
Bounds on the number of ESSs of a matrix game

M. Broom *

Centre for Statistics and Stochastic Modelling, School of Mathematical Sciences, University of Sussex, Falmer,

Brighton BN1 9QH, UK

Received 24 June 1999; received in revised form 27 June 2000; accepted 3 July 2000

Abstract

It is well known that for any evolutionary game there may be more than one evolutionarily stable
strategy (ESS). In general, the more ESSs there are, the more di�cult it is to work out how the population
will behave (unless there are no ESSs at all). If a matrix game has an ESS which allows all possible pure
strategies to be played, referred to as an internal ESS, then no other ESS can exist. In fact, the number of
ESSs possible is highly dependent upon how many of the pure strategies each allow to be played, their
support size. It is shown that if a is the ratio of the mean support size to the number of pure strategies n,
then as n tends to in®nity the greatest number of ESSs can be represented by a continuous function f �a�
with useful regularity properties, and bounds are found for both f �a� and the value a�, where it attains its
maximum. Thus we can obtain a limit on the complexity of any particular system as a function of its mean
support size. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Evolutionarily stable strategies; Payo�; Quadratic form; Complexity; Upper bounds; Lower bound

1. Introduction

Game theory has proved a valuable tool for modelling biological populations. The concept of
an evolutionarily stable strategy (ESS) (see [1] or [2]) is of particular importance, and is widely
applied in considering the strategies adopted by various organisms. In rough terms, an ESS is a
strategy which, if played by almost all members of a population, cannot be displaced by a small
invading group playing any alternative strategy. Thus an ESS will persist as the dominant strategy
through time, so that strategies observed in the real world will tend to be ESSs. For any speci®c
game theoretic model of a real population, simplifying assumptions must be made to obtain
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meaningful results. The games considered in this paper rely on the assumptions that the popu-
lation reproduces asexually and is both essentially in®nite in size and `well-mixed', so that an
animal is equally likely to meet any other animal in a given contest. The extent to which the model
predictions are borne out by reality depends, of course, on how serious departures from these
assumptions are.

An important class of games is that of matrix games. A matrix game is de®ned in the following
way. Suppose that in a con¯ict there are n available pure strategies, S1; . . . ; Sn, and that the payo�
to a player playing Si against a player playing Sj is aij. The payo�s can thus be written in terms of
the payo� matrix A � �aij�. The Hawk±Dove game of Maynard Smith [1] is an example of such a
game.

An individual may play a mixed strategy p � �p1; p2; . . . ; pn�, where it plays Si with probability pi

for all i. If a player playing p meets one playing q, then the payo� to the p-player is

E�p; q� �
X

i;j

piqjaij � pTAq:

A strategy p is evolutionarily stable (ES) against q if
(i) pTAp P qTAp and
(ii) if pTAp � qTAp then pTAq > qTAq:

p is an ESS if it is ES against all q 6� p.
The support of p; S�p� is de®ned as the set fi : pi > 0g. The size of the support S�p� is the number

of elements in the support. Matrix games may have multiple ESSs. Following [3], the Pattern of A
is the collection of the supports of all the ESSs of the matrix A. The problem of which patterns are
possible is discussed in [4,5], amongst others.

This problem is of relevance when considering the behaviour of a population of animals split
into several habitats. If the habitats are isolated, behaviour may evolve di�erently in each habitat
due to di�erent initial conditions or to random e�ects, even if the underlying environmental
conditions, and so the payo�s they give rise to, are the same. It is thus of interest to consider
which strategies are consistent with each other, in the sense of being reachable from the same
environmental conditions, and which are incompatible. If we ®nd two strategies which could not
have come from the same payo� matrix, we can conclude that di�erent conditions prevail in the
separate habitats. An example of when this idea might be useful is when considering the mating
strategies adopted by frogs in di�erent pools.

It is well known that if a game has an interal ESS, then no other ESSs can exist. Such a sit-
uation is intrinsically simpler than a case where there are a large number of ESSs, each of which
could be reached by the population depending upon initial conditions and chance. In fact, the
number of ESSs possible is highly dependent upon their support size. The greater the number of
ESSs, the more complex the biological situation and the harder it is to understand why animals
are behaving in the way that they are. This paper considers the problem of the maximum number
of ESSs possible, and thus the potential complexity of the system, as a function of the mean
support size of those ESSs.

