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Abstract

Matrix games, defined by a set of strategies and a corresponding matrix of payoffs, are commonly used to model animal
populations because they are both simple and generate meaningful results. It is generally assumed that payoffs are independer
of time. However, the timing of contests in real populations may have a marked effect on the value of rewards. We consider
matrix games where the payoffs are functions of time. Rules are found which hold in this more general situation, and the
complexity of possible behaviour is underlined by demonstrating other conditions which do not hold and an illustrative game.
To citethisarticle: M. Broom, C. R. Biologies 328 (2005).
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Résumé

Jeux évoliutionnels avec gains et colits variables. Les jeux matriciels prennent en compte un ensemble de stratégies avec
une matrice de gain et de co(ts. Ces jeux sont fréquemment utilisés pour modéliser les populations animales parce qu'ils sont
simples et générent des résultats dont I'interprétation est aisée. Dans ces modeles, il est habituellement supposé que les gair
et les colts sont indépendants du temps. Cependant, la durée des rencontres entre individus dans les populations réelles pe
avoir un effet important sur la valeur des gains. Nous considérons des jeux matriciels pour lesquels les gains et les colts sont
fonctions du temps. Nous obtenons des regles valables dans ce cas plus général. La compléxité du comportement est soulign
en recherchant d’autres conditions dans le cas non autonome et en présentant un exemple de jeu illustratif de |Renéthode.
citer cet article: M. Broom, C. R. Biologies 328 (2005).
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1. Introduction

We start by explaining some of the basic concepts

(i) q"Ap < p"Ap and
(i) if q"TAp=pTApthenq"Aq < p'Aq

of evolutionary game theory, introduced in the classic for all alternative strategies.

papeir1] (see alsg2]), which will be of use in the rest

A matrix may possess a unique ESS, no ESSs or

of the paper. In particular we discuss matrix games be- many ESSs. Sei@,4] for a discussion of the possible
tween symmetric players and their equivalent between complexity of the ESS structure of a matrix.

asymmetric players, bimatrix games. We also use the

concept of the replicator dynamic to consider the evo- 1.2. Bimatrix games

lution of strategies as a function of time.

1.1. Matrix games

The following idea is useful for modelling a popu-

The assumptions underlying the bimatrix game
model are the same as for the matrix game model,
except that pairwise contests are fought between indi-
viduals in asymmetric positions, so that the individual

lation of animals which_ compete in pairwise conflicts designated player 1 has a different set of pure strate-
for some resource, which could be food or mates, for giesU; to the set available to player D/§). If player 1
example. It is assumed that all members of the pop- pjays its strategy against player 2 playing its strat-
ulation are indistinguishable and each individual is egy j, then player 1 receives rewaigi and player 2
equally likely to face each other individual. There are a gceives reward ;. The payoffs combine to form the

finite number ofpure strategiesvailable to the play-
ers to play in a particular game. Lek be the set of
pure strategies so thet= {1, ..., n}. Given the strate-

gies played the outcome is determined; if player 1

playsi against player 2 playing then player 1 re-
ceives reward;; (player 2 receives ;) representing
an adjustment in Darwinian fitness. The valijg can
be thought of as an element in thex n matrix A, the
payoff matrix

An animal need not play the same pure strategy

every time, it can play mixed strategyi.e., play: with
probability p; for each ofi = 1, ..., n. Thus the strat-

egy played by an animal is represented by a probability

vectorp. The expected payoff to player 1 playipg
against player 2 playing, which is written as£[p, q],
is

Elp,ql= aijpiqj =p'Aq

A strategyp is a Nash equilibriumif qTAp < pTAp
for all alternative strategies (so a strategy is a Nash
equilibrium if it is a best reply to itself).

Thesupportof p is defined ass(p) = {i: p; > 0}.

p is aninternal strategyif S(p) =U.

p is thus a Nash equilibrium fAp); = A, i € S(p),
(Ap)i < A, i ¢ S(p) for some constarit and is thus an
internal Nash equilibrium i§(p) = U and(Ap); = A
Vi.

