameters: W = 3,

d = 0.9, C = 0.4. In this case the attracting surface lies in the very close neighbourhood of the attracting frequency nullcline and follows it almost to the mixed equilibrium

q̂ ¼ 0:4865. The Hawk invasion barrier is q ¼ 0:9134. The flow indicated by the arrows, as in the previous figures, supports the predictions from point (a) of Lemma 1.

Fig. 3. The dynamics of a Hawk-Dove population. Initial conditions (qh(0) = 0.02, n(0) = 147), (qh(0) = 0.3, n(0) = 147) and (qh(0) = 0.89, n(0) = 147). Model parameters: W = 0.8,

d = 0.5, C = 0.01. In this case, the attracting surface lies close to the frequency nullcline at low densities but becomes closer to the density nullcline with an increase of the

population size. At the beginning the trajectories pass the attracting density nullcline and converge to the stable surface in the neighbourhood of the attracting frequency

nullcline, but then the trajectory leaves it slowly converging to the density nullcline. The mixed equilibrium is q̂ ¼ 0:0202, while the Hawk invasion barrier is q ¼ 0:9897: The

flow indicated by the arrows, as in the previous figures, supports the predictions from point (a) of Lemma 1.
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that the dynamics converge to the close neighbourhood of the
attracting density nullcline and then trace the equilibrium size
value (Fig. 1). In this case the assumption from Argasinski and
Broom (2012) of the population taking the stable size for a given
frequency is justified.

However, this happens when both nullclines are placed at
relatively high densities. At lower densities the trajectory does not
reach a strict neighbourhood of the attracting density nullcline
(Fig. 2), but converges to a surface lying between the frequency
and density nullclines. At very low densities the trajectories
converge to the attracting nullcline which is closer to the
frequency attracting nullcline (Fig. 3). We note that this effect
is suppressed by population growth. In some cases the attracting
nullcline is located in the close neighbourhood of the frequency
attracting nullcline and traces it nearly to the equilibrium (Fig. 4).
Thus, the assumption that frequency selection occurs on the
attracting density nullcline can sometimes be seriously wrong. In
the general case the geometry of both nullclines plays an
important role in the dynamics and what happens in the region
limited by those surfaces is crucial. At higher densities there is a
stronger convergence towards the attracting density nullcline
while at lower densities there is a stronger attraction towards the
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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frequency attracting nullcline. Therefore, the ecological equilib-
rium assumption is a simplification of the full problem. In
addition, on all figures we can observe the clearly visible
convergence of the trajectories to the unique invariant manifold.
However, the behaviour on these manifolds seems to be
compatible with the projection of the vector field on the nullcline
ñðqÞ (and also by Lemma 1 on the nullcline q̃ðnÞ). This suggests that
the stability of the intersection can be described by a simple set of
algebraic equations, which will constitute the Eco-Evolutionary
static analysis.

Note that in the above examples the attracting frequency
nullcline represents the set of game theoretic Nash equilibria,
conditional on the actual ecological conditions represented by
juvenile mortality, determined by population size. However, we
have two types of intersection representing the stationary points.
One is stable, thus it is compatible with the underlying purely
game theoretic notions, while the second is unstable. This means
that a point that is a stable equilibrium in the density independent
case can be destabilized by ecological factors. However, we can
imagine the opposite situation, where the intersection of the
repelling frequency nullcline (representing the set of invasion
barriers conditional on the actual population size) can be stabilized
ary stability under limited population growth: Eco-evolutionary
.doi.org/10.1016/j.ecocom.2017.04.002
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by the impact of density dependence. This is illustrated by the
following phenomenological example:

Example 1. The stabilization of a stationary point by density
dependent pressure in case of the repelling frequency nullcline.

Assume that there are two strategies, q is the frequency of the
first strategy (let us skip the obvious subscript 1 for simplicity) and
the functions

B1ðqÞ ¼ 2

3
q2 þ 2

3
q

� �
and M1ðqÞ ¼ 7

9
� q

3

� �

are the fertility and mortality of the first strategy, while

B2ðqÞ ¼ 2

3
q2 and M2ðqÞ ¼ 4

9
� q

3

� �

are those of the second. This leads to the following replicator
equation (see Appendix 5 for detailed derivation):

q̇ ¼ q

3
ð1�qÞ 2q�1ð Þð Þ; (11)

where q = 1/2 is the unstable rest point (invasion barrier). However
when we extend this model to the density dependent case, the
situation is different. We obtain:

q̇ ¼ q

3
ð1�qÞð2qð1�n=KÞ�1Þ; (12)

ṅ ¼ 4

3
n q2ð1�n=KÞ�1

3

� �
: (13)

Calculation of the frequency and density nullclines gives:

q̃ ¼ 1

2ð1�n=KÞ and ñ ¼ 1� 1

3q2

� �
K:

Thus on the density nullcline juvenile mortality is
1�ñ=K ¼ 1=3q2, leading to the stationary state q̂ ¼ 2=3 and the
respective population size n̂ ¼ K=4 (juvenile mortality is
1�n̂=K ¼ 3=4). This example clearly shows that the frequency
nullcline need not be attracting for the stability of the respective
intersection with the attracting density nullcline to hold (see Fig. 5).

In this case there is no convergence of the trajectories to the
unique manifold. Fig. 5 shows that in the neighbourhood of the
Fig. 5. Trajectories of Example 1, with an repelling frequency nullcline (evolutionarily un

two basins of attraction: one is the intersection of the nullclines (the trajectory converges

border between the basins of attraction was calculated numerically. Note that in this c

nullcline shows a direction towards the stable intersection while the projection on the r

from Lemma 1.
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nullclines there is a spiral attraction to the intersection. However,
below the nullclines there is a huge region of extinction and
convergence to the frequency 0. This pattern is caused by the fact
that at low densities pressure from the frequency dynamics is
stronger than that from the density dynamics. Thus at low
population sizes, the frequency nullcline acts as the invasion
barrier as in the case of unlimited growth. However, this is caused
by the decrease of the population size induced by the density
dynamics. This leads to an emergence of the additional boundary
between the basins of attraction. This boundary cannot be justified
by any existing condition for evolutionary stability. Thus the
dynamics can produce patterns that cannot be classified by known
static ESS notions, and in this case the full analysis of the dynamic
model should be carried out.