A related problem was discussed in [6], where the problem of determining the greatest possible
number of local maxima that a quadratic form can have when the vector is constrained within the
unit simplex was considered.
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De®ne the vector function

V �p� � pTAp;

where A � �aij� is a real symmetric n� n matrix and p is a probability vector (i.e. its elements are
non-negative and sum to 1). The matrix A thus de®nes a quadratic form in n dimensions. A vector
p is a local maximum of the quadratic form, if and only if it is an ESS of the game with payo�
matrix A.

This problem arises naturally in the ®eld of population genetics. Suppose that there are
n-alleles, A1; . . . ;An, at a particular locus and the viability of genotype AiAj is aij (aij � aji, and so
the matrix is symmetric). The allelic frequency pi of Ai is given by the following di�erential
equation for each i:

dpi

dt
� pi��Ap�i ÿ pTAp�:

If all the pi are initially positive, then the population will converge to a local maximum, which is a
locally stable point of the di�erential equation [7]. Thus the set of local maxima is equivalent to
the set of points which the population could conceivably settle at.

This dynamic can also be applied to the game theoretic situation. If the payo� matrix for a
game is symmetric, the two situations are identical, otherwise the system's behaviour is more
complicated (see [8] or [9] for a discussion of this dynamic).

2. Results

For each payo� matrix A; p is allowed to take values over its entire range, and the ESSs are
catalogued. We shall refer to these as the ESSs of A. Let M�A� denote the number of ESSs of A
and L�A� denote the mean support size of these ESSs.

In [6], Un was de®ned as the greatest number of local maxima on n dimensions and un�r� was
de®ned as the greatest number of local maxima of support size r on n dimensions. In this paper,
we let Vn denote the greatest number of ESSs possible on n strategies and let vn�r� be the greatest
number of ESSs of support size r on n strategies.

Further de®ne sn�x� as the greatest number of ESSs of mean support size x on n strategies, so
that sn�x� is the maximum of M�A� over n� n symmetric matrices A with L�A� � x.

Sometimes there will be no possible collection of supports with mean size x. In this case we set
sn�x� to be 0.

Thus x is not necessarily an integer, but if it is, sn�x�P vn�x�. Clearly sn�x�6 Vn.
Several results about sn�x� and a related function f will now be given. Proofs of all theorems

and corollaries are in Appendix A.
Note that it is fairly easy to show that all our results about ESSs can just as readily be applied

to local maxima of constrained quadratic forms.
We now let a be the ratio of the mean support size of a matrix x and the number of strategies n.

It is shown that the limit of the nth root of sn�an� as n!1 exists; we set this to equal f �a�.
f �a� is thus a measure of the potential biological complexity at di�erent values of a; a � 0

corresponds to the `edge' of the strategy space (very small support size), a � 1 corresponds to the
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`centre' of the space (internal ESS or `almost internal'). The higher f �a�, the more potentially
complicated the system is. It is shown in Theorem 2 that sn�an�P 1 for all su�ciently large n, and
since no two ESSs can have the same support, sn�an�6 2n. It is thus clear that 16 f �a�6 2. We can
do a lot better than this, however. It is shown that f �a� has regular properties, and upper and
lower bounds for f �a� and a�, the value where f reaches its maximum, are found.

Theorem 1.

sm�x�sn�y�6 sm�n�x� y�:
Thus the number of ESSs possible increases exponentially. In particular srn�ry�P �sn�y��r.

Theorem 2.
(i) sn�an� is zero for a not a member of �0; 1�.
(ii) sn�an� is zero for non-rational a.
(iii) If a 2 �0; 1� and rational, then sn�an� is non-zero 8n P N for some integer N.

Theorems 1 and 2 can now be used to show that the limit as n tends to in®nity of �sn�an��1=n

exists for every a between 0 and 1.

Theorem 3.
(i) Limn!1V 1=n

n exists and is 6 2.
(ii) Limn!1�sn�an��1=n�� f �a�� exists 8 rational a 2 �0; 1�; and sn�an��1=n6 f �a�8n.

