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a b s t r a c t

Dung beetles Onthophagus taurus lay their eggs in brood balls within dung pats. The dung that is used

must be sufficiently fresh, and so beetles must keep moving from pat to pat to find fresh dung. If

another beetle finds a brood ball it will usually eat the egg inside and lay its own egg in the brood ball

instead of constructing its own ball. Thus, beetles will often stay near their eggs to guard them. We

model a population of beetles where the times of arrival and departure from pats are strategic choices,

and investigate optimal strategies depending upon environmental conditions, which can be reduced to

two key parameters, the cost of brood ball construction and the ease of finding balls to parasitise. We

predict that beetles should follow one of three distinct behaviors; stay in patches for only short periods,

arrive late and be purely parasitic, remain in pats for longer periods in order to guard their brood balls.

Under different conditions populations can consist of the first of these types only, a combination of the

first and second types, or a combination of all three types.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Kleptoparasitism, the stealing of resources, is a common
behavior in the natural world. It has been observed, for example,
in wild dogs (Carbone et al., 2005), seabirds (Dies and Dies, 2005),
insects (Reader, 2003), fish (Hamilton and Dill, 2003) and lizards
(Cooper and Perez-Mellado, 2003). For an excellent review of this
behavior see Iyengar (2008).

When is it beneficial for animals to engage in kleptoparasitism,
and why does kleptoparasitism occur in some situations and not
others which are superficially similar? A series of game theore-
tical models has investigated this question, starting with Broom
and Ruxton (1998) (see also Ruxton and Broom, 1999; Broom and
Ruxton, 2003; Broom et al., 2004; Broom and Rychtář, 2007).

All of these models are generic, and there have been few
models that focus on a particular species. One of these was Crowe
et al. (2009) who modelled the stealing behavior of the dung
beetle Onthophagus taurus.

O. taurus is a common dung beetle on many continents,
originally across Southern Europe, North Africa and Asia Minor,
being introduced to North America and Australia in the twentieth
century (Hunt et al., 1999; Fincher and Woodruff, 1975). O. taurus

have been extensively studied because the species exhibits a male
dimorphism in the expression of beetle horns (see e.g. Moczek,
1996; Emlen and Nijhout, 1999; Moczek and Emlen, 2000; Emlen
et al., 2007). Here, we will focus on female behavior. The females
of O. taurus lay eggs in carefully constructed tunnels under the
soil’s surface and beneath a dung pat deposited by a large
herbivore (Crowe et al., 2009). The time that a given dung pat is
usable is dependent on climatic conditions, particularly tempera-
ture and humidity. This time can range from a few hours to
several days (Moczek et al., 2002). Potential parasites can benefit
from stealing a ball in two ways. They can gain nourishment by
eating the egg of the previous owner, and they can save time in
preparing their own ball by using the existing one for their own
egg, if the dung is not too old. It has been documented that female
dung beetles will routinely access brood balls made by other
females and replace existing eggs with their own (Moczek and
Cochrane, 2006). Female dung beetles have been documented to
guard their brood balls against thieving beetles (Hunt and
Simmons, 2002).

Crowe et al. (2009) modelled this situation as a random process,
focusing on a population of beetles on a single dung pat. They
concluded that in general if stealing opportunities presented them-
selves then they should be taken, and that guarding may or may not
be the best strategy depending upon ecological conditions. However,
the model of Crowe et al. (2009) did not consider the time aspect at
all. Beetles usually use all the dung from a dung pat within a period
of four days (Bertone et al., 2006), and do not spend large periods of
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time on a single dung pat, but move from pat to pat. This is thus a
dynamic process, where timing of beetles behavior can be very
important. In contrast to Crowe et al. (2009), in this paper we model
the situation where arrival and departure times at given dung pats
are strategic choices.

