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Abstract In this paper we are concerned with how aggre-

gated outcomes of individual behaviours, during interactions

with other individuals (games) or with environmental fac-

tors, determine the vital rates constituting the growth rate of

the population. This approach needs additional elements,

namely the rates of event occurrence (interaction rates).

Interaction rates describe the distribution of the interaction

events in time, which seriously affects the population

dynamics, as is shown in this paper. This leads to the model

of a population of individuals playing different games, where

focal game affected by the considered trait can be extracted

from the general model, and the impact on the dynamics of

other events (which is not neutral) can be described by an

average background fertility and mortality. This leads to a

distinction between two types of background fitness, strate-

gically neutral elements of the focal games (correlated with

the focal game events) and the aggregated outcomes of other

interactions (independent of the focal game). The new

approach is useful for clarification of the biological meaning

of concepts such as weak selection. Results are illustrated by

a Hawk–Dove example.

Keywords Replicator dynamics � Evolutionary game �
Density dependence � Interaction rate � Eco evolutionary

feedback � Background fitness

Mathematics Subject Classification 91A22 � 92D15 �
37C10

Introduction

The cornerstone of building scientific theories is the proper

choice of underlying terminology describing the objects

and processes of interest; the mathematical structures used

in the formalization of the theory can influence the

underlying language. A good example is the impact of

game theory on evolutionary theory, which has meant that

strategic reasoning is common in works related to evolu-

tion, even if they are not supported by mathematical

notions (Dawkins 1976; Williams 1996). However, the

basic evolutionary game theoretic framework is described

by abstract mathematical terms whose relations with

observable biological processes is often unclear. The most

influential concept, which is foundational for game theo-

retic methods in biology, is the game as a metaphor for the

individual interactions. In this paper we will investigate

how this aspect should be expressed in the context of the

ecological population dynamics.

The modern approaches to evolutionary game mod-

elling can essentially be divided into two classes. The first

contains static models (see e.g. Maynard Smith 1982;

Broom and Rychtar 2013), based on potentially compli-

cated payoff functions describing some abstract parameter

called ‘‘fitness’’, while the second contains dynamic

models based on replicator dynamics and simplified

(mostly matrix) payoff functions (Maynard Smith 1982;

Cressman et al. 1986; Hofbauer and Sigmund 1988, 1998).

The first type is focused on the details of the interaction,

while population dynamics aspects are lacking. There are

no evolutionary processes in time, only causal outcomes of
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the particular interaction. Thus, while payoffs quantified

by obtained resources or energetic gain have a clear bio-

logical interpretation, the impact of the game outcomes on

the population state is not fully explained. In the second

case, the situation is the opposite: the interactions are not

explicitly depicted in the model but their outcomes are

phenomenologically described by the excess from the

average growth rate, and the dynamics of the selection

process is explicitly analysed. In addition, from game

theoretic methods have grown the field of adaptive

dynamics (Dieckmann and Law 1996; Metz et al. 1996;

Geritz et al. 1998; Dercole and Rinaldi 2008), focused on

the long-term evolution of continuous traits, driven by

mutations. This approach emphasises the importance of

ecological context.

To fill the gap between the two approaches to games and

investigate the ecological meaning of individual interactions

we should answer the question: How do the outcomes of

particular interactions affect the growth rates of the respec-

tive strategies? The methods related to game theory are also

used in life history theory (Caswell 2001) to describe the

competition between different life history strategies, but this

framework does not assume interactions between individu-

als. In this approach fitness components are described as the

vital rates (birth and death rates of the respective age or stage

classes). We can use this approach to solve the posed prob-

lem and establish the link between interaction rates,

describing the occurrence of the interaction events in time,

and resulting vital rates of respective types of interactions,

describing the changes of the population state. This question

is important not only for game theoretic models. It is related

to the problem of the general mathematical representation of

fitness (Metz 2008; Roff 2008; Orr 2009) and the method-

ological interpretation of this term, discussed by biologists

and philosophers of science (Mills and Beatty 1979;

Rosenberg and Williams 1986; Horan 1994; Matthen and

Ariew 2002; Brandon and Ramsey 2007; Matthen and Ariew

2009; Walsh 2010; Ramsey 2013).

State of the art. An event-based approach

This paper extends a novel approach to evolutionary games

from Argasinski and Broom (2012). This approach is

focused on ecological realism, falsifiability and a mecha-

nistic interpretation of the results obtained. The main goal

was to express individual fitness in terms of demographic

parameters. This allows us to describe the terms, such as

‘‘costs’’ and ‘‘benefits’’, by measurable parameters (mortal-

ity interpreted as the probability of death and fecundity

interpreted as the number of newborns obtained in effect

through an interaction) instead of an abstract, undefined

‘‘fitness’’ described by an infinitesimal rate of increase of the

population (or single component of fitness such as fecundity

as in Chakra et al. (2014), where the number of eggs laid

constitutes fitness). This is realized by the explicit applica-

tion of two payoff functions describing mortality and

fecundity counted in the currencies of births and deaths,

instead of one fitness function describing excess from the

mean Malthusian growth rate. This new approach can be

described as event-based because it describes cause and

effect chains of underlying interaction events. For example

mortality can act on adult individuals before or after repro-

duction, or the description of the structure of the interaction

event can be more complex.

In addition, this approach emphasises the role of density

dependence. The fertility payoff functions are not constant

in time but can be affected by selectively neutral juvenile

mortality leading to a more complex selection mechanism

induced by eco-evolutionary feedback (Hauert et al.

2006, 2008; Argasinski and Kozłowski 2008; Zhang and

Hui 2011; Argasinski and Broom 2012; Huang et al. 2015;

Gokhale and Hauert 2016). Thus the fertility reward can

decrease, due to the increase of the juvenile mortality,

below the adult mortality costs. Population size does not

converge to an arbitrary phenomenological carrying

capacity (constant, as in for example Cressman and Křivan

2010; Křivan 2013, or affected by payoffs, as in Novak

et al. 2013) as in many models, exploiting the classical

logistic growth, but to a dynamic equilibrium between all

mortality and fertility factors. A similar approach that can

be found in epidemiological models is called the emergent

carrying capacity (Bowers et al. 2003; Sieber et al. 2014).

This is more realistic and provides a mechanistic inter-

pretation in terms of demographic factors. The properties

of the selection mechanism, induced by strategically neu-

tral growth limitation, were analysed in Argasinski and

Broom (2013). Here at the population size equilibrium,

newborns form a pool of candidates from which survivors

which will replace dead adults at their nest sites will be

drawn; this was termed the nest site lottery.

Two research goals of the paper

(a) Role of event occurrence rates describing the dis-

tribution of interaction events in time: We will analyse

how the rates of event (or interaction) occurrence, associ-

ated with respective event-related mortality and fertility

payoffs, constitute the vital rates (rates of change of the

population state, Caswell 2001) driving the population

dynamics. However, the main difference between ecolog-

ical population dynamics and evolutionary game theory is

that population dynamics is focused on how the population

is shaped by different types of events (which can be

described by different types of games), while evolutionary

game theory generally analyses the selection of strategies

in a single particular type of event. Thus we should be able
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to extract those focal interaction from our more complex

general model, with the remaining events generating the

corresponding background fitness. The application of event

occurrence rates (or interaction rates) for evolutionary

games was originated in Taylor and Nowak (2006). In their

paper different strategy carriers can interact at different

rates and thus can play different numbers of game rounds

(the differences with our approach, related to the definition

of fitness, are discussed in section ‘‘The event-based

approach and rates of event occurrence’’ in the Discussion.