Furthermore, the function f is shown to have a number of regular properties. It is continuous,
its logarithm is concave, it possesses left- and right-derivatives (except at the end points 0 and 1)
and is bounded above and below. Speci®c upper and lower bounds for f �a� are given.

Theorem 4.

�f �a��1ÿy�f �b��y 6 f �a�1ÿ y� � by�; a; b; y 2 �0; 1�; and rational:

Theorem 4 implies that

�1ÿ y� ln�f �a�� � y ln�f �b��6 ln f �a�1ÿ y� � by�; y 2 �0; 1�;
i.e. that ln f is a concave function.

Corollary 1. f �a� is continuous on the set of rationals in �0; 1�.

Hence we can de®ne f �a� � lim f �aj� for any non-rational a between zero and one, inclusive,
where fajg is a sequence of rationals which converges to a. Thus f �a� is de®ned for every real a in
�0; 1�, and ln f �a� is concave on the reals in �0; 1�.

Corollary 2. The right- and left-derivatives of f �a�; f 0�a�� and f 0�aÿ�, exist for all a 2 �0; 1� (the
right-derivative does not exist at 0 and the left-derivative does not exist at 1).
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It is not known whether the right- and left-derivatives are equal for all values of a.
It also follows that ln f �a� (and hence f �a�� cannot have more than one local maximum, since if

a and b were such maxima then the value of ln f is at least as great as either ln f �a� or ln f �b� for
all points between a and b, so both cannot be local maxima. Hence we have a contradiction, i.e.
ln f (and f) has either a single maximum or a plateau of maxima.

Theorem 5.
(i) f �a� is bounded above by 1=faa�1ÿ a��1ÿa�g:
(ii) f �a� is bounded below by

(a) 1=aa : a � 1=i, integer i
and by
(b) �2=�1ÿ a���1ÿa�=2 : a � 1ÿ 2=i, integer i.

(iii) f �0� � f �1� � 1:

Due to the property that ln f �a� is concave, we can construct a lower bound over all values of a,
from (ii).

Note that there is a pattern with 30 ESSs (also local maxima, since the matrix with this pattern
is symmetric) of support size 3 on 9 strategies (see [6]) giving

f �1=3�P 301=9 � 1:459;

and similarly there is a pattern with 14 ESSs of support size 3 on 7 strategies [10], so that

f �3=7�P 141=7 � 1:458:

It is now possible to use the properties of f �a� together with its upper and lower bounds to obtain
bounds upon the value of a which gives the greatest number of ESSs.

Theorem 6. If a� is a value of a for which f �a� attains its maximum, then
(i) 1� a�6 f �a��6 1=�1ÿ a��;
(ii) 0:3156 a�6 0:752:

Thus the average support size of the most complicated situations is between 31% and 75% of
the total number of available strategies. If we consider the set of all possible strategies as a vector
space, the strategy space, the ith element of which is pi, then this implies that the most complex
behaviour takes place at the fringes of the strategy space where at least 25% of dimensions are
unused in every ESS.

3. Examples

We now consider three examples of questions which can be answered using the above
methodology to illustrate the results.

(a) Find bounds on the number of ESSs of mean support size 6 when the total number of
strategies is 90.
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Using Theorems 3 and 5 we know that

1=faa�1ÿ a��1ÿa�gP f �a�P �sn�an��1=n:

Setting n � 90 and a � 1=15, we obtain s90�6�6 �1:27753�90 � 3:745� 109. From Theorem 5,
since a � 1=i, where i is an integer, we have s90�6�P �1=aa�n � �1:19786�90 � 1:139� 107.

(b) Find bounds on ln�sn�an�� for general n and a � 1=i, where i is integer valued.
General upper and lower bounds for ln�sn�an�� can be found using Theorem 5, so that if a � 1=i

and an is integer-valued, then

ÿna ln�a�6 ln�sn�an��6 ÿ n�a ln�a� � �1ÿ a� ln�1ÿ a��:
Thus when a � 1=15, we have 0:1805n6 ln�sn�an��6 0:2449n.