2. Model

In this paper we consider a model of dung pats visited by a
large (effectively infinite) population of beetles. It is assumed that
it is always in the interest of beetles to steal if they get the
opportunity (i.e. if they encounter the brood ball of a beetle which
has already left the pat), but that beetles can vary their time of
arrival and departure at a pat, and that any particular beetle will
enter (and leave) a pat when the dung in the pat reaches a certain
age. The strategies in our model will thus consist of a pair of
numbers, which are the choice of the age of the dung when a
beetle arrives and departs a patch. For simplicity we consider only
the day of arrival and the day of departure, so that strategies are
pairs of positive integers, and we assume that a beetle must stay
at least one day. Whilst this is a simplification, it is not an
unreasonable one. Beetles need some time (roughly a day on
average, calculated from results published in Hunt et al., 2002)
after laying an egg for the subsequent egg to develop to be ready
to lay. It is logical that during this time the beetle should stay
close to the egg (and thus guard it) as opposed to going else-
where. Recent laboratory data (Crowe et al., unpublished manu-
script) also suggests that breeding pairs or females remain in the
proximity of the brood balls for an extended period of time.

A beetle’s strategy is determined by

� the age of dung (in days) when it enters a dung pat, xAf1;2,3g;
� the age of dung (in days) when it leaves a dung pat,

yAfxþ1, . . . ,4g.

We will denote each strategy as ðx,yÞ. We thus have six strategies:

O¼ fð1;2Þ, ð1;3Þ, ð1;4Þ, ð2;3Þ, ð2;4Þ,ð3;4Þg: ð1Þ

A dung beetle following strategy ðx,yÞ enters dung of age x.
Beetles can make a brood ball provided that the dung is not too
old; we assume a ball can be made provided that xo3. If x¼ 1,
the beetle makes her own ball. If x41, the beetle searches for any
ball she can steal. Such balls can come only from beetles that
came to the dung earlier and left no later than on day x, i.e. only
from beetles using a strategy ðx0,y0Þ for x0oy0rx. If the beetle
finds a ball she can steal, it eats the other beetle’s egg and lays her
own egg in the ball. If no ball is found and the dung is not too old
(i.e. xo3, so x¼ 2), the beetle will work on preparing a brood ball
of her own. A beetle that prepares its own ball incurs a fitness cost
e (so that if there is an opportunity to steal it should be taken, as
we assume above). In any case (for xr2), the day after the dung
beetle enters the dung pat, the same dung pat will have age xþ1,
a beetle using strategy ðx,yÞ will have one ball with an egg of her
own; the ball was possibly stolen from a beetle using strategy
(1,2) if x¼2. If y¼ xþ1, the beetle now leaves the dung pat to find
a dung pat of age x. Otherwise, she stays in the same dung pat until
it is of age y, guarding her ball and making the ball virtually
invulnerable to the stealing attempts of other beetles. Beetles coming
on day 3 cannot make their own balls as the dung is too old already. If
they do not steal the ball, they will have no ball of their own.

2.1. Model of stealing the ball

Here we describe the mechanism/model of how the ball is
stolen. Consider a case where N beetles are trying to steal a ball in

a dung pat where there are B balls in total. We assume that the
beetles are not 100% effective in finding the balls and introduce a
parameter k that is related to the success rate of kleptoparasitism.
During a small period of time dt, each ball could be found by N

beetles and will be stolen with probability kN dt. Hence, kNB dt

balls will be stolen in total. Once a beetle steals a ball, it does not
attempt to steal another one. Hence

N�B¼N0�B0, ð2Þ

where B0ðN0Þ is the number of balls (beetles) at time 0. Hence, N is
the solution of the differential equation

dB

dt
¼�kNB¼�kBðBþN0�B0Þ: ð3Þ

The solution of (3) is

BðtÞ ¼
ðN0�B0Þ �

B0

N0ektðN0�B0Þ�B0
, B0aN0,

B0
ktB0 þ1 , B0 ¼N0:

8><
>: ð4Þ

Note that the second formula is a limit of the first when
B0�N0-0. We will thus use the first formula (and approach the
appropriate limit where necessary). Up to scaling (in k), we may
assume that beetles have time t¼ 1 to steal the eggs. Thus, after N

beetles have come to a dung pat with B balls, there will be

Bð1Þ ¼ ðN0�B0Þ �
B0

N0ekðN0�B0Þ�B0
ð5Þ

balls left, while the beetles have stolen

B0�Bð1Þ ¼N0B0 �
ekðN0�B0Þ�1

N0ekðN0�B0Þ�B0
ð6Þ

balls in total. Note that the above formulae approach the right
numbers in the limiting cases, when the numerator and denomi-
nator both tend to zero. When k approaches1 (i.e. when beetles
are very effective in finding and stealing the balls) then

Bð1Þ �
0, N0ZB0,

B0�N0, N0oB0,

(
ð7Þ

which means that the beetles find and steal all the balls (if there are
more beetles than balls) or that every beetle steals one ball for herself
(if there are more balls than beetles). Similarly, as B0 approaches 1
(and k40, i.e. there is some chance of stealing), we get

Bð1Þ � B0, ð8Þ

B0�Bð1Þ �N0, ð9Þ

which means that every beetle gets to steal a ball for her own egg
(while leaving the total number of balls effectively constant). Finally,
as N0 approaches1, we get that Bð1Þ � 0, meaning that beetles find
and steal every possible egg.

2.2. Determining fitness

We will denote the fitness, or reproductive success, of a
strategy ðx,yÞAO by f xy. The fitness is the (average) rate at which
brood balls produced by a beetle using strategy ðx,yÞ reach
maturity in a population described by P

!
minus any costs

involved in producing a brood ball. Here P
!
¼/Po,oAOS, where

Pxy is the proportion of the population using strategy ðx,yÞ.
Evolution favors individuals with the greatest fitness, which
depends upon the composition of the population. The composi-
tion of the population will change through time according to this
fitness, on a timescale that is long in comparison to the three day
interactions that we describe. We investigate such changes, and
in particular look for stable population mixtures, evolutionarily
stable strategies (ESSs).
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A beetle using strategy ðx,yÞ works for y�x days on provision-
ing (stealing and/or making a brood ball plus potential guarding).
This also means that beetles using strategy ðx,yÞ can be found in
pats that are x,xþ1, . . . ,y�1 days old. We assume that dung pats
are produced at a constant rate, and that the beetles are equally
distributed in time and space. Thus, the effective number of
beetles using strategy ðx,yÞ, denoted Ne

xy, that can be found on a
single dung pat of age between x and y�1 is

Ne
xy ¼

Pxy � N

y�x
: ð10Þ

This yields the formula for fitness of a strategy to be

f xy ¼
B3

xy

Pxy � N
�erx,y ¼

B3
xy

Ne
xy � ðy�xÞ

�erx,y, ð11Þ

where Bi
xy is the number of undamaged brood balls beetles using

strategy ðx,yÞ have in their possession in a dung pat of age i, and
rx,y is the probability that an individual using ðx,yÞ made its own
brood ball.

B3
xy is determined by the number of brood balls produced

(made or stolen) by beetles using strategy ðx,yÞ, minus the
number of brood balls stolen from them. In order to determine
B3

xy (which is necessary to find f xy) for each strategy, we will
determine B1

xy and B2
xy.

Note that we have assumed that there is effectively no cost in
searching for new pats. Field data indicates that the density of
pats is over 0.5 pats per m2 and that beetles can search over 5 m2

per second (Crowe et al., 2009). However, according to Moczek
and Cochrane (2006) the time expended on tunnelling and brood
ball production in O. taurus requires several hours (see also Hunt
and Simmons, 2002, 2004).