2.5. General stability conditions

The examples presented above suggest the necessity of a
general stability analysis. This will enable extrapolation of the
stability analysis of the Hawk-Dove example from Argasinski and
Broom (2012) to the general neighbourhood of the intersection,
not limited to the attracting density nullcline. Coordinates of the
intersection are ðn̂; q̂Þ. Stability along the attracting density
nullcline is described by the directional derivative (a total
derivative expressed in terms of our four partial derivatives)

dgðñðqÞ; qÞ
dq1

¼ gqðn̂; q̂Þ�gnðn̂; q̂Þ
f qðn̂; q̂Þ
f nðn̂; q̂Þ

: (14)

Below, by application of standard linearization methods we will
derive the general stability conditions for intersections of the
nullclines:

Theorem 2. If for the system described by Eqs. (6) and (7), nullclines

q̃ðnÞ and ñðqÞ exist, then:

The intersection is stable if the following EESS (Eco-Evolutionarily

Stable State) conditions are satisfied:

ðaÞ gqðn̂; q̂Þ < jf nðn̂; q̂Þj; (15)

ðbÞ dgðñðqÞ; qÞ
dq1

< 0: (16)
stable equilibrium for purely frequency dependent approach). In this case there are

 spirally) and the second is a region of extinction (convergence to n = 0 and q = 0). The

ase, the orthogonal projection of the flow (indicated by the arrows) on the density

epelling frequency nullcline shows the opposite direction This illustrates point (b)

ary stability under limited population growth: Eco-evolutionary
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For a proof see Appendix 6.
A question arises about the interpretation of the above stability

conditions. Condition (a) means that attraction to the density
nullcline is stronger than repellence from the frequency nullcline.
This means that in the antagonistic relationship between selection
and the ecological process indicated by point (b) of Lemma 1, the
stabilizing ecological process should be stronger. If the nullcline
q̃ðnÞ is attracting (which means that it consists of stable Nash
equilibria) then condition (a) is satisfied automatically. Condition
(b) is equivalent to stability along the density nullcline ñðqÞ. Thus
for the attracting nullcline q̃ðnÞ the stability of the global
equilibrium is equivalent to the behaviour along the nullcline
ñðqÞ. This justifies the static ESS analysis based on the substitution
of the ecological equilibrium ñðqÞ to the dynamics and the analysis
of signs of the right hand sides of the q equations as in Theorem 2 in
Argasinski and Broom (2012). Note that, according to Lemma 1,
condition (b) implies instability on the repelling nullcline q̃ðnÞ,
representing the game theoretic invasion barriers. However, in this
case, if the attraction towards nullcline ñðqÞ is stronger than the
repellence from nullcline q̃ðnÞ, then the intersection can be stable
despite this. Note that for the intersection of the repelling
frequency nullcline and density nullcline from Example 1, both
conditions are satisfied (see Appendix 7 for the detailed calcula-
tions). According to Lemma 1, satisfying condition (b) implies
attraction towards the intersection along the attracting frequency
nullcline q̃ðnÞ and repellence if the frequency nullcline q̃ðnÞ is
repelling. Example 1 supports the results from Lemma 1. The
projection of the flow orthogonal to the density nullcline (see
arrows on Fig. 6) shows that it will be stable, while on the
frequency nullcline it will be unstable. However the general spiral
Fig. 6. Presentation of the eco-evolutionary feedback mechanism. Positive or negative feed

and frequency attractors ñðq̂ þ DqÞ and q̃ðñðq̂ þ DqÞÞ towards the stationary point (inters

system, and this figure is an illustration only. Other figures show that at relatively high

attraction towards the attracting frequency nullcline.
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dynamics cannot be reduced to convergence along one of the
nullclines.

Note that the flow is horizontal on the frequency nullcline and
vertical on the density nullcline. Thus the orthogonal projection of
the flow is determined by the slope of the respective nullcline. We
shall assume that in the neighbourhood of the intersection
functions g and f are locally invertible, so that there is a 1-1
correspondence between n and q1, at least in the vicinity of a root.
This will be true for essentially any biological system, as situations
where this is not so, corresponding to nullclines slopes with zero or
infinite gradient, are examples of so-called non-generic games, see
e.g. Broom and Rychtar, 2013). This means that both stability
conditions can be interpreted in terms of slopes of the nullclines.
The slope of the frequency nullcline is

Uq ¼
dgðg�1ð0; q̂Þ; q̂Þ

dq1

; (17)

and the slope of the size nullcline is

Un ¼
df ðf�1ð0; q̂Þ; q̂Þ

dq1

: (18)

Then the above conditions are equivalent to the following lemma:

Lemma 2. Provided that the inverses from Eqs. (17) and (18) exist,

Condition (a) from Theorem 2 is clearly satisfied when gqðn̂; q̂Þ�0. For

gqðn̂; q̂Þ > 0, we require the following condition to be satisfied:

gnðn̂; q̂Þ is negative (positive) and:

Uq < ð > Þ n̂

q̂ B1ðq̂Þ=Bðq̂Þ�1
� � : (19)
back, caused by frequency perturbation Dq, is induced by the position of the density

ection) q̂; n̂. Note that we consider a continuous system and not a sequential discrete

 densities attraction towards the attracting density nullcline is much stronger than

ary stability under limited population growth: Eco-evolutionary
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Condition (b) is satisfied when gnðn̂; q̂Þ is negative (positive) and:

Un > ð < ÞUq: (20)

For a proof see Appendix 8.
Note that the right hand side of the condition (19) depends

only upon the fertility stage; the mortality payoffs are not present
there.