(c) Find bounds on f (0.16).
The upper bound is found as usual from Theorem 5, giving f �0:16�6 1:5522. The lower bound

is found as follows:
1=6 P 0:16 > 1=7; f �1=6�P 1:3480; f �1=7�P 1:3205 using Theorem 5.
0:16 � 0:72�1=6� � 0:28�1=7�, so that using Theorem 4 we obtain

f �0:16�P f �1=7�0:28f �1=6�0:72 P 1:3402:

4. Discussion

For real populations it is possible that, for given environmental conditions, there may be many
ESSs. For any particular situation it is generally worthwhile ®nding all possible ESSs (although
some may be far more likely to occur in practice than others). However it is also of value to
consider the problem from the reverse direction. Which situations can generate only a single ESS,
which is then the only stable solution, and which are very complicated with multiple ESSs? In
particular, for the important class of matrix games, there is a link between the complexity of the
system, and the average number of pure strategies in an ESS's support.

It has been shown that the greatest number of ESSs of mean support size x that a matrix game
with n strategies may have increases essentially as a constant to the power n, as n tends to in®nity
with x=n � a ®xed. This constant rate of increase has been de®ned as f �a�. Thus f is a measure of
the potential complexity of a system, as a function of the proportion a. The function f �a� has been
shown to have some useful regularity properities; it is bounded above and below, is continuous
and ln f �a� is concave. Lower and upper bounds have been found for f �a�, and lower and upper
bounds have also been found for the value of a; a�, which maximises f �a�.

It is not surprising that f �a� possesses the regular properties that it does, and it seems rea-
sonable to conjecture that it is di�erentiable everywhere except at a � 0 and a � 1. However it is
interesting to be able to show these properties given the apparently limited information available
(the detailed study of patterns of ESSs has generally considered those with a low number of
strategies only (65, see [3])).

It has been shown that the greatest number of ESSs do not occur when these are central, in the
sense of involving all pure strategies, or nearly so. In particular a� is less than 0.752 and so the
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ESSs of the most compicated games are peripheral in terms of the strategy space, with about 25%
of strategies not used in each ESS. Thus all of the interesting behaviour takes place at the fringes,
rather than in the centre of the space.

The distance between the upper and lower bounds for f �a� is large for some values of a. Al-
though it is known that f �0� � f �1� � 1, the value of f �1=2� may be anywhere between

���
2
p

and 2.
A better lower bound has been obtained at a � 1=3 by ®nding a payo� matrix for 9 strategies with
30 ESSs, so that we know that f �1=3� lies between 1.459 and 1.890. The lower bound could
generally be improved by ®nding special case patterns. The upper bound could be reduced if extra
restrictions were found upon which patterns of ESSs were possible.

In real populations, the number of observed alleles/strategies tends to be relatively small
compared to those `available' (e.g. by mutation), especially when the number of strategies is large,
see [11,12]. Thus the support sizes that you would expect would be small, giving a low value of a,
so that the more complicated cases are unlikely to occur in reality.

If we have found some ESSs for a population, and know roughly the number of possible
strategies (e.g. the number alleles at a given locus), then we can ®nd an estimate of a and estimate
f �a�, thus giving an idea of the complexity of the situation that we face. Maybe all the possible
ESSs have been found, or possibly there are many more ESSs undiscovered. A knowledge of how
f �a� varies with a can provide a useful insight into this problem.

Appendix A

Proof of Theorem 1. In [6] it is shown that if the collection of ESSs of the m� m matrix A
is fp1; . . . ; pkg, and the collections of ESSs of the n� n matrix B is fq1; . . . ; q1g, then there is a
�m� n� � �m� n� matrix C with ESSs rij i � 1; . . . ; k; j � 1; . . . ; l, where rT

ij � �bpT
i ; �1ÿ b�qT

j �
for some 0 < b < 1.

Thus the size of S�rij� is equal to the sum of the sizes of S�pi� and S�qj�, and it follows that the
mean support size of C is equal to the mean support size of A plus the mean support size of B.

If A has sm�x� ESSs of mean support size x, and B has sn�y� ESSs of mean support size y, then
C has sm�x�sn�y� ESSs of mean support size x� y and so the stated inequality then follows
immediately.