(b) Classification of the types of background fitness:

Traditionally, background fitness has been modelled by a

phenomenological additive element of the payoff function

that vanishes under the replicator dynamics, with the associ-

ated dynamics being very simple. The growth rate is described

by a single payoff function and it is not clear whether back-

ground fitness is a neutral element of the payoff or a separate

factor acting at a different occurrence rate. Within classical

evolutionary game theory, which is density independent, both

approaches are equivalent and distinction between them is not

necessary. In addition there is no clear biological interpreta-

tion of this factor and it has rather been interpreted as a

technical element of mathematical notation. As was shown in

Argasinski and Broom (2012), background fitness compo-

nents can seriously affect the dynamics. However, the natural

interpretation of those factors can be provided by the approach

from point a). Thus, can we derive phenomenological neutral

elements as the aggregated outcomes of background events?

Results

In the coming sections we will introduce a number of

important terms used in our paper; a summary of these is

presented in Table 1.

The general model

Introduction of the rates of event occurrence

and derivation of the vital rates

Firstly, let us derive the general growth equation according

to the framework proposed in point (a) from ‘‘Two research

goals of the paper’’. We can consider multiple event types

which occur as independent Poisson processes. Then,

during a short time interval some number of events occur

and their outcomes change the state of the population

(newborns are introduced to the population and dead

individuals are removed, see Fig. 1).

The events of the i-th type occur at rate si (the super-

script describes the event type since later the subscript will

describe the strategy), where its outcomes are described by

respective fertility and mortality payoff functions Wi and

di, where Wi is the average number of newborns produced

and di is the probability of death during this type of

interaction event. If the i-th event type is a safe mating

opportunity then the respective death probability di equals

zero. On the other hand, if the event is not related to mating

or reproduction but is dangerous, then Wi ¼ 0. The general

growth equation thus has the following form:

_n ¼
X

i

nsi Wi � di
� �

: ð1Þ

Note that the parameters si do not have to be just technical

constants but can be functions of the population size or

strategic composition, as for example in the dynamic sex

ratio model as we discuss in ‘‘The event-based approach

and rates of event occurrence’’ in the Discussion (see

Argasinski 2012, 2013, 2017) or models of upstream

reciprocity (Nowak and Roch 2007; Pena et al. 2011). Thus

we can derive the per capita vital rates as products of the

event occurrence rates and the demographic outcomes of

events. Then siWi will be the fertility rate and sidi will be

the mortality rate for the i-th type of event. The sum of the

respective vital rates over all types of events will constitute

the crude mortality and fertility rates (Caswell 2001).

We will next apply the approach presented in this section

and summarized by Eq. (1) to obtain the evolutionary

dynamics framework centred on a particular focal game. We

will extract one particular type of event from our general

model to analyse the selection of individual strategies rela-

ted to that game. The aggregated impact of all other types of

events will constitute the background fitness.

Background fitness as the aggregated outcomes

of background events

Individuals enter an arbitrarily chosen focal game (with

payoffs WF and dF where auxiliary lower index F means

‘‘focal event’’) at rate sF as in Eq. (1), and engage in other

activities at rates described by siB; we can consider a single

class of all such activities, as we show below.

Each of the background events can be characterised by

outcomes which include a fertility Wi
B and mortality diB

component (lower index B means ‘‘background event’’).

We can calculate the outcomes of the average background

event. WB ¼
P

i s
i
BW

i
B=sB is the average fertility per event

(where sB ¼
P

i s
i
B) and dB ¼

P
i s

i
Bd

i
B=sB is the average

death probability per event.

In effect ‘‘background events’’ occur at intensity sB and

individuals involved in those events obtain fertility WB on

average and survive with probability sB ¼ 1 � dB. Then

Eq. (1) can be presented in the following form:

_n ¼ nsF WF � dFð Þ þ nsB WB � dBð Þ: ð2Þ
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Note that, since the focal game depends on the analysed

traits then the respective focal game payoffs will depend on

the strategic composition of the population. However, for

simplicity, the argument term (q) will not be included in the

numbered equations. Then the interaction rates multiplied by

demographic payoffs will constitute the ‘‘vital rates’’ (per

capita rates of change of the population state, see Caswell

2001). Now we can extend our model to the detailed

description of the evolutionary game including the different

strategies. Each strategy should be represented by its

respective equation of type (2) and assigned demographic

payoff functions WFðqÞ and dFðqÞ. We can use the structure

of the demographic payoff functions from Argasinski and

Broom (2012) (see ‘‘Appendix 1’’ for the necessary details)

Table 1 A list of important

symbols
Symbol Description

n Population size

Wi Fertility payoff function of the i-th type event

di Mortality payoff function of the i-th type event

K Carrying capacity (maximal environmental load)

qi Frequency of the i-th strategy

WiðqÞ Fertility payoff of the i-th strategy

siðqÞ Pre-reproductive survival payoff function of the i-th strategy

ViðqÞ Mortality-fertility trade-off function for the i-th strategy

si Rate of occurrence (intensity) of the i-th type event

sF Rate of occurrence (intensity) of the focal game event

sB Rate of occurrence of the background event

s Interaction rate from Argasinski and Broom (2012)—see ‘‘Appendix 1’’

h ¼ sB=sF Average number of background events between two focal events

Wb Focal game background fertility (payoff based approach)

db ¼ 1 � sb focal game background post-reproductive mortality (payoff-based approach)

WB Average background event fertility (dynamics-based approach)

dB ¼ 1 � sB Average background event mortality (dynamics-based approach)

U ¼ hWB Rate of the average background fertility

W ¼ hð1 � sBÞ Rate of the average background mortality

S Hawk–Dove example survival payoff matrix

F ¼ WP Hawk–Dove example fertility payoff matrix

d ¼ 1 � s Probability of death during a Hawk–Dove contest

~qhðnÞ Frequency nullcline describing the Nash equilibria

~nðqhÞ Density nullcline describing the ecological equilibria

Fig. 1 Schematic presentation

of the idea underlying the

proposed framework.