A strategyp is an Evolutionarily Stable Strategy
(ESSif

payoff matricesA and B. In the same way individu-
als can play mixed strategies, so that if player 1 plays
p and player 2 plays, the rewards to the players are
p"Aq andq” Bp, respectively.

The two strategy paips, p2 is a Nash equilibrium
pair, if

plAp2>0djAp2 and pjBpi>q)Bp:

for any alternative strategieg, 2.
The strategy paips, p2 is an ESS if it is a Nash
equilibrium pair,

and whenevep] Apz = q] Ap2
thenp] Agz > qf Adz

and whenevep) Bp; = qJ Bp;
thenp) B > g} Bax

which is only possible if both these strategies are
pure[5].

1.3. Replicator dynamics

Let us assume that individuals can only play pure
strategies, and let the proportion of players of pure
strategyi at a particular time be; (i =1,...,n),
so that the average population strategy (ibpulation
statg is the vectomp = (p;), with the expected payoff
(in terms of Darwinian fitness) of anplayer in such
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a mixture being(Ap); and the overall expected pay- In the real world, however, the time at which contests
off in the population beind_ p; (Ap); = p' Ap. Then occur can be crucial. As the breeding season devel-
the standard replicator dynamic (continuous) for the ops there is a natural variation in the rewards available
matrix game with payoff matrix4 is defined by the  for any given conteg®,10]. But due to environmental

differential equation changes, variations may occur from year to year, and
dp; even day to day due to unpredictable effects such as
d_tl = pi[(Ap); — pT Ap] the weathef11].

. . We consider a matrix game where the payoffs vary

Thus the proportion of players which play the better \yiih time. In particular, if player 1 play$ against
strategies increases with time (Whatdetermines;agoodp|ayer 2 playingj at timer, then player 1 receives
strategy depends upon the composition of the popula- payoff 4, (1). Clearly a lot of the concepts from the
tion). A point inn-dimensional space, represented by giaiic games must now be reconsidered:; for instance,
the vectorp, is locally stable if it is an ESS (this is  , may be a Nash equilibrium of a particular constant
not necessarily true for the discrete dynarft). p is payoff matrix (a snapshot in time) but what happens
called an Evolutionarily StablStaterather than Strat- i, the long term as the matrix changes? We consider
egy, since no individual actually plays it is rather  q the population state changes under the replicator
the average of those strategies played. The repllcatordynamiC and ask what rules we can establish
equation has been applied in very many situations (see In general we assume that the entries in the payoff
[7.8]). ) ) , . matrix are bounded, so that < max|a;;(¢)| < az for

Assuming evoluthn undgr the replicator dynamic i,j,1,0< a1 <a. Itis also usually assumed that
(or any other dynamic), théme averageof the pop- A is continuous and that indeed it cannot change too

ulation statev (Wherelez (v1,...,0p)) at_time_T is quickly, so that
the vectorTA(v), whoseith elemenfTA(v); is defined
by d (1) Vi, j, t
- Y%ij < v Jo
T dr as v
1
TAV); = T / v; dr The class of payoff matrices is defined as follows;
0
Note that: L=(;;)eA ifandonlyif

l,‘j =lj for all i,J
(1) adding a constant to any column of the payoff ma-
trix makes no difference to the Nash equilibria, or
the trajectory of the path taken by the population
under the replicator dynamic (including time fac-
tors), so making no difference to the game at all.
(2) If the entire matrix is multiplied by a positive con-
stant, then the Nash equilibria remain constant Member ofA.
and the trajectory of the replicator dynamic is _ Finally, we assume thaty < max|a;; (1) — ay; (1)

unaltered, but speed along the trajectory may be for somei, j, k andag > 0, and for allz. This ensures
changed, and thus the time average of the popula- that the game does not become completely degenerate

tion state may also be affected. by bounding it away from the set.