2.2.1. Day 1

Only beetles using strategies ð1;2Þ, ð1;3Þ, ð1;4Þ come on the
first day of the dung pat. There is nothing to steal and they all
make their own balls. We thus have

B1
xy ¼

Ne
1y, yAf2;3,4g,

0 otherwise:

(
ð12Þ

2.2.2. Day 2

Strategies ð1;3Þ and ð1;4Þ continue to guard their brood balls,
so that their brood balls will not be stolen. The only brood balls
that can be stolen come from strategy ð1;2Þ; and the only beetles
that can steal these balls are using strategy ð2;3Þ or ð2;4Þ. Hence,
there are B1

12 balls to be stolen by ðNe
23þNe

24Þ beetles to steal them,
we use (5) and get

B2
12 ¼Ne

12 � ð1�s2Þ, ð13Þ

where

ð1�s2Þ ¼
ðNe

23þNe
24Þ�Ne

12

ðNe
23þNe

24Þe
ktððNe

23þNe
24Þ�Ne

12Þ�Ne
12

: ð14Þ

Above, s2 denotes the fraction of the balls that got stolen (using
(6)). Note that ð2;3Þ and ð2;4Þmay steal, but those beetles that did
not steal can make a ball of their own. In total, each such beetle
will have a ball in their possession. Thus, we get

B2
xy ¼Ne

xy, xAf1;2g, yAf3;4g: ð15Þ

2.2.3. Day 3

Strategies ð1;4Þ and ð2;4Þ continue to guard their brood balls,
so that their brood balls will not be stolen. The brood balls that

can be stolen come from strategies ð1;2Þ, ð1;3Þ and ð2;3Þ; and the
only beetles that can steal those balls are using strategy ð3;4Þ. No
new balls can be made on day 3. There are thus in total

V3 ¼ B2
12þB2

13þB2
23 ð16Þ

vulnerable balls that can be stolen on day 3 by a total of Ne
34

beetles. Thus, by (6), beetles using strategy ð3;4Þ will steal

S3 ¼Ne
34V3 �

ekðN
e
34�V3Þ�1

Ne
34ekðN

e
34�V3Þ�V3

ð17Þ

balls. Assuming that stolen balls are selected at random, the
fraction B2

12=V3 of those stolen balls belonged to ð1;2Þ beetles and
similarly for other strategies. We thus get

B3
12 ¼ B2

12�S3 �
B2

12

V3
¼Ne

12 � ð1�s2Þ � 1�
S3

V3

� �
, ð18Þ

B3
23 ¼ B2

23�S3 �
B2

23

V3
¼Ne

23 � 1�
S3

V3

� �
, ð19Þ

B3
13 ¼ B2

13�S3 �
B2

13

V3
¼Ne

13 � 1�
S3

V3

� �
, ð20Þ

B3
24 ¼Ne

24, ð21Þ

B3
14 ¼Ne

14, ð22Þ

B3
34 ¼ S3: ð23Þ

The corresponding fitnesses then follow from (11), although this
still involves the unknown term rx,y. It turns out from the analysis
below that we do not need to evaluate rx,y, but we note here that
r1,y ¼ 1 for y¼ 2;3,4 and r3;4 ¼ 0.

3. ESS analysis

First, we establish that none of the strategies ð1;2Þ, ð1;3Þ, ð1;4Þ
can be an ESS or even involved in an evolutionarily stable
mixture. Indeed, it follows from (11), (21) and (22) that, under
any circumstances

f 14o f 24: ð24Þ

Now we compare strategies ð1;3Þ and ð2;3Þ. Each has the same
probability of losing any brood ball that they make (if it is stolen
by a ð3;4Þ individual). ð2;3Þ has no greater cost per ball, as ð1;3Þ
can never steal, and ð2;3Þ makes balls at a faster rate than ð1;3Þ
(taking one day instead of two). Thus, as long as the expected cost
per brood ball is less than the expected reward (which we
assume, as otherwise the population would not be viable), we
have that