Interaction events occur at some

rate and the aggregation of their

demographic outcomes (births

and deaths) is responsible for

changes of the population state
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allowing us to describe the mortality and fertility outcomes

of the elements of the causal chain underlying the single

interaction event. We limit ourselves to the simple trade-off

between a single pre-reproductive mortality stage and a

single fertility stage (this happens for example in mating

conflicts when males fight and the surviving winners can

mate; thus mortality acts before reproduction). For each

strategy WFðqÞ will be the mortality–fertility trade-off

function ViðqÞ ¼
P

j qjsiðejÞWiðejÞ describing the repro-

ductive success of the survivors of the mortality stage

described by survival payoff siðqÞ ¼ 1 � diðqÞ (where index

i describes the strategy number) acting as 1 � dFðqÞ. In

addition, we will include the density dependent juvenile

survival function ð1 � n=KÞ to introduce the nest site lottery

mechanism (Argasinski and Broom 2013). Thus the general

growth equation for the i-th strategy will be as follows:

_ni ¼ nisFVi 1 � n

K

� �
� nisFð1 � siÞ

þ nisBWB 1 � n

K

� �
� nisBdB:

ð3Þ

We can adjust the timescale to make the focal game’s vital

rates equal to their demographic payoffs. This will keep the

mechanistic interpretation of the payoffs as the number of

offspring and the survival probability during the interaction

event. It is clear that only the ratio of our two interaction

rates is important for the evolution of the population. After

a change of timescale ~t ¼ tsF , sF vanishes and sB trans-

forms into h ¼ sB
sF

. Note that letting sF tend to zero, i.e.

letting h tend to 1, implies the weak selection limit where

the impact of the focal game on the ecological dynamics

vanishes; thus the eco-evolutionary feedback is broken (see

‘‘Formulation of a Hawk-Dove game as an example’’. The

parameter h can be interpreted as the average number of

background events between two focal interactions. Then

the growth equation will be:

_ni ¼ ni Vi 1 � n

K

� �
� 1 � sið Þ þ h WB 1 � n

K

� �
� dB

� �h i
;

ð4Þ

leading to the following equation for the population size:

_n ¼
X

i

_ni ¼ n
X

i

qiVi 1 � n

K

� �
� 1 �

X

i

qisi

 !"

þh WB 1 � n

K

� �
� dB

� �i
:

ð5Þ

Parameters sB, WB and dB can be biologically justified and

can even be functions of other parameters (for example

from other types of game). However, if we need only some

background ‘‘noise’’ without particular justification, to add

realism to our model, we can simplify the notation. Since

demographic parameters WB and dB never occur without

the ratio between intensities h, we can simplify this by

substitutions U ¼ hWB and W ¼ hdB, constituting the

background vital rates. Letting qi ¼ ni=n, we obtain the

following system of replicator equations:

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � n

K

� �
þ si �

X

j

qjsj

 !" #
;

ð6Þ

_n ¼ n Uþ
X

i

qiVi

 !
1 � n

K

� �
þ
X

i

qisi � 1 �W

" #
;

ð7Þ

where Eq. (7) follows directly from Eq. (5), and Eq. (6) is

obtained using Eqs. (4) and (5). The attractor of the pop-

ulation size is given by the nontrivial zero of the right-hand

side of Eq. (7), constituting the density nullcline:

~n ¼ 1 �Wþ 1 �
P

i qisi

Uþ
P

i qiVi

� �
K: ð8Þ

This approach to the background fitness can be termed the

dynamics based approach since it is not related to the game

theoretic structure. Note that this approach is related to the

methodology used for the separation of ecological equa-

tions from selection dynamics (Cressman and Garay

2003a, b; Cressman et al. 2001). However, here we do not

want to separate the ecological dynamics from the selection

dynamics, since we believe that the relationship between

ecology and selection is extremely important.

Two distinct approaches to background fitness

The background fitness vital rates, representing the impact

of other games played by individuals, appear as the addi-

tive elements U 1 � n
K

� �
and W in Eq. (7). However, tradi-

tionally in evolutionary games, a background fitness is

represented by a background payoff which is the strategi-

cally neutral element of the payoff function (such as a

constant added to all entries of the payoff matrix). But in

our case, we have two separate payoffs described in distinct

units (numbers of births and probability of survival). The

question of whether the game theoretic background payoff

concept and the background fitness describing the impact

of the other games are equivalent arises. The impact on the

dynamics of the neutral elements of both payoff functions

is analysed in ‘‘Appendix 2’’. It is shown there that only

multiplicative pre-reproductive survival will be selectively

neutral and will affect only the pace of convergence.

Additive background fertility Wb and multiplicative post-

reproductive background survival sb (which was described

by m in Argasinski and Broom 2012) will appear together

in the multiplicative factor Wb 1 � n
K

� �
þ sb

� �
of the sur-

vival payoffs si (this approach was used in Argasinski and
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Broom 2012). Note that here we use the lower case sub-

script b for the neutral elements of the payoff functions

(that can be termed the payoff-based approach), to distin-

guish them from the payoffs from the alternative approach,

where we use B. The replicator dynamics will be

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � n

K

� �"

þ Wb 1 � n

K

� �
þ sb

h i
si �

X

j

qjsj

 !#
;

ð9Þ

_n ¼ n
X

i

qiVi 1 � n

K

� �
þ Wb 1 � n

K

� �
þ sb

h iX

i

qisi � 1

" #
;

ð10Þ

and then the manifold representing the population size

equilibria (the n -nullcline, which is the attractor in the n-

subspace) is

~n ¼ K 1 � 1 � sb
P

i qisi

Wb

P
i qisi þ

P
i qiVi

� �
: ð11Þ

The above equations show that the neutral elements of the

payoff functions produce different outcomes than the

dynamics-based background fitness U and W. However, the

payoff-based approach can be a valuable element of the the-

oretical framework. In particular, it can be used to describe the

selectively neutral elements linked with the game interaction

such as juvenile mortality (responsible for the nest site lottery

mechanism, Argasinski and Kozłowski 2008; Zhang and Hui

2011; Argasinski and Broom 2012, 2013). But it can be

problematic, if we want to use it when describing the impact of

other games, since it is an element of the causal chain of the

focal game. This can be done only in the case of the back-

ground post-reproductive mortalitydb ¼ 1 � sb, which can be

linked with background mortality W by the relationship

described by Theorem 1 in ‘‘Appendix 2’’.

The difference between the two approaches relies on the

different distributions of events in time. In the dynamics-

based background fitness W all background deaths gradu-

ally aggregate according to the intensities of all other

games. In the payoff-based approach, all background

deaths occur at the same time with the focal interaction as

the last element of the causal chain (some survivors of the

game are killed). Theorem 1 (see ‘‘Appendix 2’’) shows

that this mortality can be interpreted as the aggregated

mortality between two focal game events.

If we limit analysis to the static case, then the interpretation

of the background fitness as the mortality between two focal

games is more natural and allows us to get rid of the instanta-

neous rates of occurrence from our reasoning. In addition this

allows us to remove the abstract terminology of differential

equations. In effect, the static reasoning can be expressed in

clear, intuitive and empirically measurable terms, describing

the respective causal stages of the interaction.

However, if we are interested in the dynamics, the dif-

ferences related to the different distribution of deaths in

time can seriously affect the predictions. This will be

illustrated in the next section.