Thus A is the set of matrices where all elements in
column; have the same value, for each column (such
matrices yield the same reward to any strategy against
each opposing strategy). We use the tefi@) to in-
dicate a matrix which varies in time, but is always a

1.4. Nonconstant payoffs
2. Results
The majority of game models deal with a fixed pay-
off structure, so that if the strategies adopted by allthe  Firstly we introduce some general results, and their
combatants are known, then the payoffs are given. This consequences, before moving on to consider a partic-
corresponds with the payoff matrix of constants, ular application of the theory.
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2.1. General results have a stronger result for a general constant payoff
matrix; thus the assumption of constant payoffs can

In this section the variable payoff matrix with ele- e relaxed a little without affecting the dominant long
mentsa;; () is simply written asA and the population  tarm pehaviour.

state is the vector.

) Proposition 1. If TA(A) — & and if v* is an internal
Theorem 1. A converges does not imply that (VA Nash equilibrium of}, then the distance of* from
converges. TA(v), the length of the vector* — TA(v), can con-

. . verge to a value which is arbitrarily close tb
This results follows simply from the fact that even g y

for constantd, not only does/ not always converge, This result demonstrates that considering the long-
but neither doeFA(v) (see[8]). Complex population  tarm mean payoffs is insufficient to find the long-term

dynamics can thus occur even with constant payoffs. gyerage state: indeed it is possible to find situations
What can we say about the case where payoffs vary? \hen considering the long-term mean payoffs would

Theorem 2. If v — v*, wherev(0) has no zero ele- give you the worst possible estimate of the mean state.

ments, them — g(1)A* + A(r) for some continuous  pygposition 2. TA(v) converges does not imply that
functiong(z) and A*, a matrix of constants, such that e can find bounded functidh< ki < g(t) < k and
v*is a Nash equilibrium oft*. matrix A(z), defined as above, such that (&) con-

So if the prevalent population state converges, then verges, wherel™ = (A — A(1)/g(®).

it must be the case that the payoffs converge either to (Note that we need this more elaborate statement,
a constant payoff matrix,.or one which varies in time  ather than just nonconvergenceT#(A), as this can
in such a way that the ratio be given by the trivial case of = A(¢) + K for con-
ai1, j1(t) — aj2,j2(1) stant matrixK, and suitableA(r)).
Even if the mean population state converges this
does not imply convergence of the underlying pay-
offs (or the relative size of payoffs against the same
pure strategy), and even time average convergence is
not guaranteed. This is especially surprising given that
convergence of the time averagevas not guaranteed
even for constant payoffs. Thus observation of this be-
haviour, without convergence of could be the result
@) aij(t) = a;j + fi;(t) and 1/T foT | fij(t) — of a wide range of underlying phenomena.
fij@®|dt = 0Vi, j, kand

(b) any element; (¢) which approaches the boundary
does so sufficiently slowly so thbtT log(v; (T))
— 0,

a;3,j3(t) — aia, ja(r)

is independent of time, for any combination of strate-
giesil,i2,i3,i4, j1, j2, j3, j4 for which j1 = ;2
and j3 = j4. This is an extremely severe restriction
implying strong environmental stability over time.

Theorem 3. If

2.2. The two stage game

One application of the idea of variable payoffs is
in the context of multiple stage games, even when the
then TAv) converges toa/* which is a Nash equilib-  real natural payoffs are constant. Suppose that a popu-
rium of R = (o). lation of animals compete in pairwise contests, where