2.6. Game theoretic notions revealed by dynamic stability

conditions

Now let us take the game theoretic perspective and analyze
the above statements from the strategic point of view. To do
this we should describe the above conditions in terms of
general payoff functions explicitly and then we should extract
the focal game payoffs from the background payoffs in the
conditions obtained. The following notion known from economics
is useful:

Definition 1. The semi-elasticity of the function f(x) at point x is

df ðxÞ=dx

f ðxÞ ; (21)

which describes the change in f(x) scaled by its value.

This concept can be generalized to the case of convex
combination of functions

P
qifi(x), as follows.

Definition 2. The partial semi-elasticity of the function fi(x) with
respect to

P
qifi(x) at point x is

df iðxÞ=dxP
qif iðxÞ

; (22)

which describes the equivalent scaled change in
P

qifi(x) caused by
the component fi(x).

Now we can derive the general stability conditions for the
dynamics in the form (6) and (7) expressed in terms of general
demographic payoffs. This is done in the following theorem

Theorem 3. Condition (a) has the form:

q̂
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A<

Bðq̂Þ
Mðq̂Þ

�1; (23)

where Bðq̂Þ=Mðq̂Þ�1 describes the reproductive surplus, following

Definition 1, B
0ðq̂Þ=Bðq̂Þ is the semi-elasticity of B and following

Definition 2, B01ðq̂Þ=Bðq̂Þ is the partial semielasticity of B with respect to

B1 (for mortalities M1ðq̂Þ and Mðq̂Þ we have analogous notions).

Condition (b) is satisfied when the semielasticities in payoffs satisfy

the following condition:

B01ðq̂Þ
B1ðq̂Þ

�B
0ðq̂Þ

Bðq̂Þ

  !
� M01ðq̂Þ

M1ðq̂Þ
�M

0ðq̂Þ
Mðq̂Þ

  !
< 0: (24)

where B01ðq̂Þ=B1ðq̂Þ is the semi-elasticity of B1 (similarly for M1 and the

average payoffs).

For a proof see Appendix 9.
Note that both conditions resemble the bracket structure of the

right hand side of the replicator equations, or rather derivatives of
it. The difference is that both conditions are expressed in terms of
semi-elasticities and partial semi-elasticities instead of standard
derivatives of payoff functions. The above conditions are not
expressed with respect to the focal games payoffs. Thus they
should be extracted from general payoffs B1ðq̂Þ and M1ðq̂Þ. In effect
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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we obtain: B1(q) = V1 + F � 0 and M1(q) = 1 � s1 + C, so that
inequalities (23) and (24) become

q̂
V 01ðq̂Þ�V

0ðq̂Þ
� �

Vðq̂Þ þ F
þ

s01ðq̂Þ�s0ðq̂Þ
� �
1�sðq̂Þ þ C

0
@

1
A<

Vðq̂Þ þ F
1�sðq̂Þ þ C

�1 (25)

and

V 01ðq̂Þ
V1ðq̂Þ þ F

� V
0ðq̂Þ

Vðq̂Þ þ F

  !
þ s01ðq̂Þ

1�s1ðq̂Þ þ C
� s0ðq̂Þ

1�sðq̂Þ þ C

� �
< 0: (26)

Since the background payoffs F and C do not depend on the
traits under consideration they should not depend on the
frequency of the strategies in the focal games. In effect they
vanish from the derivatives of the general growth rates B and
M. However they are still present in the stability conditions. Thus,
the stability in the particular focal type of interaction is determined
by the impact of other activities. Since F = uWB, C = umB where
u describes the average number of background events between
two focal events, and WB and mB are average background
events fertility and mortality, parameters F and C have a clear
interpretation in the purely static ESS models too. This result can be
important for the research on animal personalities (Dall et al.,
2004; Wolf et al., 2007; Wolf and Weissing, 2010, 2012; Wolf and
McNamara, 2012).

The above results seriously alter our understanding of the self-
regulation mechanism in evolving populations showing the role of
density dependent growth limiting factors. They also suggest the
relationship between the ESS approach and some concepts already
present in the debate on evolutionary ecology. We can mechanis-
tically interpret the stable and unstable intersections in terms of
eco-evolutionary feedback (Post and Palkovacs, 2009; Kokko and
López-Sepulcre, 2007).

In the game theoretic framework this concept can be found in
Argasinski and Kozłowski (2008), Zhang and Hui (2011) and
Argasinski and Broom (2012). How does this mechanism
work? Perturbation in q (described by Dq) induces convergence
towards the respective stable size ñðq̂ þ DqÞ lying on the attracting
density nullcline ñðqÞ which determines the respective frequency
attractor q̃ðñðq̂ þ DqÞÞ on the frequency attracting nullcline q̃ðnÞ.
If jq̃ðñðq̂ þ DqÞÞ�q̂j < jDqj then negative feedback is induced in a
sense that dynamics chase q̃ðñðq̂ þ DqÞÞ towards q̂. In effect q̂ is
stable. On the other hand, if jq̃ðñðq̂ þ DqÞÞ�q̂j > jDqj then a positive
feedback is induced and the attractor escapes from q̂. In effect q̂ is
unstable. See Fig. 6 for an illustration.

3. Discussion

The results presented in this paper show the importance of the
impact of growth limiting factors on selection mechanisms. Using
strategically neutral density dependence, the results introduced
in Argasinski and Broom (2012) and developed in Argasinski
and Broom (submitted for publication) have been clarified and
completed by rigorous stability conditions. We have proved that in
the case when both the frequency and density nullclines are
attracting, results on the local stability of the nullcline intersections
on the attracting density nullcline can be extended to the attracting
frequency nullcline and vice versa (Lemma 1). In addition, instead of
equality of growth rates at the stable points, under the influence of
density dependence we have equality of the turnover coefficients
(the number of newborn candidates produced per single dead adult
individual) as was shown by Theorem 1.