Formulation of a Hawk–Dove game as an example

We will illustrate the results from ‘‘The general model’’ by

use of a Hawk–Dove example. Argasinski and Broom

(2012) considered the payoff matrices S (survival proba-

bility) and P, where the fertility matrix is F ¼ WP, below:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

H D

H s 1

D 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, P =

⎛
⎜⎜⎜⎜⎜⎜⎝

H D

H 0.5 1

D 0 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here s ¼ 1 � d\1 is the survival probability of a fight

between Hawks, and the fertility matrix contains the

expected number of newborns W produced from the

interaction. This leads to the following set of replicator

equations (see ‘‘Appendix 3’’ for a detailed derivation):

_qh ¼ qh 1 � qhð Þ 1

2
W 1 � qhdð Þ 1 � n

K

� �
� qhd

� �
; ð12Þ

_n ¼ n Uþ 1

2
W 1 � q2

hd
� �� �

1 � n

K

� �
� q2

hd �W

� �
;

ð13Þ

describes the Hawk frequencies and total population size.

The zeros of the right-hand sides of the above equations

will give nullclines constituting the equilibria of selection

and ecological subsystems. Two rest points of this system

are qh ¼ 0 and 1. A nontrivial rest point, which becomes

the attracting nullcline describing the manifold represent-

ing the strategic equilibria, is given by

~qhðnÞ ¼
1
2
W 1 � n

K

� �

d 1
2
W 1 � n

K

� �
þ 1

� � : ð14Þ

There is a stable population size at either ~n ¼ 0 or at the

positive restpoint, which is conditional on the Hawk

strategy frequency (describing the nullcline constituting the

population size equilibrium manifold parametrized by qh),

~nðqhÞ ¼ K 1 � q2
hd þW

1
2
W 1 � q2

hd
� �

þ U

 !
: ð15Þ

Note that background fitness factors W 1 � n

K

� �
and U

affect the shape of the density nullcline. Numerical
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simulations show that this impact can be significant. This is

illustrated by examples in Figs. 2, 3, 4, which differ only by

parameters U and W.

We see that when U and W are small as in Fig. 2, and to

a lesser extent in Fig. 3, the trajectory is clearly distinct

from the density nullcline ~nðqÞ, whereas for large U and W,

as in Fig. 4, the trajectory converges quickly to this null-

cline, and then follows it to the equilibrium point. Thus,

only for large U and W , i.e. in the weak selection limit, can

we obtain a separation of timescales for slow frequency

and fast size dynamics, which can be described by its

equilibrium value.

The shape of the density nullcline shows the strength of

the impact of the focal game, via eco-evolutionary feed-

back, on the ecology of the population. In Figs. 2 and 3,

where the focal game is quite a frequent event (since

Fig. 2 The dynamics of a Hawk–Dove population in our new model

with initial conditions qhð0Þ ¼ 0:7 and nð0Þ ¼ 147. Model parame-

ters: W ¼ 0:8, d ¼ 0:5, W ¼ 0:006, U ¼ 0:008. In this case the

impact of the background fitness components is very weak. The

vector field indicated by the arrows shows that the force of attraction

towards the density nullcline increases with population size.

However, the dynamics does not converge quickly to the nullcline,

and this case is far from timescale separation. Note that, the shape of

the density nullcline highly depends on the strategic composition of

the population. Thus the impact of the focal game on the population

size is strong

Fig. 3 The dynamics of a

Hawk–Dove population in our

new model with initial

conditions qhð0Þ ¼ 0:7 and

nð0Þ ¼ 147. Model parameters:

W ¼ 0:8 , d ¼ 0:5, W ¼ 0:06,

U ¼ 0:08. This case has

background fitness components

10 times larger than in Fig. 1.

The behaviour of the system and

the restpoint have changed;

however, the vector field

depicted by the arrows shows

that the system is still far from

timescale separation
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background fitness is relatively low), the density nullcline

(as a function of qh) depends strongly on the strategic

composition. On the other hand, in the case when the focal

game is rare (as in Fig. 4), and so its impact is weak, the

density nullcline is nearly flat.

Impact of the distribution of interaction events in time

on the dynamics

In this section we will illustrate the relationships between

the dynamics-based and payoff-based approaches to the

background mortality analysed in ‘‘Two distinct approaches

to background fitness’’ and summarized by Theorem 1 in

‘‘Appendix 2’’. This will show the importance of the impact

of the distribution of events in time. In the payoff-based

approach, background deaths occur simultaneously with the

focal game event while in the dynamics-based approach they

gradually aggregate independently of the focal interactions.

We can observe this comparing the numerical simulations of

the system (12, 13) with the system (55, 56), which is the

Hawk–Dove game model derived according to (9, 10). For

simplicity we remove the background fertility from both

systems by setting W and Wb equal to zero.

Numerical simulations show that for small background

mortalities the two approaches produce similar trajectories

of strategy frequencies, but ecological predictions differ

significantly (see Figs. 5 and 6). The dynamics-based

model can predict extinction in the case when the payoff-

based model shows a positive stable population size

(Fig. 6). These numerical results support the analytical

results from Theorem 1 in ‘‘Appendix 2’’, which shows that

the stable sizes predicted by the model of Argasinski and

Broom (2012) are biased, while the frequency levels of the

intersections are the same for both approaches. With an

increase of the background mortality, the differences

between the models also increase and can affect frequency

trajectories and phase portraits (Fig. 7). Thus the above

example supports the claims that background fitness and

the background payoff are distinct, although related,

concepts.

Discussion

Two types of background fitness

Background fitness is traditionally interpreted as some

phenomenological constant (or function) added to the

payoffs of all strategies which vanishes from the continu-

ous replicator equations. This concept can be found in

many papers (for example see Cressman et al. 1986;

Houston and McNamara 1991; Claussen and Traulsen

2005), but it is treated as a technical element of the

mathematical notation and these works are not primarily

focused on the biological meaning of it. Background fitness

can be interpreted in two ways: First, as an element of the

game theoretic structure (a generalization of the back-

ground payoff from classical game theory). Second, as an

element of the dynamics occurring independently from the

focal game at a separate rate of occurrence. In the basic

Fig. 4 The dynamics of a Hawk–Dove population in our new model

with initial conditions qhð0Þ ¼ 0:7 and nð0Þ ¼ 147. Model parame-

ters: W ¼ 0:8, d ¼ 0:5, W ¼ 15, U ¼ 20. In this case the impact of

the background fitness components is very strong and the system is

close to the weak selection limit. The stable restpoint is different to

the restpoints from Figs. 2 and 3. Here the density nullcline is nearly

flat due to the weak impact of the rare focal game events. The vector

field described by the shows a strong attraction of the trajectory

towards the density nullcline, then the trajectory traces it until it

reaches the restpoint, i.e. we have effective timescale separation

Theory Biosci.

123



approach to evolutionary game theory, the two approaches

are indistinguishable. Some researchers, for instance those

working explicitly using discrete dynamics or weak

selection models, interpret the classical background fitness

in rather a similar way to the first approach (Broom and

Rychtar 2013; Taylor and Nowak 2006; Wu et al. 2010),

while for others, for instance in optimal foraging/ diet

choices models, the underlying logic involves the second

approach (Křivan 1998, 2003; Cressman and Křivan 2010).

However there was no rigorous formalization of this aspect

and it is rather an example of ‘‘folk’’ knowledge.