f 13o f 23: ð25Þ

Finally, since k40 (i.e. beetles can steal something), we get that
s240 and thus since r2;3rr1;2 ¼ 1

f 12o f 23: ð26Þ

This means that we can restrict ourselves to the analysis of the
case where only ð2;3Þ, ð2;4Þ and ð3;4Þ are present. In this situa-
tion, beetles using ð3;4Þ can steal balls coming from ð2;3Þ only and
no other stealing takes place. Thus, ð2;3Þ, ð2;4Þ must make their
own brood balls and r2,y ¼ 1 for y¼ 3;4. The fitness of the
respective beetles becomes

f 24 ¼
1
2�e, ð27Þ

f 23 ¼
Ne

34�Ne
23

Ne
34ekðN

e
34�Ne

23Þ�Ne
23

�e¼ P34�P23

P34ek0 ðP34�P23Þ�P23
�e, ð28Þ
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f 34 ¼
Ne

23ekðN
e
34�Ne

23Þ�Ne
23

Ne
34ekðN

e
34�Ne

23Þ�Ne
23

¼
P23ek

0 ðP34�P23Þ�P23

P34ek0 ðP34�P23Þ�P23
, ð29Þ

where the new factor k0 is just a rescaling of the original factor k,

k0 ¼ kN: ð30Þ

3.1. Pure strategies

We shall first consider each pure strategy in turn, assuming
that the population consists almost entirely of individuals of that
type, together with a small invading group comprising individuals
from the other types. When the population consists of almost all
ð2;3Þ strategists, the fitnesses of the three strategies are

f 23 ¼ 1�e, ð31Þ

f 24 ¼ 1=2�e, ð32Þ

f 34 ¼ 1�e�k
0

ð33Þ

so that ð2;3Þ is an ESS when f 23 is the largest of the three fitnesses,
i.e.

k0o�lnðeÞ: ð34Þ

When the population consists of almost all ð3;4Þ strategists, the
fitnesses of the three strategies are

f 23 ¼ e�k
0

�e, ð35Þ

f 24 ¼ 1=2�e, ð36Þ

f 34 ¼ 0: ð37Þ

For ð3;4Þ to be an ESS we need e4maxð1=2,e�k
0

Þ. Note that such a
population is not realistic, since it consists only of individuals
who arrive too late to lay their own eggs, and so no eggs are ever
laid. Provided that the cost of egg laying is not unfeasibly large,
then this is not an ESS, and we shall discount it. In general we
shall assume that eo1=2.

Finally, when the population consists of almost all ð2;4Þ
strategists, the fitness of ð2;4Þ is f 24 ¼ 1=2�e. It can thus be
invaded by ð2;3Þ strategists whose fitness is f 23 ¼ 1�e. Thus,
ð2;4Þ is never an ESS.

3.2. Mixtures of two pure strategies

We shall first consider populations consisting of two of the
three strategies only. For any particular mixture to be an ESS, the
payoffs to the two strategies involved must be equal, and greater
than the payoff to the third strategy.

First, we consider a pair including ð2;3Þ and ð2;4Þ. We have
p34 ¼ 0, so that f 23 ¼ 1�e, f 24 ¼ 1=2�e. Thus, f 234 f 24, which
means that no such mixture can be an ESS.

Now we consider a pair including ð2;4Þ and ð3;4Þ. We have
p23 ¼ 0, so that f 24 ¼ 1=2�e, f 34 ¼ 0. Thus, f 244 f 34, which means
that no such mixture can be an ESS.

To have a pair including ð2;3Þ and ð3;4Þ we need f 23 ¼ f 34

which, by (27) and (28) implies that

hðP23Þ ¼ f 23�f 34 ¼
ð1�P23Þ�P23ek

0 ð1�2P23Þ

ð1�P23Þek
0 ð1�2P23Þ�P23

�e¼ 0: ð38Þ

For stability against small changes in the relative frequency of the
two types in the equilibrium we need h0ðP23Þo0 where the
differentiation is with respect to P23. This happens if and only if

1�e2k0 ð1�2P23Þ þ2k0ð1�2P23Þe
k0 ð1�2P23Þo0: ð39Þ

It is easy to show that the left-hand side of (39) is zero at
P23 ¼ 1=2, positive when P2341=2 and negative when P23o1=2.