Theorem 2 shows the stability conditions. It shows that the
stability along the attracting density nullcline can be extrapolated
to the neighbourhood of the intersection (Theorem 2 point b).
Those conditions show that stability depends on the condition
ary stability under limited population growth: Eco-evolutionary
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similar to the classical ESS notions but expressed in semielasticities
of mortalities and fertilities (Theorem 3). In addition, the stability is
determined by the geometry of both nullclines (Lemma 2). It is
shown that the dynamics can be attracted by the intersection even
in the case when the frequency nullcline is repelling. This can
happen when attraction toward the density nullcline is stronger
than repellence from the frequency nullcline. Numerical simula-
tions show a variety of behaviours. Some of these are against
intuition based upon the dynamics concentrated on frequencies
occurring on the attracting density nullcline. At low densities there
is a stronger attraction towards the attracting frequency nullcline.
This is caused by the fact that at high densities differences in fertility
are suppressed by density dependent juvenile mortality described
by the logistic suppression coefficient, while at low densities the
impact of fertility on the overall dynamics is significant. Thus both
nullclines are important for the dynamics. In particular, the case of
convergence to the intersection of the repelling frequency nullcline
(which will be an invasion barrier in the case with unlimited
growth) with the attracting density nullcline is surprising. In
addition, this intriguing pattern coexists with a region of extinction
that cannot be easily shown by purely static analysis.

The phenomenon of stability and instability of the intersections
can be mechanistically explained by the idea of eco-evolutionary
feedbacks, a concept already known in the literature (Post and
Palkovacs, 2009; Kokko and López-Sepulcre, 2007). The stability or
instability of the particular stationary frequency is caused by a
shift of the frequency attractor conditional on a corresponding
correction of the density attractor. This density attractor is
conditional on the perturbation of the frequency, which closes
the feedback loop. This is related to the fact that in the framework
presented in this paper outcomes of interactions, described by
mortality and fertility, are entries of the ‘‘nest site lottery’’
mechanism, when the trajectory reaches a close neighbourhood of
the density nullcline. Thus on the density nullcline all newborns
introduced to the environment form a pool of candidates from
which individuals that substitute dead adults in their nest sites will
be randomly drawn. This mechanism induces the frequency
dependent selection consisting of two stages. At the first stage the
strategies maximizing the turnover coefficient (number of new-
borns produced per single dead adult within a short time interval)
are selected. Then every perturbation of the population state (a size
decrease caused by natural disaster or invasion of a significant
number of suboptimal mutants) leads to an increase of the
frequency of the strategy with maximal mortality among those
with maximal turnover coefficient. This mechanism was analyzed
in Argasinski and Broom (2013). Note that the framework analyzed
in this paper collapses to the system analyzed in Argasinski
and Broom (2013) under the assumption that all mortality and
fertility payoffs are constants. The nest site lottery mechanism
was analyzed only for the case when the population is in the
neighbourhood of the density nullcline. Thus it is an interesting
open question how this mechanism works in states far from the
density nullcline. It is likely that when there is a shortage of
free nest sites the population is subject to a similar mechanism.
This fraction increases with convergence to the density attracting
nullcline and covers all newborns when the trajectory reaches
this nullcline. The importance of the generalization of the nest site
lottery mechanism is supported by results from this paper.

Our results show an example of the mechanism shaping the
ecology of the population according to the aggregated outcomes of
particular individual interactions of different types. This point of
view relies on and provides detailed theoretical justification for the
classical ideas proposed by Łomnicki (1988), that ecological and
evolutionary reasoning should be based at the level of individuals.
Another important aspect of our work is the emphasis on the key
role of growth limiting factors in selection mechanisms. This is an
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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important contribution to current developments in evolutionary
theory focused on the relationships between selection processes
and ecological factors (Schoener, 2011; Morris, 2011; Pelletier
et al., 2009). The mechanism of the eco-evolutionary feedback
shown in this paper is a good example of the impact of ecological
factors, such as growth limitation, on the outcomes of the
selection process. The importance of growth limiting mechanisms
implies that future research should investigate more detailed
mechanistic models of these factors, since the current literature is
dominated by the phenomenological logistic approach, which
was also used in this paper. Another important direction of
research indicated by the results presented in this paper is the
generalization of the eco-evolutionary stability conditions to the
multidimensional case, describing the competition between more
than two strategies. It is likely that significant complexity will
arise from these generalizations, which in turn could reveal novel
ecological predictions.

Acknowledgements

The project is realized under grant Marie Curie Grant PIEF-GA-
2009-253845. We want to thank Jan Kozłowski, John McNamara
and Franjo Weissing for their support for the project and valuable
discussions.

Appendix 1

This section contains some details from Argasinski and Broom
(2012) and Argasinski and Broom (submitted for publication).
Wi(q) is the focal game fertility payoff function of the ith strategy,
si(q) is the pre-reproductive mortality payoff function of the ith
strategy. Further, Vi(q) =

P
jqjsi(ej)Wi(ej) is the mortality–fertility

trade-off function for the case when si and Wi are frequency
dependent, although more complicated functions are also possible
(Argasinski and Broom, 2012). In Argasinski and Broom (2012) the
classical approach to the background fitness was generalized to the
case of two demographic payoff functions. It was described by the
phenomenological elements of the payoffs (additive fertility and
multiplicative post-reproductive mortality), which affect the
dynamics. However, in this paper we will use an alternative
approach from Argasinski and Broom (submitted for publication)
which has clear mechanistic interpretation and better describes
the distribution of the background interactions in time. Assume
that the modelled interaction described by the game theoretic
structure occurs at intensity t1. Other events shaping the fertility
and mortality occur at the separate intensity t2 and during the
average background event WB newborns are produced and adult
individuals die with probability mB. This leads to the following
general growth equations:

ṅi ¼ nit1ViðqÞ 1� n

K

� �
�nit1ð1�siðqÞÞ þ nit2WB 1� n

K

� �
�nit2mB

¼ nit1 ViðqÞ 1� n

K

� �
�ð1�siðqÞÞ þ t2

t1
WB 1� n

K

� �
� t2

t1
mB

� �
: (28)

Then by change of timescale t̃ ¼ tt1 and substitution using
F ¼ t2

t1
WB and C ¼ t2

t1
mB, we obtain:

ṅi ¼ ni ViðqÞ 1� n

K

� �
�ð1�siðqÞÞ þ F 1� n

K

� �
�C

h i
; (29)

which leads to the general system of Eqs. (4) and (5) and to the
nullcline for population size:

ñðqÞ ¼ K 1�C þ 1�
P

iqisiðqÞ
F þ

P
iqiViðqÞ

� �
: (30)
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It is attracting since the right hand side of (5) is a decreasing
function of n. Thus the game theoretic stage can be very complex,
since payoffs in a modelled game Vi and si can have a structure
describing several causal stages of the interaction (as was shown in
Argasinski and Broom, 2012). However all models of the basic and
extended types can be presented in the following simplified
general form, which are Eqs. (4) and (5) where Vi(q) and si(q)
describe potentially complicated fertility and mortality payoffs
related to the focal interactions. This allows us to keep a distinction
between focal game and background payoffs.

Appendix 2

Proof of Theorem 1. Assume a generalized n-dimensional version
of system (6) and (7), where we have n individual strategies and
the frequency dynamics defined on n S 1 dimensional strategy
simplex is completed by the following single equation for the
population size:

dn

dt
¼ f ðn; qÞ ¼ n BðqÞ 1� n

K

� �
�MðqÞ

� �
: (31)

The bracketed term in Eq. (31) equals zero when

1� n

K

� �
¼ MðqÞ

BðqÞ
; (32)

which leads to

ñ ¼ 1�MðqÞ
BðqÞ

  !
K: (33)

Here we substitute this expression into Eq. (6), when the right
hand side becomes

dq1

dt
¼ qi BiðqÞ�BðqÞ

� � MðqÞ
BðqÞ

  !
� MiðqÞ�MðqÞ
� �  !

(34)

¼ qiMðqÞ
BiðqÞ
BðqÞ

�MiðqÞ
MðqÞ

  !
: (35)

Thus at the intersection of the nullclines the bracketed term
from Eq. (35) should be equal to zero. This is satisfied when

BiðqÞ
MiðqÞ

¼ BðqÞ
MðqÞ

; (36)

which means that the turnover coefficients of all strategies should
be equal. Thus point (a) is proved.

Now focus on the role of the outcomes of the focal game. Then
equality of the turnover coefficients can be described as

ViðqÞ þ F
1�siðqÞ þ C

¼
VjðqÞ þ F

1�sjðqÞ þ C
¼ BðqÞ

MðqÞ
: (37)

Assume auxiliary notation di(q) = 1 S si(q). This implies that
when Vi(q) S Vj(q) = xV and di(q) S dj(q) = xs, we have

ViðqÞ þ F
diðqÞ þ C

¼ ViðqÞ þ xV þ F
diðqÞ þ xs þ C

) (38)

ViðqÞ þ F
diðqÞ þ C

xs ¼ xV : (39)

Thus from (37) and (39) we have

ViðqÞ�VjðqÞ ¼ BðqÞ
MðqÞ

diðqÞ�djðqÞ
� �

(40)
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
feedbacks and replicator dynamics. Ecol. Complex. (2017), http://dx
leading to the following general condition which can be inter-
preted as equality of focal game specific suppressed Malthusian
growth rates:

ViðqÞ
MðqÞ
BðqÞ

�diðqÞ ¼ VjðqÞ
MðqÞ
BðqÞ

�djðqÞ: (41)

This is the proof of point (b).

Appendix 3

Proof of Lemma 1. Assume that the dynamics is limited to the
frequency attracting nullcline. If we substitute the equilibrium of
the size equation into the frequency equation then the derivative of
the right side of the frequency equation can be presented as the
directional derivative along the vector ðdñ=dq1; 1Þ tangent to the
attracting density nullcline. Since f : (n, q) ! z is the function
assigning the value of the derivative z to each pair (n, q) describing
the population state, then the inverse function fS1 : (z, q) ! n

assigns size n to the respective pair (z, q) and can be denoted as
n(z, q). On the nullcline ñðqÞ we have z = 0, and thus we obtain
the derivative dñ=dq1 in the following way. Since along the
nullcline f ðñðqÞ; qÞ ¼ 0 the derivative of it will also be equal to
zero, leading to:

df ðñðqÞ; qÞ
dq1

¼ f q þ f n

dñðqÞ
dq1

¼ 0 ) (42)

dñðqÞ
dq1

¼ �
f q

f n

: (43)

Therefore, for the intersection point it will describe the derivative
of the attracting density nullcline ñ (a level set with z = 0). Thus the
directional derivative mentioned above can be presented as:

dgðñðqÞ; qÞ
dq1

¼ gq�gn

f q

f n

: (44)

If we assume that the dynamics is limited to the attracting
density nullcline, then by analogous derivation we can obtain:

df ðn; q̃ðnÞÞ
dn

¼ f n�f q

gn

gq

: (45)

Note that the former derivative is just the latter multiplied by
gq/fn. Since fn is always negative, the sign of this factor is
determined by the sign of gq. Thus if gq < 0 (the frequency nullcline
is attracting) then if the intersection is stable (unstable) on the
density nullcline then it is stable (unstable) on the frequency
nullcline. However, if gq > 0 (the frequency nullcline is repelling)
then if the intersection is stable (unstable) on the density nullcline
then it is unstable (stable) on the frequency nullcline.