Our work shows that there are essentially two types of

background fitness (or more precisely, of background mor-

tality and fertility), the payoff-based and the dynamics-based

approaches. The dynamics-based approach that we focus on

in this paper acts as the classical background fitness and is

derived from the general ecological model, not phe-

nomenologically postulated. While the payoff-based

approach is a good tool to describe the selectively neutral

factors related to the game interaction, which is clearly

shown by the example of density dependent juvenile mor-

tality (Argasinski and Kozłowski 2008; Zhang and Hui

2011; Argasinski and Broom 2012, 2013), we have shown

here that such an application to the factors not related to the

focal game can be problematic. The payoff-based approach

does not take into account the distribution of the background

events in time. The outcomes of all background events

which occurred between two focal events affect the popu-

lation state simultaneously when a single focal event occurs,

since they are the final element of the focal game’s causal

chain. The dynamics-based background fitness is free from

this disadvantage. Note that both types of background fitness

are not selectively neutral and affect the dynamics of the

system via strategically neutral juvenile mortality (as is

shown by a Hawk-Dove example). This impact is nontrivial

and will probably affect the general stability conditions. This

is a question which is analysed in a subsequent paper (Ar-

gasinski and Broom 2017).

The event-based approach and rates of event

occurrence

The most general and important claim resulting from our

approach is that the payoff is not equivalent to the popu-

lation growth rate. Game-theoretic notions describe the

causal structure and the resulting outcomes of the specific

single interaction. The interactions aggregate with some

rate and the product of this rate with demographic out-

comes constitute the vital rates. This is different to the

approach from Taylor and Nowak (2006), where the fitness

is expressed as the outcome of the average interaction (the

sum of payoffs from interactions divided by the number of

Fig. 5 Time evolution of the Hawk frequency and population size for

the payoff-based and dynamics-based models for the parameters:

W ¼ 4, d ¼ 0:85, W ¼ 0:4. Levels of intersections indicate the

frequency coordinates of the intersections of frequency and density

nullclines ~qhðnÞ and ~nðqhÞ, constituting the rest points of the eco-

evolutionary dynamics. The frequency predictions are similar but the

trajectories of the population sizes differ significantly
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those interactions). This assumption does not take into

account the impact of the different numbers of interactions

on the fitness of the particular strategy. We can imagine an

example when one strategy will obtain on average lower

reproductive success per interaction than a competitor, but

will participate in more interactions, so that its aggregated

reproductive success is larger. The approach proposed here

explicitly takes this into account. We thus believe that the

number of games played should be explicitly considered.

Then the demographic payoffs will describe the outcomes

of the average interaction event (similarly to the stoichio-

metric coefficients in chemical kinetics, Upadhyay 2006)

not the growth rates as in traditional evolutionary games.

In static models there is no time but causal conse-

quences of the strategic ‘‘decisions’’ of individuals

described by their reproductive success. Thus, the rigorous

derivation of the population growth rate as an aggregated

outcome of individual interactions needs rates of occur-

rence as the necessary element to make the framework

consistent (the problem of the consistency and realism of

modelling frameworks was discussed in Houston and

McNamara 2005; McNamara 2013). Traditionally, inter-

action rates are not explicitly analysed in game-theoretic

selection models (some exceptions will be discussed later).

However, they can be a practical analytic tool. We can

imagine a population of individuals where the type of

games played depends upon their situation. Then the

probabilities of finding particular situations associated with

the respective type of game can be described by different

rates of occurrence. The new approach corrects intuitions

inspired by classical birth and death processes (see e.g.

Haigh 2002) where birth and death events are described by

different intensities, which implies statistical independence

of births and deaths. In this case trade-offs between mor-

tality and fertility are impossible. In evolutionary theory

benefit is linked to reproductive success while expected

cost is related to the associated mortality risk. The

approach from this paper can be used to describe the cor-

relations between mortality and fertility factors associated

with particular activities.

In addition, rates of occurrence are not necessarily

constants. For example they can be functions of the pop-

ulation size (more individuals implies potentially more

interactions per unit time) or population state. A good

example of this is the battle of the sexes with the problem

of pair formation (Mylius 1999) or dynamic model of sex

ratio evolution (see Argasinski 2012, 2013 and 2017).

There an elementary event (a Bernoulli trial) is the

Fig. 6 Time evolution of the Hawk frequency and population size for

the payoff-based and dynamics-based models for the parameters:

W ¼ 15, d ¼ 0:85, W ¼ 0:4. As in Fig. 5, the frequency trajectories

are similar but the predicted population sizes differ dramatically. The

payoff-based model predicts a positive population size at the upper

intersection. For the dynamics-based approach, the intersection

describing the Hawk invasion barrier is in the region of extinction,

since the stable population size is negative
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production of a single offspring with a randomly chosen

partner. Then females interact at a constant rate, while

males interact proportionally to the number of available

females described by the actual sex ratio (female to male).

Thus interaction rates constitute a crucial element of the

strategy selection mechanism. We can also imagine the

situation when interaction rates can depend on an indi-

vidual’s strategy. This can be illustrated by the example of

non-uniform interaction rates in the models of social

dilemmas, such as the models of upstream reciprocity

(Nowak and Roch 2007; Pena et al. 2011). In this case

there are different interaction rates for different individual

strategies within the single game.

There is also an interesting relationship between the so-

called weak selection concept and our eco-evolutionary

feedback. Traditionally, in population genetics and models

based on continuous traits, the weak selection limit

assumes very small differences between strategic agents or

alleles resulting in small selective advantage (Kimura

1968; Ohta 2002). This assumption was also used in matrix

game models, where assumption of small differences is not

necessarily applicable (for example in models with con-

trasting strategies such as Hawks and Doves which by

definition will obtain different demographic payoffs).

Then, the weak selection limit is introduced via a selection

constant (see Wild and Traulsen 2007 for the comparison

of both approaches). Note that the selection constant

(Nowak et al. 2004; Antal et al. 2009; Taylor et al. 2004;

Ohtsuki et al. 2006; Taylor et al. 2007; Fu et al. 2009;

Tarnita et al. 2009a; Wild and Traulsen 2007) can be

interpreted as the rate of the focal game’s occurrence.

Under weak selection, a focal game described by relatively

high demographic parameters will be a rare event, and its

impact on the population dynamics will be small. Our

interpretation embeds this concept in a clear biological

context. The weak selection limit can be applied only in the

case that the focal events are really rare. Thus it cannot be

applied in common types of interactions such as mating

conflicts or resource conflicts during foraging. Note that, in

the weak selection limit, where our parameter h tends to

infinity, the impact of the frequency dynamics on the

population size vanishes, but the second element of the

eco-evolutionary feedback is still present. The frequency

dynamics is affected by population size via juvenile sur-

vival inducing the nest site lottery mechanism on the

density nullcline (Argasinski and Broom 2013).

