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Abstract. A conflict is defined by a set of pure strategies{1, . . . , n} and a payoff matrix,
and may have many evolutionarily stable strategies (ESSs). A collection of subsets of the
set of pure strategies is called a pattern. If there is ann × n matrix which has ESSs whose
supports match those of the pattern, then that pattern is said to be attainable. Much of the
work on patterns of ESSs relied upon an unproved conjecture. Subject to some relaxation of
the definition of attainability, this conjecture is proved.

1. Introduction

1.1. Evolutionarily stable strategies

The mathematical modelling of biological populations using game theoretic meth-
ods has proved remarkably successful. Some important texts are [6],[8],[9]. Of
particular significance has been the concept of an evolutionarily stable strategy
(ESS) which was introduced by Maynard Smith and Price [10]. An ESS is a strat-
egy, which if adopted in a conflict by a population, cannot be invaded by any other
strategy played by a small mutant group. The ESS is thus stable and persists through
time, provided that all the payoff parameters and the set of available pure strategies
remain unchanged.

A standard formulation for modelling a conflict amongst an animal population
is as follows:

Consider a population of animals competing for some resource e.g. food or mates.
Individuals compete in pairwise games for a reward. Assume that all members of
the population are indistinguishable (in that they are of the same size and strength
etc.) and each individual is equally likely to face each other individual. There are a
finite number of pure strategies available to the players to play in a particular game.
These strategies are labelled 1, . . . , n. Let U be the set of pure strategies so that
U = {1, . . . , n}. Given the strategies played the outcome is determined; if player
1 playsi against player 2 playingj then player 1 receives rewardaij ( player 2
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receivesaji) representing an adjustment in Darwinian fitness. The valueaij can be
thought of as an element in then × n matrixA, thepayoff matrix.

An animal need not play the same pure strategy every time, it can play amixed
strategyi.e. playi with probabilitypi for each ofi = 1, . . . , n. This means that the
strategy played by an animal is represented by a probability vectorp. The expected
payoff to player 1 playingp against player 2 playingq, which is written asE[p, q],
is

E[p, q] =
∑

aijpiqj = pT Aq

Suppose thatp is played by almost all members of the population, the rest of the
population being a small mutant group constituting a fractionα of the total popu-
lation playingq. p is said to beevolutionarily stable(ES) againstq if

E[p, (1 − α)p + αq] > E[q, (1 − α)p + αq]

for all sufficiently smallα. Thusp does better against the mean population strategy
thanq does.

This implies that either

(i) E[p,p] > E[q,p]
or
(ii) E[p,p] = E[q,p] and E[p,q] > E[q,q]

The vectorp is said to be an evolutionarily stable strategy (ESS) ifp is ES
against allq 6= p. Thus if all members of a population playp, any small invading
group playing a different strategy have a lower fitness than the original population
members, so that the strategyp persists as the dominant strategy through time.

1.2. Patterns of ESSs

1.2.1. Definition Suppose thatp = (pi) is an ESS of the payoff matrixA. The
support of p, S(p) is the set

S(p) = {i : pi > 0}

Thus the support ofp is the set of pure strategies that are played by ap-player.
There may be more than one ESS for a particular payoff matrix (the possi-

ble number of ESSs increases exponentially with the number of pure strategies
available, see [2], [13]). The ESSs which can occur will have supports which are
restricted in various ways. In particular no two ESSs can have the same support
(see section 1.4 for a stronger result). To explore these restrictions, the concept of
apattern of ESSs(or apatternfor short) was introduced by Vickers and Cannings
[12].

1.2.2. Definition Any collection of subsets ofU with no repeated elements is
called apattern. A particular pattern is thepattern ofA if it is the same as the
collection of supports of the ESSs ofA.
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1.2.3. Definition A pattern is said to beattainable on n strategies if there is
somen × n matrixA which has that pattern.

1.3. Haigh’s Theorem

It was shown by Haigh [7] that the conditions forp to be an ESS are equivalent to
the following;
There is a constantλ and a setR(p), S(p) ⊆ R(p) ⊆ U, such that

(i) (Ap)i = λ ∀ i ∈ R(p).
(ii) (Ap)i < λ ∀ i /∈ R(p).
Supposing, without loss of generality, thatR(p) = (1, 2, . . . , k). We define the

matrixC=(cij )i,j=1,...,k−1 by

cij = aij + aji − aik − aki − akj − ajk + 2akk

(iii) Then C is negative definite.

An ESS is said to beregular if R(p) = S(p) [11].

The usefulness of this result lies in the fact that to investigate whetherp is an
ESS it is sufficient to check whether it satisfies the above conditions, as opposed
to considering its performance against all possible alternative strategiesq.