Appendix 4

A Hawk-Dove example was used to illustrate the above, using
the payoff matrices S (the mortality payoff) and P, where the
fertility matrix is F = WP, as follows
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.doi.org/10.1016/j.ecocom.2017.04.002

http://dx.doi.org/10.1016/j.ecocom.2017.04.002


K. Argasinski, M. Broom / Ecological Complexity xxx (2017) xxx–xxx12

G Model

ECOCOM-640; No. of Pages 15
where s < 1 is the survival probability of a fight between Hawks,
and the fertility matrix containing the expected number of
newborns W produced from the interaction. When we substitute
the above matrix payoffs into Eqs. (4) and (5) as the general fertility
payoff Vðv; qÞ ¼ vS�PqT and the pre-reproductive survival payoff
sðv; qÞ ¼ vSqT respectively (where � is elementwise multiplication
of matrix entries) leading to strategy payoffs Viðv; qÞ ¼ eiS � PqT and
siðv; qÞ ¼ eiSqT . In effect we obtain the following system:

q̇h ¼ qh 1� n

K

� �
W e1S�PqT�qS�PqT
� �

þ ðe1SqT�qSqTÞ
� �

(46)

and

ṅ ¼ n F þ qS�PqT W
� �

1� n

K

� �
þ qSqT�1�C

� �
; (47)

where the matrix operations are as follows (Argasinski and Broom,
2012):

e1SqT ¼ sqh þ 1�qh ¼ qhðs�1Þ þ 1; (48)

e1S�PqT ¼ 0:5sqh þ 1�qh; (49)

qSqT ¼ qhðqhðs�1Þ þ 1Þ þ ð1�qhÞ ¼ 1�q2
hð1�sÞ; (50)

qS�PqT ¼ qh 0:5sqh þ 1�qhð Þ þ 0:5ð1�qhÞ
2 ¼ 0:5ð1�q2

hð1�sÞÞ: (51)

After calculations and the substitution d = 1 S s the following
equations were obtained

q̇h ¼ qhð1�qhÞ 0:5Wð1�qhdÞ 1� n

K

� �
�qhd

� �
; (52)

ṅ ¼ n F þ ð1�q2
hdÞ0:5W

� �
1� n

K

� �
�q2

hd�C
� �

: (53)

Two rest points of this system are qh = 0 and 1. A nontrivial rest
point, which becomes the attracting nullcline for the density
dependent case, (for detailed calculation see Argasinski and
Broom, submitted for publication) is given by

q̃ðnÞ ¼
0:5W 1� n

K

� �
d 0:5W 1� n

K

� �
þ 1

� � : (54)

There is a stable population size at either ñ ¼ 0 or the following
positive rest point which is conditional on the actual hawk strategy
frequency (describing the attracting nullcline parametrized by qh)

ñðqhÞ ¼ K 1�
1 þ C�ð1�q2

hdÞ
F þ 0:5W 1�q2

hd
� �

  !
: (55)

The intersections of the above nullclines constitute the rest-
points of the system. For the above Hawk-Dove game there are two
intersections. If it exists, the first one is the stable mixed
equilibrium which has the form

q̂ ¼ ð1 þ CÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Cð Þ2�4C

d

r
; (56)

and the second (unstable) intersection is an invasion barrier for a
stable pure Hawk equilibrium (where qh converges to Hawk if and
only if qh > q),

q ¼ ð1 þ CÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ CÞ2�4C

d

r
: (57)
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Appendix 5

Let us derive the replicator equations for Example 1. For the
density independent case we have the following Malthusian
growth rates

ru
1ðqÞ ¼ B1ðqÞ�M1ðqÞ ¼ 2

3
q2 þ q�7

9
;

ru
2ðqÞ ¼ B2ðqÞ�M2ðqÞ ¼ 2

3
q2 þ q

3
�4

9
:

This leads to the following replicator equation:

q̇ ¼ qð1�qÞðru
1ðqÞ�ru

2ðqÞÞ ¼ q

3
ð1�qÞð2q�1Þ

where q = 1/2 is the unstable rest point (invasion barrier). However
when we extend this model to the density dependent case, the
situation is different. Then the density dependent Malthusian
growth rates are:

r1ðq; nÞ ¼ 2

3
q2 þ 2

3
q

� �
ð1�n=KÞ� 7

9
� q

3

� �
;

r2ðq; nÞ ¼ 2

3
q2ð1�n=KÞ� 4

9
� q

3

� �
:

This leads to the replicator dynamics:

q̇ ¼ qð1�qÞðr1�r2Þ ¼ q

3
ð1�qÞð2qð1�n=KÞ�1Þ:

Further we obtain the following equation for the mean payoff

r ¼ qr1 þ ð1�qÞr2 ¼
4

3
q2ð1�n=KÞ�4

9
;

leading to the differential equation for the population size:

ṅ ¼ nr ¼ 4

3
n q2ð1�n=KÞ�1

3

� �
:

After calculation of the frequency and density nullclines we
obtain: q̃ ¼ 1

2ð1�n=KÞ and ñ ¼ 1� 1
3q2

� �
K.

Thus on the density nullcline juvenile mortality is 1 S n/K = 1/
3q2. The intersection of the nullclines satisfies the equation q = 3q2/
2. The stationary state is thus q̂ ¼ 2=3 and respective population
size n̂ ¼ K=4 (juvenile mortality is 1�n̂=K ¼ 3=4).

Appendix 6

Here we prove Theorem 2: in particular giving a derivation of
general formulae for conditions (a) and (b) from the theorem.