This, together with the fact that hð0Þ ¼ hð1Þ ¼ e�k
0

�e, in turn
means that either there are no roots to (38) or there are exactly
two, with an unstable root with P2341=2 and a stable (against
changes in P23 and P34) root with P23o1=2. There are two such
roots when hð0Þ404hð1=2Þ, i.e.

2ð1�eÞ
1þe ok0o�lnðeÞ: ð40Þ

In addition we need stability against invasion by P24. We will
first evaluate the mean fitness in a mixture satisfying (38). Since
pats are visited daily by all females, the ratio of the number of
brood balls hatching daily to the number of females is simply the
proportion of females building balls, P23. This is also the propor-
tion of females who pay the costs of building a brood ball. Hence,
f 23 ¼ f 34 ¼ P23ð1�eÞ. Thus, f 234 f 24 ¼ 1=2�e is equivalent to

P234
1�2e

2ð1�eÞ
: ð41Þ

This inequality defines a region in parameter space which has a
boundary defined by when 4 is replaced by ¼ in (41). This
boundary thus occurs when P23 ¼ ð1�2eÞ=2ð1�eÞ which is equiva-
lent to

P23

1�P23
¼ 1�2e and 1�2P23 ¼

e
1�e : ð42Þ

Rearranging (38) gives

ek
0 ð1�2P23Þ ¼

1þ P23
1�P23

e
P23

1�P23
þe

, ð43Þ

which using the rearrangements in (42) leads to the boundary
condition as

k0 ¼ 1�e
e lnð1þ2eÞ: ð44Þ

It is clear that invasion by P24 is resisted if and only if k0 lies on
one side of the critical value given by (44), and simple verification
indicates that the required condition is

k0o 1�e
e lnð1þ2eÞ: ð45Þ

The right-hand term of (45) always lies between the two limits of
(40) for eo0:5 so that we have a pair ð2;3Þ and ð3;4Þ if and only if

2ð1�eÞ
1þe ok0o 1�e

e lnð1þ2eÞ: ð46Þ

3.3. Mixtures of all three pure strategies

For an internal equilibrium we require the fitness of all three
strategies to be identical. By (27) and (28), f 23 ¼ f 24 if and only if

ek
0 ðP34�P23Þ ¼ 2�

P23

P34
: ð47Þ

By (28) and (29), f 23 ¼ f 34 if and only if

e¼ P34�P23ek
0 ðP34�P23Þ

P34ek0 ðP34�P23Þ�P23
: ð48Þ

Substituting (47) into (48) we obtain

e¼
P34�P23ð2�

P23
P34
Þ

P34ð2�
P23
P34
Þ�P23

¼
P34�P23

2P34
: ð49Þ

Thus, we have

P23 ¼ P34ð1�2eÞ, ð50Þ

H.A. Barker et al. / Journal of Theoretical Biology 300 (2012) 292–298 295
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which substituted into (47) gives

P34�P23 ¼
1

k0
lnð1þ2eÞ: ð51Þ

Rearranging (50) and (51) we obtain an internal equilibrium
when

P23 ¼
1�2e
2k0e lnð1þ2eÞ, ð52Þ

P34 ¼
1

2k0e
lnð1þ2eÞ, ð53Þ

P24 ¼ 1�P23�P34 ð54Þ

whenever the three terms are all positive, which (assuming
eo1=2) occurs if and only if

k04 1�e
e

lnð1þ2eÞ: ð55Þ

We believe that this equilibrium is also an ESS in all cases, as
suggested by our numerical results, but we have not been able to
prove this.