If either of sn�x� or sm�y� is zero, then clearly the inequality is satis®ed. �

Proof of Theorem 2. The proof of (i) is trivial. No support can be of size less than one or greater
than n. Therefore the mean support size an satis®es

16 an6 n ) 1

n
6 a6 1:

(ii) For a ®nite number of strategies n there can only be a ®nite number of ESSs �sn�x�6 2n�.
Thus for any matrix A, an must be rational and therefore a must also be rational.
(iii) Suppose that a is a rational between 0 and 1. Let a � l=m; l and m are integers such that
l < m (if l � m then a single support size n gives a quadratic form with mean size an).
Consider n � km, then choose a single support of size kl, and we have a pattern with mean size

kl � �l=m�km � an. Thus there is at least one pattern with mean support size an and so sn�an� is
non-zero. In particular sn�an� is non-zero when n � m2l.
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The following result is shown in [5]:
Suppose that A is an n� n matrix such that aii � 0 8i and, if i 6� j, then aij � aji � �1. Then the

set S � �i1; i2; . . . ; ik� is the support of an ESS (local maximum) if and only if
ailim � 1; 16 l < m6 k and no superset of S has this property. Such matrices are referred to as
clique matrices. This result will be used to prove (iii).

Now let n � m2l� j for some integer j; 0 < j < m.
Consider the following matrix A for n strategies:

A �
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2664
3775:

The submatrix Aij is bi � bj, where

b1 � ml2 ÿ 1; b2 � jl� 1; b3 � mÿ 1; and b4 � nÿ b1 ÿ b2 ÿ b3 > 0; �m > j; m > l�:
The entries in the submatrices are as follows:

Aii has 0s down the leading diagonal together with either 1s everywhere else �i � 1 or 2�, or ÿ1s
everywhere else �i � 3 or 4�.

All entries in A12;A21;A13 and A31 are 1s and all entries in all of the other submatrices are ÿ1s.
A then has one clique ESS of size ml2 � jl (comprising the ®rst ml2 � jl strategies) and mÿ 1

clique ESS of size ml2 (containing the ®rst ml2 ÿ 1 strategies together with each of
b1 � b2 � i; i � 1; . . . ; b3�. The mean support size is therefore

1

m
��mÿ 1�ml2 � ml2 � jl� � ml2 � jl

m
� l

m
�m2l� j� � an:

Thus sn�an� exists for n � m2l� j.
If we have a pattern on k1 strategies with mean support size ak1 and a pattern on k2 strategies

with mean support size ak2 then Theorem 1 shows that there is a pattern on k1 � k2 strategies with
mean support size a�k1 � k2�, i.e. if sn�an� is non-zero for n � k1 and n � k2 then it is non-zero for
n � k1 � k2.

Now sn�an� is non-zero for

n � m2l� j 80 < j < m; and for n � km 8k:
Hence sn�an� is non-zero for all n P m2l. This completes the proof of Theorem 2. �

Proof of Theorem 3.
(i) In [6] it was shown that the limit of U 1=n

n as n tends to in®nity exists and is equal to c6 2. The
identical proof can also be used to show Theorem 3 part (i).
(ii) Suppose that N is a value for which sn�an� is non-zero for all n greater than N.

De®ne fk by

fk � �skN�akN��1=N

�sN�aN��1=N
) f1 � 1;
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fkfl � �skN�akN��1=N

�sN�aN��1=N

�slN�alN��1=N

�sN�aN��1=N

� �skN�akN�slN�alN��1=N

�sN�aN��1=N

1

�sN�aN��1=N

6 1

�sN�aN��1=N

�s�k�l�N�a�k � l�N��1=N

�sN�aN��1=N

� fk�l

�sN�aN��1=N

6 fk�l:

by Theorem 1. Since Vn6 2n;

skN�akN�6 2kN ) fk 6 2k:

Hence by a result of [13] f 1=k
k converges.