Note that adding a constant term to all the entries in a column of the payoff
matrix leaves all ESSs unaltered, so that the set of ESSs ofB = (bij ), where
bij = aij + cj ∀ i, j is the same as that ofA. In particular, settingcj = −ajj∀ j ,
the set of ESSs of a matrix is the same as that of itsreduced matrix, the matrix
formed by adding a constant to each column to make the leading diagonal terms
bjj equal to zero. This result is due to Zeeman [14]. Henceforth it is assumed that
all matrices are of the reduced form.

1.4. The Bishop Cannings Theorem

If p is an ESS with supportI andr 6= p is an ESS with supportJ , thenI 6⊇ J .
This result is a simplified version of a more general theorem proved by Bishop and
Cannings [1].

The Bishop Cannings Theorem is of great importance when considering which
patterns are attainable, since it eliminates from consideration any pattern which
contains two supports, one of which is a subset of the other. The discussion of
which ESSs can coexist and thus which patterns are attainable is the subject of a se-
ries of papers by Cannings and Vickers and various collaborators (see, for example,
[3],[4],[5],[12]).

The biological relevance of this concept relates to the behaviour of animals in a
population divided into separate habitats, which have no contact with one another,
for example the mating strategies of frogs in separate pools. These isolated habi-
tats will henceforth be described asniches. For a particular conflict, defined by the
set of pure strategies and the payoff matrix, the population may develop different
ESSs in the separate niches (due to different initial conditions or random effects).
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It is thus of interest to know what range of different strategies is possible. Similarly
observation of different strategies in the separate niches may imply different payoff
matrices, due to the incompatibility of the supports of these strategies.

For example suppose that there are two possible pure strategies 1 and 2, and
in one niche the population plays a mixed strategy containing both of these. If the
environmental conditions are the same in another niche, the population there can-
not play either pure strategy, but must play (the same) mixed strategy, due to the
Bishop Cannings Theorem. If another niche is observed where the individuals do
play a pure strategy, then, according to our model, the environmental conditions
there must be different.

It is also of interest to know how many different ESSs may exist for a given
number of pure strategies, and how large the supports of these ESSs may be.

2. The maximal pattern conjecture

2.1. Introduction

2.1.1. Definition An attainable patternP is described asmaximal if there is no
P ∗ ⊃ P , which is attainable.

An important idea of Cannings and Vickers [4] was the conjecture that ifP

is an attainable pattern andP ∗ ⊂ P thenP ∗ is also attainable. No proof of this
conjecture has been found, but neither have any counter-examples. This conjecture
is a key element of the theory of Patterns of ESSs, and if it were not true then the
task of identifying attainable patterns would become much more difficult. Under
the assumption of the truth of the conjecture the complete set of attainable patterns
can be specified by the complete set of maximal patterns only. This is a significant
saving in work, especially when the number of strategies is large.

In Theorem 1 a weaker result is proved, which nevertheless is a useful contri-
bution to the general theory. A revision of the theory is proposed which enables
Theorem 1 to prove the maximal pattern conjecture.

Theorem 1. If P is an attainable pattern forn pure strategies andP ∗ ⊂ P then
P ∗ is attainable forn + k strategies for allk ≥ K for some positive integerK.

Proof. Suppose that the pattern(S1, . . . , Sm, . . . , Sm+t ) is attainable on strategies
1, . . . , n. Further suppose thatA = (aij ) is a matrix with this pattern.

Let x = 1 + maxij (aij ), and letM be large compared tox.
Now consider the matrixB = (bij ) on strategies 1, . . . , n + t . Define

bij = aij i ≤ n, j ≤ n

b(n+i)j = x j ∈ Sm+i , 1 ≤ i ≤ t

b(n+i)j = −M j /∈ Sm+i , j ≤ n, 1 ≤ i ≤ t

bj (n+i) = −M j ≤ n, 1 ≤ i ≤ t

bjj = 0 j > n

b(j+1)j = 1 n < j < n + t

b(n+1)(n+t) = 1

bij = −M for all otherj > n, i > n
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It is clear thatbij + bji < 0 for j > n. For i andj to be in the same ESS support
of B requiresbij + bji > 0 and so none of the strategiesn + 1, . . . , n + t can be
involved in ESSs other than as pure ESSs. However, forj > n

b(j+1)j = 1 > bjj (b(n+1)(n+t) = 1 > b(n+t)(n+t))

so that none ofn + 1, . . . , n + t can be pure ESSs either.
Consider the ESS with supportSm+i . For the elements of this support then+ith

row dominates every row corresponding to a strategy of the support, i.e. condition
(ii) of Haigh’s Theorem is violated and the ESS with supportSm+i is invaded by
strategyn + i for all 1 ≤ i ≤ t .

Now considerSl, l ≤ m. Sl is not a subset of any other support (by the Bishop
Cannings Theorem), so for each rown + i at least one ofbn+ij = −M, j ∈ Sl

and so none of these rows can invade the ESS ofSl .
Suppose that a strategy’s support is a subset of the set of pure strategies of a

particular conflict, but that the strategy is not an ESS of the conflict. If extra pure
strategies are added to the set of strategies, the strategy is not an ESS of the new
conflict either. Thus in our conflict no other ESSs can be introduced, so that the
pattern ofB is S1, . . . , Sm.