an animal’s strategy is decided by a pair of ‘choic-

If the payoffs vary with time, but to a limited extent  es’. The first choice that an animal makes then decides
(in particular the environmental impact is such that the particular type of contest that the two animals are
there is not regular displacement from the mean, ex- involved in, after which the individuals both pick a
cept possibly of vanishingly small size), and that this second choice, which decides the payoffs that each
is not strong enough to eliminate strategies at a suffi- receive (for other examples of such contests[4@e
ciently fast (exponential) rate then convergence of the 13]). The two players make their choices at each stage
time average of the population state occurs. We do not simultaneously, and both know the result of the first
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stage before playing the second. For instance, the firstThen TAv) = v* exists, ands* is a Nash equilibrium
‘choice’ could be horn size, which is apparent to both of X = («;;), wherea;; = p;*jTBij P

players before any contest ensues. The second stage

is thus a subgame within this contest; the available  Suppose that in a two stage game there are two
choices of which may be conditional upon the horn strategies in the first stage, and then two strategies in
size of the participants (thus there is a payoff matrix each of the four possible second stage situations, de-

for each pair of horn sizes).

Note that when the first stage choices are different,
then this induces an asymmetry into the contest. We
assume that if player 1 pickisand player 2 picks
then the reward to player 1 is decided by the payoff
matrix B;;. If i = j then we have the standard ma-
trix game with payoff matrixB;;, otherwise we have a
bimatrix game with payoff matrices;;, Bj;, respec-
tively.

The payoffa;; is thus the expected reward for first
stage strategyagainst first stage strategywhich de-
pends in turn upon the strategies prevalentin such con-
tests, i.e.q;j = pl.TjBijpji wherep;; = (pij«)k is the
population state af-players when facing-players for
the second stage of the game (anggais the popula-
tion state of their potential opponents in this contest).
When considering the strategy bfgainst that ofj,

i # j, pij takes the place gi, andp;; takes the place

of p2 in the bimatrix games earlier described (for in-
dividuals of the same first stage stratqgy takes the
place ofp in a matrix game). It is assumed that the
strategies involved in this subgame evolve in the same
manner as the first stage choices, ang;gwvaries ac-
cording to the replicator equation

g Piik = pijk((Bijpjik — p,-TjBiiji)

Theorem 4. If p;; — pj‘j Vi, j (wherepj; is an ESS
of B;; and pl*] pji is an ESS pair of3;;, Bj; fori #
Jj), theng;; (1) = pl.TjBi,-pﬂ satisfies conditior{a) for
TheorenB with ;; = pj‘jTB,-,- Pl

Corollary. Suppose that

(i) pj; isan ESS oB;; and p;*j, pji is an ESS pair of
Biijji fori #j,Vi,j.

(i) pij — P} Vi, j.

(iii) a;;j(r) = piTjBUpi.,, with none of the first stage
strategies approachin@ at an exponential rate
(except any not featuring in the support &f
below) so that condition(b) of Theoren® is sat-
isfied.

fined by the payoff matrices

B = bij(11) b;j(12

T bij(2Y)  bi;(22)
The different stable solutions within each of the matri-
ces are shown iffables 1 and 2The solution for the
matrix B;; (i =1 or 2) are given ifmable 1

When one player plays 1 and the other 2, we have
the bimatrix game defined b#12, B21. Table 2gives
the strategies in the ESSs.

When there are no pure ESSs and a single Nash
equilibrium pair for the bimatrix game, it is shown in
[14] that the pair(p, ¢) is a centre and that the time
averages ofp(¢) andg () are p andg, respectively.
The time averages of the payoffs are also shown to
bep' B12q andq' Bo1p, respectively. Note that in the
cases where there are two pure ESS pairs, there is an
internal equilibrium which is a saddle point, and all
trajectories converge to one or other of the ESS pairs.

2.2.1. A numerical example
Suppose that the payoff values from the above ex-
ample are
b11(12) = b11(21) = b12(12) = b12(21) = b21(12)
=b21(21) = b22(12) = b22(2]) =1

b11(1) =2, b11(22) =3
b12(11) = b12(22) =4
bo1(1) =5, b21(22) =10
b2o(11) =2, b22(22) =3

This yields two possible solutions each fBi1, Bo»

and the pairB12, B21 (the maximum number in each
case). Thus there are 8 possible limiting matrides
depending upon initial conditions. Each of these has
an internal ESS. The possible matrices, each with the
probability of choosing first stage strategy 1 in brack-
ets, are given below.