Now consider n � kN � r, where 0 < r < N :

sn�an� � skN�r�a�kN � r��P s�kÿ1�N �a�k ÿ 1�N�sN�r�a�N � r��P s�kÿ1�N �a�k ÿ 1�N�:
Similarly

s�k�2�N�a�k � 2�N�P skN�r�a�kN � r��s2Nÿr�a�2N ÿ r�� ) sn�an�6 s�k�2�N �a�k � 2�N�:
Thus

�s�kÿ1�N�a�k ÿ 1�N��1=��k�1�N�6 �s�kÿ1�N �a�k ÿ 1�N��1=n

6 �sn�an��1=n

6 �s�k�2�N �a�k � 2�N��1=n

6 �s�k�2�N �a�k � 2�N��1=kN

) f 1=�kÿ1�
kÿ1

h i�kÿ1�=�k�1�
�sN �aN��1=N

6 �sn�an��1=n

6 f 1=�k�2�
k�2

h i�k�2�=k
�sN�aN��1=N :

Thus the sequence �sn�an��1=n
is squeezed between two sequences which both converge to the limit

of �skN�akN��1=kN �. This means that the limit of the sequence with n � kN � r is the same for all
values of r � 0; 1; . . . ;N ÿ 1, i.e. �sn�an��1=n

converges for any rational a.
Finally

�skn�akn��1=kn P �sn�an��1=n 8k
and so �sn�an��1=n6 f �a�. �
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Proof of Theorem 4.

sn��a�1ÿ y� � by�n�P sny�bny�sn�1ÿy��a�1ÿ y�n�;
where a; b and y are all rationals between 0 and 1. Thus

�sn��a�1ÿ y� � by�n��1=n P �sny�bny��1=n�sn�1ÿy��an�1ÿ y���1=n

� �sny�bny��1=yn
h iy

�sn�1ÿy��an�1
h

ÿ y���1=�1ÿy�n
i1ÿy

:

Letting n tend to in®nity (over values where ny is an integer only), the above expression implies
that

f �a�1ÿ y� � by�P f �b�yf �a�1ÿy

for any rational value of y. �

Proof of Corollary 1. ln f �a� is a concave function, which implies that it is continuous by a result
of [14]. Thus f �a� is also continuous. �

Proof of Corollary 2. The existence of the derivatives in the interior of the range of a follows
immediately from the fact that f �a� is concave (for example, see Ref. [14]).

It is easy to show that the right-derivative does not exist at 0 and that the left-derivative does
not exist at 1 by considering the upper and the lower bounds given in Theorem 5. f �a� is squeezed
between two functions whose derivative tends to1 (at 0) and to ÿ1 (at 1), so that the derivative
of f �a� is likewise; hence the derivative does not exist at 0 or 1. �

Proof of Theorem 5. (i) Suppose that we have a pattern on n strategies with mean support size r.
Suppose further that the number of supports of size i is pi, so that the total number of supports isP

pi and, since the set of supports must form an anti-chain [16], it is shown in [15] thatX
pi

i!�nÿ i�!
n!

6 1 . . . �2�:
It is easy to show that for any k < l,

k!�nÿ k�!
n!

� l!�nÿ l�!
n!

P
�k � 1�!�nÿ k ÿ 1�!

n!
� �lÿ 1�!�nÿ l� 1�!

n!
:

Suppose that k < r < l; pk > 0 and is the smallest value for which this is true and pl > 0 and is the
largest value for which this is true. If we replace values of pi as follows:

pk ! pk ÿ 1; pk�1 ! pk�1 � 1;

plÿ1 ! plÿ1 � 1; pl ! pl ÿ 1;

then
P

pi remains the same, and the sum in (2) decreases. Eventually the only non-zero pi is when
i � r, and soX

pi
r!�nÿ r�!

n!
6 1 )

X
pi6

n!

r!�nÿ r�! :
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Letting r � an, we get

sn�an�6 n!

an!��1ÿ a�n�! :

For large m; m! � �2pm�1=2�m=e�m.
In particular 0:5�2pm�1=2�m=e�m < m! < 2�2pm�1=2�m=e�m.