In the original pattern the supports could have been ordered in any way, andm

andt are arbitrary, so that any subpattern of the pattern is attainable on some larger
set of strategies. This completes the proof. ut
Corollary 1. If (S1, . . . , Sm) is a pattern which is attainable on{1, . . . , n} then
for some positive integerK, (S1, . . . , Sm) and all its subpatterns are attainable on
{1, . . . , n + k} for k ≥ K.

Corollary 2. There is aK such that every subpattern of any maximal pattern for
n strategies is attainable onn + k strategies∀ k ≥ K.

Proof. The number of ESSs forn strategies cannot exceed 2n, since no two ESSs
can have the same support and the total number of supports is 2n. In the proof
of Theorem 1 it was shown that an extra strategy was sufficient to invade every
ESS whose support was contained in the maximal pattern but not in the subpattern.
Hence less than 2n new strategies are required to ensure than the subpattern is at-
tainable. Thus there is aK ≤ 2n for which all subpatterns of attainable patterns for
n strategies are attainable onn + k strategies,∀ k ≥ K. ut

The study of Patterns of ESSs aims to show which patterns are/are not attainable,
the biological implications of which are briefly discussed in Section 1.4. Restric-
tions upon which strategies can be ESSs of the same payoff matrix in turn impose
restrictions upon the possible behaviour of different populations in isolated niches
under the same environmental conditions.

Thus;

(i) If we have information about the behaviour of animals in one or more niches,
and given that they have the same set of pure strategies and payoff matrix, the
possible strategies of new niches can be found conditional upon the strategies
in the old ones.
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(ii) if the strategies of populations in several niches are found, it can be deduced
whether their behaviour is consistent with all having the same pure strategies
and payoff matrix.

Cannings and Vickers have proceeded under the assumption that the maximal
pattern conjecture is true, namely that all the subpatterns of maximal patterns are
attainable. Theorem 1 provides extra evidence that this conjecture is likely to be
true. It also has a deeper significance. The consequences of the conjecture being
false are that some patterns which are unattainable are assumed attainable. Theo-
rem 1, however, shows that any such pattern is indeed attainable, if only upon a
larger set of pure strategies. Corollary 2 shows that for any number of strategies
n, there is ak such that if an extrak strategies are introduced, then all subpatterns
of all maximal patterns onn strategies are attainable uponn + k strategies. In any
natural situation the observed strategies may be catalogued, but there may well be
many other strategies (existing at a very low level or having the potential to occur).
The strategies used in the proof of Theorem 1 had payoffs which enabled them
to invade other strategies, but were never able to be part of an ESS themselves.
Therefore these strategies would never exist above a low level in a real population
for an extended period of time and would thus be unlikely to be observed, although
mutation might introduce such strategies from time to time.

It may thus be sensible to consider possible invasion from unknown strategies as
a factor in finding which patterns are attainable. This would involve not specifying
the number of strategiesn upon which a pattern is attainable as in Definition 1.2.3,
although obviously this must be at least as great as the total number of strategies
which appear in the supports. Thus Definition 1.2.3 would become

2.1.2. Definition A pattern is said to beattainable if there is some matrixA
which has that pattern.

Thus if a pattern is said to be attainable on five strategies, it is meant that it has
a total of five or less distinct strategies in its supports.

It is known that every attainable pattern is also attainable upon any larger set
of strategies. Thus the only consequence of introducing these ‘phantom’ strategies
is to ensure the attainability of all subpatterns of attainable patterns. In particular
no new maximal pattern onn strategies can be introduced. Thus, in effect, The-
orem 1 would give us the maximal pattern conjecture. Note that if the maximal
pattern conjecture in its original form turns out to be true, the two specifications
are identical.

3. Discussion

The maximal pattern conjecture [4] is an important unproven result for the study
of patterns of ESSs, which has generally been assumed to be true. Much previous
work has made use of the conjecture, and the whole problem becomes considerably
more difficult if it is not assumed. Theorem 1 provides a proof of a weaker result
which is important for two reasons. Firstly the attainability of all subpatterns of
any given pattern upon a larger strategy set increases the evidence in support of
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the maximal pattern conjecture being true. Secondly, if the problem of finding all
the patterns which are attainable onn strategies for a givenn, which is the original
problem as stated by Cannings and Vickers [12] is amended to considering such
patterns with the addition of extra ‘potential’ invading strategies (which might oc-
cur due to mutation), then the maximal pattern conjecture is proved by Theorem 1,
and thus all previous work on patterns of ESSs which has assumed the conjecture
is validated.

If, as seems likely, the maximal pattern conjecture is true, then the revised theo-
ry in effect reduces to the original theory and so nothing has been lost. If, however,
the conjecture is false, then the revision saves much work which would otherwise
have been either incomplete or, in part, false.
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