2 4

2 4
10 2

c 2' (2/5). ’

’ (1/9
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Table 1

ESSs and payoffs faB;;

Condition bii(ll) > b,’l‘(Zl) bil‘(ll) < bil‘(Zl) bil‘(ll) > I?ii(Zl) b,’l‘(ll) < hii(21)
bii(12) > b;;(22) bii(12) < b;;(22) bii(12) < b;;(22) b;i(12) > b;; (22)

ESS(s) (1) @) 1,3 p

payoff bi,' (11) b,’,‘ (22) bi,' (ll) or b,',' (22) *

(1) —the ESS has all players playing pure strategy (1), with resgard1), (2) — the ESS has all players playing pure strategy (2), with reward
b;i (22), (1), (2) — there are two ESSs. Either all players play pure strategy (1), with réyatd), or all players play pure strategy (2), with

rewardb;; (22). p — a mixed ESS which has probability of playing (& f) and payoff, respectivelyp = b,«,-(11)—b;(21)+b;;(12)—b,-f(22)'
bii (12)b;; 21)—b;; (11)b;; (22)

bij (1D —b;; @D +b;; (12—b;; (2D *

Table 2
ESSs forB12 and Bo1

Conditions b21(11) > b1(21) b21(11) > b1(21) b21(11) < b21(21) bp1(11) < b1(21)
Conditions b21(12) > b1(22) b21(12) < b21(22) b21(12) < b21(22) b21(12) > b1(22)
b12(11) > b21(21) b12(12) > b21(22 (CRY) 1.1 1,2 1,2
b12(11) > b21(21) b12(12) < b21(22) @D 1, Dor22 P, q) 2.2
b12(11) < b21(21) b12(12) > b21(22 21 (pq) 1.2or@21 1.2
b12(11) < b21(21) b12(12) < b1(22) 2,1 2,2 2,1 (2.2

The various symbols in the body of the above table are interpreted as foltbvis:— both play pure strategy 1, with rewarblg)(11), b21(11),
respectively(1, 2) — player 1 plays 1, player 2 plays 2, with rewartds(12), b»1(21), respectively(2, 1) — player 1 plays 2, player 2 plays 1,
with rewardsb,2(21), b21(12), respectively(2, 2) — both play pure strategy 2, with rewarbgy(22), b21(22), respectively(p, ¢) — the fol-

; ; ; i _ b21(12)—b21(22) _ b12(12)—b1(22)
lowing mixed pairsp, g are Nash equilibria but not ESSg.= b (D b1 CDFho1 (1255122 4 = biaD=b15CDFh15(19 =513 " The
; T __b12(12)b1p(2D)—b12(11)b1(22) T _ _b21(12)bp1(2D)—bp1(11)bp1(22)
respective payoffs ate’ B120 = 5 4551 52D 7h15(12-h1p22 2199 B21P = 5, 00— 51 20 ho1 (12122 °

2 4 (1/4), 2 4 (1/9) sis, but at the same time provide plausible, if simplis-
5 3 10 3 tic, explanations for certain behaviours. However, the
3 4 1/2) 3 4 2/9) assumption of constant payoffs independent of time,
5 2 ’ 10 2 is not always realistic. Payoffs change throughout the
3 4 3 4 breeding season, and may also vary markedly from
5 3 1/3), 10 3 (1/8) year to year. These variations can be critical to any
analysis.
In effect there are eight different ESS solutions from In this paper we have introduced the variable payoff

a situation where each individual has four choices, matrix A(¢) to consider how different time-dependent
two at each stage; the equivalent maximum number of payoffs may affect strategies. Naturally the evolution
ESSs for a matrix game with four strategies is four, so of strategies can be more complex than under constant
that the extra structure has made the game more com-payoffs. In particular just taking a simple time average
plex. The reason for this is that individuals are allowed of the rewards without recourse to the particular time
to make choices which depend in part on the choice thatthey are available can lead not just to the wrong re-
of the opponent, so that effectively the individual has sult, but completely the opposite result to that obtained
eight distinct choices. by considering the behaviour at each time separately.