(a)

(b)

Fig. 7 Phase diagrams following the evolution of the Hawk

frequency and population size for the payoff-based and dynamics-

based models for the parameters: W ¼ 8, d ¼ 0:85, W ¼ 2:3. The

frequency and density nullclines occupy different positions with

respect to the same initial point in both cases, and the trajectories

obtained are totally different
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General discussion

The event-based approach constitutes a clearly defined area of

application of game-theoretic notions within the evolutionary

dynamics framework. The mathematical structure describing

the focal interaction can be very complex (e.g. see Broom and

Ruxton 1998; Gokhale and Traulsen 2010; Broom 2002;

Broom and Cannings 2002, and in general the book Broom

and Rychtar 2013) and a clear methodology how to incor-

porate the game into a population dynamic model can be

important. The approach proposed in this paper shows that

evolutionary dynamics under growth, limited by nest site

availability, is a synergistic product of different games played

by individuals, not only a simple aggregated sum of the

outcomes of those games. Thus, the dynamical approach is

more than an extension of the static game structure, as in

classical theory. An important aspect of this approach is that it

can be easily interpreted, which is a significant advantage

over abstract simplified models , as argued Geritz and Kisdi

(2012). Further, the proposed approach allows for more pre-

cise modelling of the outcomes of selection dynamics on

ecological parameters such as population size. This is very

important, because the relationship between ecological

mechanisms (regulation of the population size) and the pro-

cess of natural selection is one of the major problems of

modern evolutionary biology (Birch 1960; Hutchinson 1965;

Ginzburg 1983) and is still at the centre of debate (Pelletier

et al. 2009; Morris 2011; Post and Palkovacs 2009; Schoener

2011). We note that aspects discussed above are important

from the point of view of the general definition of fitness (see

Metz 2008; Roff 2008; Orr 2009) and its interpretation within

evolutionary theory (Mills and Beaty 1979; Rosenberg and

Williams 1986; Horan 1994; Matthen and Ariew 2002;

Brandon and Ramsey 2007; Matthen and Ariew 2009; Walsh

2010; Ramsey 2013).

The proposed approach shows how the game theoretic

notions, causal structure underlying the interactions that

shape the population dynamics, can be used within many

theoretical frameworks. It can be easily extended to

Adaptive Dynamics (Dercole and Rinaldi 2008) due to its

clear description of the underlying ecology. On the other

hand, decomposition of fitness into separate demographic

payoffs creates the possibility of incorporating more

detailed population genetic mechanisms (Crow and Kimura

1970; Hartl and Clark 1997; Bürger 2000), which will

affect the fertility payoffs. Then the fertility payoff will

describe the number of mating attempts which can be

weighted by the probability of gene transfer determined by

the underlying genetic system.

In addition the impact of the proposed methodology can

be broader and more general. Note that in the case of

abstract model parameters, that are ‘‘fitted’’ to data, it can be

hard to falsify the obtained outcomes, if the model is

‘‘flexible’’ enough with respect to the ‘‘fitted’’ parameters, to

cover different types of datasets. The clear demographic

meaning of our model parameters can allow for easy falsi-

fication according to empirical data or the outcomes of

individual-based simulations (which will have the status of

in-silico experiments, see Uchmański and Grimm 1996;

Grimm and Railsback 2005) parameterized by the same

values. The predictions of the analytical model can be

helpful in a mechanistic explanation of the patterns pro-

duced by the simulation (see, for example, Gerlee and

Lundh 2010) or observed empirical data. This will constitute

important progression in the direction of the development of

theoretical notions related to the individual level, originated

by Łomnicki (1988), and in particular related to research on

animal personalities (Dall et al. 2004; Wolf et al. 2007;

Wolf and Weissing 2010, 2012; Wolf and McNamara 2012).

Thus, the event-based terminology not only extends the

mathematical notions, but also influences the general theory

and contributes to the understanding of the causal structure

of the evolutionary process.
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Appendix 1: The details of the general model
from Argasinski and Broom (2012)

We now briefly consider some important ideas and termi-

nology from Argasinski and Broom (2012). The main idea

underlying the modelling approach of Argasinski and

Broom (2012) is that all interactions between individuals

occur with single intensity s (there are no distinction

between different games played by the individuals) and

their outcomes are described by demographic payoff

functions, fertility W (interpreted as the number of off-

spring produced during an interaction) and mortality d

(interpreted as the probability of death during an interac-

tion). This leads the following growth equation:

_ni ¼ nis Wi � dið Þ: ð16Þ

The paper was mostly focused on the description of the

causal stages of the game interaction. In this paper we will

not analyse this aspect; thus for the objectives of the
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current paper, we do not need a complex causal structure

for our focal interaction. We will limit ourselves to a single

pre-reproductive mortality stage. Assume that it is descri-

bed for the i-th strategy by payoff functions si and single

fertility stage (when survivors reproduce) described by

payoff functions Wi. For our population, qi ¼ ni=n is the

frequency of strategy i, n ¼
P

ni the population size, K the

carrying capacity (maximum environmental load, Hui

2006). Since we assumed the pre-reproductive survival

stage, which implies that only survivors can reproduce, this

leads to a mortality–fertility tradeoff. Since si and Wi will

be functions of vector q (frequency dependent, as in

Framework II in Argasinski and Broom 2012) the mortal-

ity–fertility trade-off function ViðqÞ ¼
P

j qjsiðejÞWiðejÞ
should be introduced. Finally, interactions occur with rate

of occurrence s. The population for each individual strat-

egy growth equation can be formulated as follows:

_ni ¼ nisVi 1 � n

K

� �
� nisð1 � siÞ ð17Þ

¼ nis Vi 1 � n

K

� �
� 1 � sið Þ

� �
: ð18Þ

The above equation is the extended version of (16) where

WiðqÞ is replaced by 1 � n
K

� �
ViðqÞ and diðqÞ ¼ ð1 � siðqÞÞ

are game theoretic fertility and mortality payoffs. This

introduces the simple trade-off between mortality and fer-

tility. In the Eq. (17) we can remove the interaction rate s
by a change of timescale (see ‘‘Appendix 1’’ in Argasinski

and Broom 2012). Then, the above system can be rescaled

to the related frequencies. These assumptions lead to the

following detailed general system of replicator equations

(describing the changes of strategy frequencies qi)

including an equation on population size n, which will be

analysed in this paper:

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � n

K

� �
þ si �

X

j

qjsj

 !" #
;

ð19Þ

_n ¼ n
X

i

qiVi 1 � n

K

� �
þ
X

i

qisi � 1

 !
: ð20Þ

From the Eq. (20) we can derive the description of the n-

nullcline (which is the attractor in n-subspace):

~n ¼ K 1 � 1 �
P

i qisiP
i qiVi

� �
: ð21Þ

This nullcline consists of the equilibria of the ecological

dynamics.