We consider the system in Eqs. (6) and (7). Standard lineariza-
tion techniques can be applied. At the critical points n̂; q̂ we have
f ðn̂; q̂Þ ¼ gðn̂; q̂Þ ¼ 0. We need to consider each of the derivatives of
f and g with respect to each of q1 and n at the critical points, and in
particular the Jacobian matrix

f nðn̂; q̂Þ f qðn̂; q̂Þ
gnðn̂; q̂Þ gqðn̂; q̂Þ

� �

and its eigenvalues. The eigenvalues of the Jacobian are found as
follows.

f nðn̂; q̂Þ�l f qðn̂; q̂Þ
gnðn̂; q̂Þ gqðn̂; q̂Þ�l

				
				 ¼ l2 þ Al þ Z (58)

where A ¼ �ðf nðn̂; q̂Þ þ gqðn̂; q̂ÞÞ (which leads to the condition from
point a) and Z ¼ f nðn̂; q̂Þgqðn̂; q̂Þ�f qðn̂; q̂Þgnðn̂; q̂Þ. Thus:

l1;2 ¼
�A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4Z

p
2

:
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For stability we need either two negative eigenvalues or two
complex eigenvalues with negative real parts. This occurs when
A > 0 and Z > 0.

The condition Z > 0 is just condition (b) from Theorem 2 and can
be presented in the form

f nðn̂; q̂Þ gqðn̂; q̂Þ�gnðn̂; q̂Þ
f qðn̂; q̂Þ
f nðn̂; q̂Þ

  !
> 0:

Thus it is a product of f nðn̂; q̂Þ < 0 and the directional derivative
along the attracting density nullcline dgðñðqÞ; qÞ=dq1 (see Eq. (44))
from Appendix 3. Thus the condition (b) is satisfied when this
derivative is negative, i.e. the intersection is an attractor on the
density nullcline (and, by Lemma 1, on the frequency attracting
nullcline). This constitutes point (b).

The condition A > 0 occurs if f nðn̂; q̂Þ þ gqðn̂; q̂Þ < 0. The first of
these two terms is negative; the second of these being negative is
the condition for stability in density independent models. Thus, for
example, the Hawk-Dove game which has a mixed ESS for its
density independent version (the classical game) automatically
satisfies this condition. However, the condition A > 0 can be
satisfied even in the case when the frequency nullcline is repelling,
which implies gqðn̂; q̂Þ > 0. Then this condition leads to
gqðn̂; q̂Þ < jf nðn̂; q̂Þj, since f nðn̂; q̂Þ is negative, which is condition
(a) from Theorem 2. Thus our conditions A > 0 and Z > 0 are
precisely those from Theorem 2 as required.

Appendix 7

Below we will analyze stability in Example 1. The respective
derivatives are:

gqðq; nÞ ¼ 1

3
ð4q�6q2Þð1�n=KÞ�ð1�2qÞ

 �

;

gnðq; nÞ ¼ �2q2ð1�qÞ
3K

;

f qðq; nÞ ¼ 4

3
2qnð1�n=KÞð Þ;

f nðq; nÞ ¼ 4

3
q2 1�2n=Kð Þ�1

3

� �
:

After substitution of the rest points, we obtain:

gqðq̂; n̂Þ ¼ 1

9
> 0;

gnðq̂; n̂Þ ¼ � 8

81K
;

f qðq̂; n̂Þ ¼ K

3
;

f nðq̂; n̂Þ ¼ 4

3

2

9
�1

3

� �
¼ � 4

27
:

Now the stability conditions (a) A ¼ �ðf nðn̂; q̂Þ þ gqðn̂; q̂ÞÞ > 0 and

(b) gqðn̂; q̂Þ�gnðn̂; q̂Þ
f qðn̂;q̂Þ
f nðn̂;q̂Þ

< 0 from Theorem 2 should be checked.

(a) � � 4
27þ 3

27

� �
¼ 1

27 > 0;

(b) 1
9þ 8

81K � 27K
12

� �
¼ � 1

9 < 0:

Thus in the density dependent case the intersection of the invasion
barrier and the attracting density nullcline is stable.

Appendix 8

Proof of Lemma 2. The four derivatives, necessary for the follow-
ing work, are given by the following expressions:

f nðn; qÞ ¼ BðqÞ 1�2n

K

� �
�MðqÞ;
Please cite this article in press as: Argasinski, K., Broom, M., Evolution
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f qðn; qÞ ¼ n B
0ðqÞ 1� n

K

� �
�M

0ðqÞ
� �

;

gnðn; qÞ ¼
�q1 B1ðqÞ�BðqÞ

� �
K

;

gqðn; qÞ ¼ B1ðqÞ�BðqÞ
� �

1� n

K

� �
� M1ðqÞ�MðqÞ
� �� �

þq1 B01ðqÞ�B
0ðqÞ

� �
1� n

K

� �
� M01ðqÞ�M

0ðqÞ
� �� �

;

where B0iðqÞ is the derivative of Bi(q) w.r.t q, and similarly M0iðqÞ is
the derivative of Mi(q) w.r.t q, for i = 1, 2 and for the non-indexed
averaged payoffs.

For stability we require (Condition A from Appendix 6) that

f nðn̂; q̂Þ þ gqðn̂; q̂Þ < 0: (59)

On the density nullcline f nðn̂; q̂Þ < 0 thus for gqðn̂; q̂Þ�0 the
condition (59) is always satisfied. For gqðn̂; q̂Þ > 0 we require
gqðn̂; q̂Þ < �f nðn̂; q̂Þ. Dividing (59) by �gnðn̂; q̂Þ we have the
following conditions, when gnðn̂; q̂Þ is negative (positive),

�
gqðn̂; q̂Þ
gnðn̂; q̂Þ

< ð > Þ f nðn̂; q̂Þ
gnðn̂; q̂Þ

: (60)

This leads to:

f nðn̂; q̂Þ
gnðn̂; q̂Þ

¼
Bðq̂Þ 1� 2n̂

K

� �
�Mðq̂Þ

�q̂ B1ðq̂Þ�Bðq̂Þ
� �

=K
¼ Bðq̂Þn̂

q̂ B1ðq̂Þ�Bðq̂Þ
� � ¼ n̂

q̂
= B1ðq̂Þ=Bðq̂Þ�1
� �

since we know that Bðq̂Þð1�n̂=KÞ�Mðq̂Þ ¼ 0 meaning the original
denominator reduces to � n̂

K Bðq̂Þ. This leads to the condition

dgðg�1ð0; q̂Þ; q̂Þ
dq1

< ð > Þ n̂
q̂
= B1ðq̂Þ=Bðq̂Þ�1
� �

; (61)

leading to condition (a).