Similarly if regular behaviour, with a convergent time

average, occurs, this does not guarantee that the under-
3. Discussion lying payoffs have a convergent time-average (or even

that the relative sizes of payoffs against the same pure

Matrix games have been used to model a variety of strategy do), so that simple observed behaviour may be

animal behaviours. They are structurally simple and concealing very complex variations in the underlying
relatively straightforward and thus amenable to analy- payoffs.
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On the other hand, it is demonstrated that provided (Av); — v Av — (Av)g — (Av);
the varlab|l_|ty of the payoffs is seyerely restricted, — (Av*) — (Av%)j,  j eSO
then the existence of a convergent time average of the
population state occurs as long as there is a level of and so(Av*); — (Av*); < 0, since otherwisey(t)
persistence of the strategies involved in the time aver- would not converge to 0.
age (they do not tend to 0 exponentially). If the actual ~ Thus the matrixA becomes arbitrarily close to a
state converges with time, then the underlying payoffs matrix which hasv* as a Nash equilibrium (we rep-
must converge in a given manner. Thus we extend our resent the collection of all such matrices 4&™)).
knowledge of how certain populations must behave, as There are different such matrices which satisfy this,
well as demonstrating the complexity of the situation SO that which of thesa approaches may change with
by showing that certain plausible statements are false. time. TheA(v*) are split into different families so that

The idea of variable payoffs is finally applied to a if v* is a Nash equilibrium ofA* it is also a Nash
particular example, that of a two-stage game, where equilibrium of uA* + L (whereL € A andp is a non-
the basic payoffs are actually constant, but the rewards negative constant). These families only meet at the set
for the first stage (and thus the whole game) depend 4, so that given ma;; (1) — ax;(t)| > a4 there is a
upon the strategies used, and so are variable. It isgiven minimum distance between members of any two
shown that if the population states converge in all of families. Since @ /dr is bounded, thed cannot move
the second stage games then the long term time av-between families without moving the population state
erage of the state of the whole population converges vV away fromv*. Thus A must converge to one such
provided that the first stage strategies do not tend to 0 family, i.e.,
at exponential rate (indeed convergence of the state oc-
curs in a wide variety of cases). A numerical example
with two strategies at each stage (and so four different for someA* which hasv* as a Nash equilibrium, and
plays in total) is given where each subgame has two some positive continuous functionafg(r). O
ESSs (or ESS pairs), and the population converges to
one of eight possible final solutions, depending upon Proof of Theorem 3.
initial conditions. This number of possible solutions is .
larger than for any matrix game with four strategies, —
the extra complication resulting from each animal be- dr
ing able to use information about the opponent’s strat- =
egy to choose its strategy.

A— g()A* + A®)

= v,-((Av)i — UTAU)

T T
|og(v,~(T))—|og(v,~(0))=/(Av),~ dt—/vTAvdt
0 0

Appendix A N
log(vi(T)) — log(v; (0)) — log(v; (T)) + log(v; (0)
Proof of Theorem 2. ( . ) ( ) ( J ) ( J )
Dy (Av - v’ Av) = / ((Av); — (Av);) dr
dr ,
If v; — v then d); /dr — O (since di/dr is bounded), =
thus if v} > 0 then (Av); — vTAv —> 0= (Av); — 1 T
(Av); — 0Vi, j s.t.vf > 0,05 >0, e, T ((Av); — (Av);)dr -0
0
Xk:(aik —apu—> 0= Xk:(“ik —ajpve—> 0 if both v; and v; do not approach zero sufficiently

closely that either AT log(v;(T)) — 0 or /T -
If v; =0 thenv () — O but due to the boundedness log(v; (7)) — 0 does not hold. We assume that none of
of A, vk (¢) > O forallz. the v;s do (except any elements that are not involved
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in the support of/*).