Appendix 2: A comparison between the new
(dynamics-based) approach and the approach
of Argasinski and Broom (2012)

The background fitness terms derived in the ‘‘Background

fitness as the aggregated outcomes of background events’’

(dynamics-based approach) act as additive factors that

vanish from the replicator dynamics (in a similar way as in

the classical theory). However, in the classical game the-

ory, the background payoff is the neutral (additive) element

of the payoff function. Thus it is an element of the game

theoretic structure. Are background vital rates U and W
equivalent to the neutral elements of the demographic

payoff functions Wi and si? This can be shown by com-

parison of the approach (which we call here the payoff-

based approach) used in Argasinski and Broom (2012),

where all interaction events occur at the single intensity s
(there are no distinctions between different game types)

and the background fitness components are described by

phenomenological, strategically neutral elements of the

payoff functions. Neutral pre-reproductive mortality will

be represented by a multiplicative factor of the whole right-

hand side of replicator and population size equations (since

it will be the first element of the interactions causal chain);

thus it will affect only the pace of convergence. Therefore,

it can be incorporated into the occurrence rate of the focal

game sF as an adjustment. The situation is more compli-

cated with the additive element Wb þWi in the fertility

payoff and multiplicative post-reproductive mortality db ¼
1 � sb affecting the survivors of the game mortality stage

sidb). This will lead to the growth equation

_ni ¼ nis Vi 1 � n

K

� �
� 1 � sið Þ þ siWb 1 � n

K

� �
� sidb

� �

¼ nis Vi 1 � n

K

� �
� 1 þ si Wb 1 � n

K

� �
þ 1 � db

h i� �
:

ð22Þ

Thus the selectively neutral elements appear as the multi-

plicative factor Wb 1 � n
K

� �
þ 1 � db

� 	
of the survival

payoffs si. This leads to the following extension of the

system (19, 20):

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � n

K

� �"

þ Wb 1 � n

K

� �
þ sb

h i
si �

X

j

qjsj

 !#
;

ð23Þ

_n¼ n
X

i

qiVi 1� n

K

� �
þ Wb 1� n

K

� �
þ sb

h iX

i

qisi� 1

 !
:

ð24Þ
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Then the density nullcline will be:

~n ¼ 1 � 1 � sb
P

i qisi

Wb

P
i qisi þ

P
i qiVi

� �
K: ð25Þ

This is system (9, 10). Thus the dynamics-based approach

from ‘‘Background fitness as the aggregated outcomes of

background events’’, based on parameters U and W, is

somewhat simpler than the original equations from

Argasinski and Broom (2012), (23) and (24). In addition, it

is clear that there is no need for a distinction between pre-

and post-reproductive mortality, because those factors are

totally independent of the focal game. Thus the classical

approach to the background fitness should be interpreted as

the aggregated outcome of other events (games) occurring

independently to the focal game, not as a phenomenolog-

ical element of the payoff function of the focal game itself.

A question arises about the relationship between the two

approaches. First, let us compare the approaches with

respect to the background fertility. In the payoff-based

approach (Argasinski and Broom 2012) this factor is rep-

resented by 1 � n
K

� �
Wbðsi �

P
j qjsjÞ in the frequency

equation (23) and by 1 � n
K

� �
Wb

P
i qisi in the population

size equation (24). Wb is multiplied by the averaged pre-

reproductive mortality related to the focal game, since it

describes a strategically neutral element of the fertility

stage of the focal game’s causal chain. In the dynamics-

based approach it is represented by 1 � n
K

� �
U in the pop-

ulation size equation (7) only. In the dynamics-based

approach the whole factor is represented by a single con-

stant U and is independent of the focal game. Thus the

above two approaches produce clearly distinct results.

The dynamics-based approach seems to be more natural

for the modelling of the impact of other interaction events

which occur other than through the focal game. In addition

it is technically equivalent to the approach used in classical

theory. This suggests that the background fitness is not the

same as the background payoff in classical game theory

leading to the payoff-based approach from Argasinski and

Broom (2012). Thus, both approaches are not equivalent

with respect to the cases described above. However, in the

case of post-reproductive mortality some relationship with

background mortality W can be shown.

Let us compare the general size equations using the

different approaches to the background mortality, where sb
is the neutral post-reproductive survival of the payoff-

based approach used in Argasinski and Broom (2012) and

sB is the dynamics-based approach from ‘‘Background fit-

ness as the aggregated outcomes of background events’’.

For the dynamics-based approach we have

_ni ¼ niVi 1 � n

K

� �
� nið1 � siÞ � niW; ð26Þ

whereas the equation for the payoff-based approach was

_ni ¼ niVi 1 � n

K

� �
� nið1 � siÞ � nisidb: ð27Þ

Thus the decay rates constituted by the mortality terms in

equations (26) and (27) are

E1 ¼ �ð1 � siÞ �W ð28Þ

for the dynamics-based approach, and

E2 ¼ �ð1 � siÞ � sidb ð29Þ

for the payoff based approach. Note that equality of the

decay rates of both approaches E1 ¼ E2 implies the

condition

sidb ¼ hdB ð30Þ

which cannot be satisfied for every i; thus they are not

equivalent. Now, let us focus on the relationship between

the two approaches (distinguished by the indexes dyn for

dynamics-based approach and pf for the payoff-based

approach). We can use a Poisson process theory (Haigh

2002), to show conditions when the payoff-based approach

can be treated as an approximation of the dynamics-based

approach:

Theorem 1 Assuming that sb ¼
1

1 þW
and the population

size equilibrium condition (8) is satisfied, then

(a) The stationary frequency points for both approaches

are the same.

(b) The rate of the dynamics in the payoff-based

approach equals the rate of the dynamics-based

approach divided by 1 þW (or alternatively multi-

plied by sb).

(c) Juvenile survival probabilities Jdyn ¼ 1 � ~ndyn

K

� �
and

Jpf ¼ 1 � ~npf
K

� �
at the stable state and respective

stable population sizes ~ndyn and ~npf are different and

Jdyn ¼ Jpf =sb leading to

~ndyn ¼ ð1 � Jpf =sbÞK ¼ 1 � 1 � sb
P

i qisi

sb
P

i qiVi

� �
K:

ð31Þ

We give a proof below.

Thus, if we are only interested in the static analysis, it is

possible to approximate independent background mortality

by post-reproductive mortality db ¼ 1 � sb ¼
W

1 þW
related to the game event, describing the aggregated

mortality caused by independent background events occur-

ring between two game interactions. Stable frequencies

will be the same and the respective juvenile survivals and
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population sizes can be found according to part c) of

Theorem 1.