Condition Z > 0 is satisfied when gnðn̂; q̂Þ is negative (positive) if

�
f qðn̂; q̂Þ
f nðn̂; q̂Þ

> ð < Þ�
gqðn̂; q̂Þ
gnðn̂; q̂Þ

which is equivalent to

df ðf�1ð0; q̂Þ; q̂Þ
dq1

> ð < Þ dgðg�1ð0; q̂Þ; q̂Þ
dq1

(62)

(this is possible when there is a 1-1 correspondence between n and
q1, at least in the vicinity of a root).

Appendix 9

Proof of Theorem 3. Here we give a derivation of the detailed form
of the formulae A and Z leading to the stability conditions
expressed in terms of the payoff functions.

The necessary derivatives are given in Appendix 8. After
substitution of the stationary points q̂ and n̂ ¼ 1�Mðq̂Þ

Bðq̂Þ

� �
K , we have

f nðn̂; q̂Þ ¼ �ruðq̂Þ;

f qðn̂; q̂Þ ¼ 1�Mðq̂Þ
Bðq̂Þ

  !
K B

0ðq̂Þ Mðq̂Þ
Bðq̂Þ

  !
�M

0ðq̂Þ
  !

¼ Mðq̂Þ 1�Mðq̂Þ
Bðq̂Þ

  !
K

B
0ðq̂Þ

Bðq̂Þ
�M

0ðq̂Þ
Mðq̂Þ

  !
;

gnðn̂; q̂Þ ¼
�q̂ B1ðq̂Þ�Bðq̂Þ
� �

K
;
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gqðn̂; q̂Þ ¼ q̂ B01ðq̂Þ�B
0ðq̂Þ

� � Mðq̂Þ
Bðq̂Þ

  !
� M01ðq̂Þ�M

0ðq̂Þ
� �  !

¼ q̂Mðq̂Þ
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A:

Let us calculate concrete forms of conditions A and Z:

Condition A:

A ¼ � Mðq̂Þ�Bðq̂Þ þ q̂Mðq̂Þ
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A

0
@

1
A

¼ Bðq̂Þ�Mðq̂Þ 1 þ q̂
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A

0
@

1
A:

Then A > 0 when

Bðq̂Þ
Mðq̂Þ

�1 > q̂
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A: (63)

Condition Z:

Z ¼ f nðn̂; q̂Þgqðn̂; q̂Þ�f qðn̂; q̂Þgnðn̂; q̂Þ )

Z ¼ � 1�Mðq̂Þ
Bðq̂Þ

  !
Bðq̂Þq̂Mðq̂Þ

B01ðq̂Þ�B
0ðq̂Þ

� �
Bðq̂Þ

�
M01ðq̂Þ�M

0ðq̂Þ
� �

Mðq̂Þ

0
@

1
A

þ Mðq̂Þ 1�Mðq̂Þ
Bðq̂Þ

  !
B
0ðq̂Þ

Bðq̂Þ
�M

0ðq̂Þ
Mðq̂Þ

  !
q̂ B1ðq̂Þ�Bðq̂Þ
� �

¼ Mðq̂Þq̂ 1�Mðq̂Þ
Bðq̂Þ

  !

� B
0ðq̂Þ

Bðq̂Þ
�M

0ðq̂Þ
Mðq̂Þ

  !
B1ðq̂Þ�Bðq̂Þ
� �

�Bðq̂Þ
B01ðq̂Þ�B

0ðq̂Þ
� �

Bðq̂Þ
�

M01ðq̂Þ�M
0ðq̂Þ

� �
Mðq̂Þ

0
@

1
A

2
4

3
5:

Thus Z > 0 if

B
0ðq̂Þ

Bðq̂Þ
�M

0ðq̂Þ
Mðq̂Þ

  !
B1ðq̂Þ�Bðq̂Þ
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From equality of the turnover coefficients at the rest point
we have that L ¼ B1ðq̂Þ=M1ðq̂Þ ¼ Bðq̂Þ=Mðq̂Þ. This leads to
Bðq̂Þ=Mðq̂ÞB1ðq̂Þ ¼ L=B1ðq̂Þ ¼ 1=M1ðq̂Þ. Thus formula Z can be
presented as:
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:

In effect we obtain the classical condition but expressed in
terms of semi-elasticities:
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< 0: (64)

End of proof.
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Geritz, S.A.H., Kisdi, É., 2012. Mathematical ecology: why mechanistic models?
J. Math. Biol. 65 (6), 1411–1415.

Gokhale, C., Hauert, C., 2016. Eco-evolutionary dynamics of social dilemmas. Theor.
Popul. Biol. 111, 28–42.

Gorban, A., 2007. Selection theorem for systems with inheritance. Math. Model. Nat.
Phenom. 2 (4), 1–45.

Hauert, C., Holmes, M., Doebeli, M., 2006. Evolutionary games and population
dynamics: maintenance of cooperation in public goods games. Proc. R. Soc.
B: Biol. Sci. 273 (1600), 2565–2570.

Hauert, C., Wakano, J.Y., Doebeli, M., 2008. Ecological public goods games: cooper-
ation and bifurcation. Theor. Popul. Biol. 73 (2), 257–263.

Hofbauer, J., Sigmund, K., 1988. The Theory of Evolution and Dynamical Systems.
Cambridge University Press.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics.
Cambridge University Press.

Huang, W., Hauert, C., Traulsen, A., 2015. Stochastic game dynamics under demo-
graphic fluctuations. PNAS 112 (29), 9064–9069.

Hui, C., 2006. Carrying capacity, population equilibrium, and environment’s maxi-
mal load. Ecol. Model. 192 (1–2), 317–320.
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