) n!

an!��1ÿ a�n�! < 8
�2pn�1=2

�2pan�1=2�2p�1ÿ a�n�1=2

�n=e�n
�an=e�an��1ÿ a�n=e��1ÿa�n

� 8

�2pa�1ÿ a�n�1=2

1

aa�1ÿ a��1ÿa�

 !n

) �sn�an��1=n6 8

�2pa�1ÿ a�n�1=2

 !1=n
1

aa�1ÿ a��1ÿa� !
1

aa�1ÿ a��1ÿa� :

(ii) Let n � ki. Then there is an n� n clique matrix which has ik ESSs with supports of size k [5].
Thus the mean support size is n=i and so a � 1=i, and the number of supports is

in=i � 1

a

� �an

;

so that

sn�an�P 1

a

� �an

:

Letting n tend to in®nity, we get

f �a�P 1

a

� �a

; a � 1

i
:

Now let a � 1ÿ 2=i, so that for i strategies, ai � iÿ 2. In [6] it is shown that there is a circulant
matrix on i strategies which has i ESSs each with support size iÿ 2. So for n � ki strategies, there
is a matrix with ik supports of size an (using Theorem 2). Thus

sn�an�P 2

1ÿ a

� �n�1ÿa�=2

) f �a�P 2

1ÿ a

� ��1ÿa�=2

;

for a � 1ÿ 2=i.
(iii)

f �1� � lim
n!1
�sn�n��1=n � 1; �sn�n� � 1 8n�

f �0� � lim
a!0

f �a�6 lim
a!0

1

aa�1ÿ a��1ÿa� � 1:

Clearly f �a�P 1 for any a, i.e. f �0� � 1. �

Note that in [5] it is shown that, when n � r � qk, a matrix can be found with

qkÿr�q� 1�r
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supports, and a general lower bound for f �a� for all rational a can be obtained from this. This
turns out to be precisely the same lower bound as we obtained above when a6 0:5, and to be
lower than our lower bound for higher a.

Proof of Theorem 6. (i) Suppose that there is a unique value of a which gives a maximum value for
f �a�.

Consider a pattern on nÿ 1 strategies which attains the maximum number of supports Vnÿ1.
Suppose that its mean support size is xnÿ1.

The following result is shown in [17]:
Suppose that A is an n� n matrix and the pattern of A is fT1; . . . ; Tm; Tm�1; . . . ; Tkg, where i 2 Tj

if and only if j6m. Then there is an �n� 1� � �n� 1� matrix with pattern
fT1; . . . ; Tm; Tm�1; . . . ; Tk; T 01; . . . ; T 0mg, where T 0j � Tj=�i� [ �n� 1�.

The above implies that the element appearing most commonly in the supports can be `split' to
give a new pattern with at least Vnÿ1xnÿ1=�nÿ 1� extra supports. Thus

Vnÿ1

nÿ 1� xnÿ1

nÿ 1
6 Vn:

Now consider a pattern on n strategies which has Vn supports. Suppose that its mean support size
is xn. It is shown in [6] that we can `remove' the element appearing least commonly in the supports
to give a new pattern with at most Vnxn=n less supports. Thus

Vn6 Vnÿ1

n
nÿ xn

:

Considering a sequence of such patterns, we have that

Vnÿk

Ynÿ1

i�nÿk

i� xi

i
6 Vn6 Vnÿk

Yn

i�nÿk�1

i
iÿ xi

;

setting k � n=2 and taking powers of 2=n, we obtain

V 2=n
n=2

Ynÿ1

i�n=2

i� xi

i

 !2=n

6 V 1=n
n

ÿ �26 V 2=n
n=2

Yn

i��n=2��1

i
iÿ xi

 !2=n

:

Letting n tend to in®nity in the above expression, xi=i! a� and so we obtain

1� a�6 c6 1

1ÿ a�
:

If there is not a unique value of a for which f �a� � c, then the above procedure must be followed
for every a, using a series of patterns which have �xn=n� converging to a and number of supports
which when put to the power 1=n converges to c.

Thus the above inequality is true for any such a�.
(ii) We have from part (i) that f �a��6 1=�1ÿ a��. We know that f �1=3�P 301=9, so that

1=�1ÿ a��P 301=9 ) a�P 0:3147.
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We also know that f �a��P 1� a�. Now

f �a�6 1

aa�1ÿ a��1ÿa� ) 1� a�6 f �a��6 1

a�a��1ÿ a���1ÿa�� :

The above inequality can be solved iteratively, and gives a�6 0:7516. �
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