T

1

= / ((Av); — (Av);) dr
0

~

< alkvk_zajkvk>
k
(aix — ajx)vy dt

(ot — o) v dt

O O~ O —
*M

(fix — fi) vy de

T
0
1 T
7/2 = fir)vr d
o k
ThusTA(v) is a Nash equilibrium oR, i.e.,
T
1
Z(aik —ajk)? / vedt — 0
k 0

if and only if

1

T
—/Z(fik_fjk)vkdf—)O
ok

~

T

1
T / Z(fik — fir)ve dt
k

0

<2
k

~

f |(fik — fi)|vr de

0

N| -
i\]

N e

5>
k

/!(fik—fjk)!dt

0

Thus if
T

1

7[ (it — f0)] dr — 0
0

then the time average @fconverges as above.o

Proof of Proposition 1. Consider the payoff matrix

1 2
'2 r(t)
wherer(t) is a step function taking value 2 § a
proportion of the timer and 2— k a proportion of
the time 1— A, whered > 0 is small andk > 1.
We also assume that the length of the time spent in
each state is long, so that for effectively all of the
time spent in each step, the population is at (or ar-
bitrarily close to) the unique internal equilibrium for
that level. To satisfy the assumption of continuity and
bounded derivative of;;, the steps can of course be
‘rounded’ (e.g., if the end of the stefir) =2 —$
occurs atry, r(f1) =2 -6, r(t1+¢c) =2—k,r(t) =
1-86—(t—r)(k—38)/ct1 <t <11+ ¢) with no extra
consequences.

The mean of(¢) is 2— A8 + Ak — k. The time av-

erage of the matrix thus gives the equilibrium value of
the proportion playing strategy 1 as

k—ki 426
k+1—Xk+Ab

The equilibrium value ofvy whenr(r) =2 — 3§ is
8/(1+6), similarly the equilibrium whem(t) =2 —k
isk/(1+ k). Thus the mean value of using the equi-
libria from the steps is

V] =

NP SPRIPN S S (RS TR DY)
V1 = —_— —_ =
YT 1+k  (k+D@+9)

Settingx = 1 — 1/k gives

_ VE+8(1-1/Vk)
14+ VEk+8(1—1/vk)
vk
1+ vk
5y YhA Sk +1-1/VE)
k+DGE+1)
i

> Tk ;@ >0 —>0k—>00) O

8 — 0)— 1k — o0)
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Proof of Proposition 2. Suppose that the payoff ma- _ Z x;i Ykabika — Z xi}’jbij>
trix alternates between iZk1 i£kL, j£k2
2 4 1
1 2 4 = xr1(1 — xk1) |:yk2bklk2 + Z bi1j yj]
4 1 2 j#k2
occurring in intervals(0, T), (37, 77T), ..., (22" — — Xk1Yk2 Z Xibir2 — Xx1 Z x;yjbij
1T, (22"t — 1T ... and i#k1 i£k1, j#£k2
2 1 4 2 xk1(1 = xx1) yi2b — xkaM (1 — xx1) (1 — yr2)
4 21 = x11(1— xx) [yrob — M(1 — yr2)]
1 4 2

: . . > (1—xk1)b/2
occurring at all other times. It is easy to see that the

time average of;; does not converge for all values of WhereM =max ; b;;.