Proof of Theorem 1 Parts (a) and (b). The replicator

equations from Argasinski and Broom (2012) using the

payoff-based approach to post-reproductive background

mortality (a special case of (23) with Wb ¼ 0) are given by

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � n

K

� �
þ sb si �

X

j

qjsj

 !" #
;

ð32Þ

and for the density nullcline we have the following form of

juvenile survival:

1 � ~n

K
¼ 1 � sb

P
i qisiP

i qiVi

: ð33Þ

Using the basic properties of the Poisson process, for two

types of events happening at rates m1 and m2, the probability

that the first type event comes before the second type is

sb ¼
m1

m1 þ m2

. In our case the game interaction happens at

rate 1 (after the change of timescale ~t ¼ tsF) and back-

ground mortality acts at rate W ¼ hð1 � sBÞ (where

h ¼ sB=sF). Then the survival probability between game

interactions is given by sb ¼
1

1 þW
since survival occurs if

a new contest comes before death. It is easy to show that

this relationship does not hold for the payoff-based

approach in general. However, under the assumption of

population size equilibrium, some relationships between

the payoff-based approach as an approximation of the

dynamics-based approach to the background mortality can

be derived. After substitution of the population size equi-

librium (33) into (32), we have

_qi ¼ qi Vi �
X

j

qjVj

 !
1 � sb

P
i qisiP

i qiVi

þ sb si �
X

j

qjsj

 !" #
:

ð34Þ

After substitution of sb ¼
1

1 þW
to the above equation, we

have

_qi ¼
qi

1 þW
Vi �

X

j

qjVj

 !
Wþ 1 �

P
i qisiP

i qiVi

þ si �
X

j

qjsj

 !" #
:

ð35Þ

The right-hand side of Eq. (35) equals a constant times the

r.h.s of Eq. (6) using the substitution from Eq. (8) (recall

that we assumed U ¼ 0 for simplicity). Thus sb only affects

the rate of convergence and intersections of the nullclines

will be the same as in the new method presented in this

paper.

Part (c). Substituting the population sizes to the logistic

suppression coefficient we can calculate the juvenile

survivals on the density nullcline. Then

Jpf ¼ 1 � npf

K

� �
¼ 1 � sb

P
i qisiP

i qiVi
ð36Þ

for the payoff based approach, and

Jdyn ¼ 1 � ndyn

K

� �
¼ 1 �

P
i qisi þWP
i qiVi

¼ 1=sb �
P

i qisiP
i qiVi

ð37Þ

(since W ¼ 1=sb � 1Þ, for the dynamics-based approach.

Since we are especially interested in the result of the

dynamics-based approach and treat the payoff-based model as

an approximation of the dynamics based one, we need to

express the predictions of the dynamics-based model in terms of

the payoff-based approach. Thus for a given set of parameters

common to both models, we obtain from the above that

Jpf ¼ sbJdyn ð38Þ

and the stationary population size for the dynamics-based

model can be described as

~ndyn ¼ 1 � Jpf

sb

� �
K: ð39Þ

leading to (31). h

Appendix 3: Derivation of the Hawk–Dove
example game

The equations using the Hawk–Dove payoff functions

equivalent to the Eqs. (19) and (20), where fertility payoffs

are Vi ¼ eiS � PqTW and
P

j qjVj ¼ qS � PqTW while sur-

vival payoffs are si ¼ eiSq
T and

P
j qjsj ¼ qSqT (where ‘‘�’’

means elementwise multiplication and ei is the base vector

with 1 on i-th coordinate and zeros on the others), will be

the following:

_qh ¼ qh W e1S � PqT � qS � PqT
� �

1 � n

K

� �
þ ðe1Sq

T � qSqTÞ
� �

ð40Þ

_n ¼ n qS � PqTW 1 � n

K

� �
þ qSqT � 1

� �
: ð41Þ

The matrix operations are as follows:

e1Sq
T ¼ sqh þ 1 � qh ¼ qhðs� 1Þ þ 1; ð42Þ

e1S � PqT ¼ 1

2
sqh þ 1 � qh; ð43Þ

qSqT ¼ qh qhðs� 1Þ þ 1ð Þ þ 1 � qhð Þ ¼ 1 � q2
hð1 � sÞ;

ð44Þ
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qS � PqT ¼ qh
1

2
sqh þ 1 � qh

� �
þ 1

2
ð1 � qhÞ2 ¼ 1

2
1 � q2

hð1 � sÞ
� �

:

ð45Þ

Note that qS � PqT ¼ qSqT=2 which simplifies (41) to

_n ¼ n qSqT
1

2
W 1 � n

K

� �
þ 1

� �
� 1

� �
: ð46Þ

The bracketed terms of (40) are

Vi �
X

j

qjVj ¼ e1S � PqT � qS � PqT
� �

¼ 1

2
1 � qhð Þ qh s� 1ð Þ þ 1Þ½ �;

ð47Þ

si �
X

j

qjsj ¼ ðe1Sq
T � qSqTÞ ¼ ðs� 1Þqh 1 � qhð Þ:

ð48Þ

After calculations and the substitution d ¼ 1 � s the fol-

lowing equations for the Hawk proportion qh and for the

population size are obtained:

_qh ¼ qh 1 � qhð Þ 1

2
W 1 � qhdð Þ 1 � n

K

� �
� qhd

� �
; ð49Þ

_n ¼ n
1

2
W 1 � q2

hd
� �

1 � n

K

� �
� q2

hd

� �
: ð50Þ

Thus we have embedded the focal game into the replicator

dynamics. We should add the background fitness compo-

nents represented by the background vital rate U 1 � n
K

� �
�

W into the population size equation. Thus we obtain the

model derived according to the system (6, 7):

_qh ¼ qh 1 � qhð Þ 1

2
W 1 � qhdð Þ 1 � n

K

� �
� qhd

� �
; ð51Þ

_n ¼ n Uþ 1

2
W 1 � q2

hd
� �� �

1 � n

K

� �
� q2

hd �W

� �
:

ð52Þ

The zeros of the right-hand sides of the above equations

will give nullclines constituting the equilibria of selection

and ecological subsystems. Two rest points of this system

are qh ¼ 0 and 1. A nontrivial rest point, which becomes

the frequency nullcline consisting of Nash equilibria, is

given by

~qhðnÞ ¼
1
2
W 1 � n

K

� �

d 1
2
W 1 � n

K

� �
þ 1

� � : ð53Þ

There is a stationary population size at either ~n ¼ 0 or at

the following positive restpoint which is conditional on the

Hawk strategy frequency (describing the attracting density

nullcline parametrized by qh),

~nðqhÞ ¼ K 1 � q2
hd þW

1
2
W 1 � q2

hd
� �

þ U

 !
: ð54Þ

To obtain the model derived according to the payoff-

based background fitness we should multiply mortality

payoffs by Wb 1 � n
K

� �
þ sb

� 	
as in (23) and (24). In

equations (49) this will be the last term qhd in the long

bracket, due to (48), and in Eq. (50) this will be term qSqT

in (41) which becomes 1 in the internal bracket in (46).

This leads to the model derived according to system (9, 10)

:

_qh ¼ qh 1 � qhð Þ 1

2
W 1 � qhdð Þ 1 � n

K

� ��

�qhd Wb 1 � n

K

� �
þ sb

h i�
;

ð55Þ

_n ¼ n 1 � q2
hd

� � 1

2
W þWb


 �
1 � n

K

� �
þ sb

� �
� 1

� �
;

ð56Þ

leading to the system used in Argasinski and Broom

(2012). Then the attracting nullclines representing the

equilibria of selection dynamics and ecological dynamics

will be

~qhðnÞ ¼
1
2
W 1 � n

K

� �

d 1
2
W þWb

� �
1 � n

K

� �
þ sb

� �
;

ð57Þ

~nðqhÞ ¼ K 1 �
1 � 1 � q2

hd
� �

sb

1 � q2
hd

� �
1
2
W þWb

� 	
 !

: ð58Þ
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