i, j, but thatv* = (1/3,1/3, 1/3) is the internal ESS If v=1—x;1 then

for each step, and so globally stable under the repli- dy b b

cator dynamid8] so that the time average wfandv g < 3v=logv(®) - log(v (7)) < —5(—T)
itself both converge to* (this is clearly still true if we = 0(r) < Be1/2

add any element o or multiply by any functiong (¢)
as defined in the proposition). Note that rounding the Similarly settingw = 1 — y;» we can show that
step function makes no difference to the convergence —ct)2
of TAV). O w() <Ce
Thus
Proof of Theorem 4. There are two cases to consider, b1)2 12
if i = jandifi  j. (11— Be™% (1~ Ce™/bruz)
()i # j. The only possible solution here is a pure <x"By

pair, k1, k2 say. Supposing that the. payoff matrice; to <(1— Be™/2)(1— Ce ") byyz
the two players ar® andC, respectively, then for this

—bt/2 —ct/2
pair to be an ESS we require +{1-@A-Be"H1-ce M

. . =
brwz > bikz, i #kL,  crar>cika, 1 Fk2 I P S
Let b = buuo — Mmaxxi(bik2), ¢ = aar — (@- Te YA = Ce™S) — Dbz < fij(©
max «i2(cik1). Without loss of generality we can as- =X'BY — bru2
sume thatb;; > 0,¢;; > 0 for all i, j. We shall de- <{1-a- Be 1/2)(1— Ce‘C’/Z)}M

note the mean population strategpgs, p;; by pl.Tj =

T =
(xl,u-,xn):pji=(y1,--.,ym)- T T
Now suppose thaty; > 1 —e; andy;o > 1 — ¢ at 1 . 1 _bt/2 i~y
time 71 (this must be true for som#&; since conver- T |f” (t)| dr < T M|Be +Ce
gence occurs). 0 0

—(b+c)t/2
dx — BCe |dr — 0
-4 xx1((By)k1 — X' By)

dr asT — oo, i.e., all off-diagonal elements satisthe-
orem 3
ZXk1<Zbk1jyj - inyjbij (b) i = j. Suppose thap converges t@* on the

matrix game defined by the payoff mat Suppose
further, without loss of generality, that is an internal

= X1 (bklkzykz + Z br1jyj — xk1yk2biix2 ESS. DefineP by

Jj#k2

—Xklzyj'bklj le_[pi? (P*:l_[p;ﬁp?)
i

j#k2 i
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Thus
1dp _d, .
S =g o) = t(Zpi Iogp,>

*dp; .
= f,—d—f =" pi(Bp); —p"Bp)
1

Let p; = p + &, so for sufficiently large, &; will be
as small as we like for all. Thus

*

«p g \7i

l

= log P =log(P*) + Z pilog(1+¢;/p})

—log P* «f €i 51'2

pi 2p;

(529

(p* + &) B(p* +¢))

= logP —log P* ~ Z 20
Settlnge =(e1,...,&n),
d
@ logP = ZP?(B(F)* +e)i—
— p*TBp* + p*TBs _ p*TBp*
*T T * T
—p"'Be —e Bp®—¢ Be
= —€TB€ = Zbijgigj
(since(Bp™*); is constant angd_ ¢; = 0).
p* is an internal ESS oB implies that it satis-
fies the negative definiteness conditiof 1] so that

—e"Be > 1Y sl.z for some positive. for any such; s.
Thus we have

log(P*) —log(P) _ Y(7/2p})

Llog(P) —eT Be
2(82)/2 min(p) 1
A e? © 2aminpF
Thus

d
log(P*) —log(P) < g (E Iog(P))

) > et/gbg(ip*)
8
= log(P) > log(P*) — ke /8
for some positive constait Thus

—Z /2pl )= —ke™ UERIEN Zs < 2ke'/8
aij(t) =pTBp=p* BP* + ) _eibijp; + ) pibije;

d
Tl /8
=3 (log(P)€

so that

fiy@) =) eibijpj+ Y _ pibije,

= £ <2M Y lei| < nM/Bke %

wheren is the larger dimension a8. Thus

o0

[ 150
I

is finite and so

T
1
Tf |fij ()| dr >0
0
thus satisfying the conditions dheorem 3 O
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