3.4. Dynamics

We consider evolutionary dynamics, using the classical repli-
cator equation (Hofbauer and Sigmund, 1998)

d

dt
Pxy ¼ Pxyðf xy�f Þ, ð56Þ

where f is the mean payoff in the population. The dynamics yields
four different outcomes, as in the ESS analysis above, see Fig. 1.

It is hard to prove results regarding the replicator dynamics in
a case with non-linear payoffs as in this paper, and we shall
restrict ourselves to observing the outcome of simulations.

When there is a unique solution, this is either a pure ESS or an
internal equilibrium, and so in each case a rest point of the
dynamics. In each case the numerical results show that this is a
global attractor so that starting with any population mixture, the
population always finishes at the unique rest point. When there
are two rest points, where the population finishes depends upon
the initial population composition, but generally each as a
substantial basin of attraction.

4. Results summary

There are four distinct cases, based upon comparing the value
of k0 with three progressively larger functions of e. We illustrate
these in Fig. 2. If

k0o 2ð1�eÞ
1þe

ð57Þ

then there is a unique pure ð2;3Þ ESS which is globally stable. If

2ð1�eÞ
1þe ok0o 1�e

e lnð1þ2eÞ ð58Þ

then there are two ESSs, a pure ð2;3Þ ESS and a mixed ESS
combining the two strategies ð2;3Þ and ð3;4Þ. If

1�e
e lnð1þ2eÞok0o�lnðeÞ ð59Þ

then there are again two solutions, a pure ð2;3Þ ESS and an
internal equilibrium combining all three strategies. Finally, if

�lnðeÞok0 ð60Þ

there is a unique internal equilibrium.
We can thus see that when brood balls are difficult to find

(when compared to the cost of production) then all individuals
should spend as short a time on the dung pat at possible before
leaving, and create their own brood balls. When they become
easier to find, then this strategy remains an ESS, but there is also
an alternative mixed ESS comprising both individuals of the
original type and pure parasites which arrive late in the hope of
exploiting these individuals after they have left by stealing their
brood balls. If finding brood balls becomes even easier, then
whilst the first solution is still an ESS, the mixed solution involves
a third strategy which arrives early and waits for a long time
guarding its brood balls as a defence against the late arriving
parasites. Finally for brood balls that are very easy to find, the
pure strategy is no longer an ESS, and the mixture of three is the
unique solution.

5. Discussion

In this paper we have considered a dynamic model of the
creation, parasitism and defence of brood balls by a common
species of dung beetle. As the quality of dung quickly declines
over a small period of days, beetles must move between pats to

Fig. 1. Diagram of the dynamics for e¼ 0:2 and (a) k0 ¼ 1o2ð1�eÞ=ð1þeÞ, (b)

2ð1�eÞ=ð1þeÞok0 ¼ 1:34oðð1�eÞ=eÞ lnð1þ2eÞ, (c) ðð1�eÞ=eÞ lnð1þ2eÞok0 ¼ 1:5o
�lnðeÞ, and (d) �lnðeÞok0 ¼ 3.
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Fig. 2. Outcomes for different model parameters, the cost of making own ball, e
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give their offspring a good chance of survival. We have shown
that under different circumstances, three distinct strategies can
survive in some combinations. The first type is individuals ð2;3Þ
which arrive early on dung pats but leave quickly; whilst they
would parasitise others if the opportunity arose, they are not on
the dung pat at the right time to do so. Thus, if the population
only consists of individuals of this type, there is no parasitism.
The second type is purely parasitic ð3;4Þ beetles which arrive
later, after those of the first type have left, and who parasitise
their brood balls. Finally, there are ð2;4Þ individuals who arrive
early and stay for a long time to guard their own eggs from
parasitic individuals. The second type can clearly only exist if
there are individuals of the first type, and the defensive strategy
of the third type is effective only if the second type is present.

The key factors that affect the mixture of individuals are two
key parameters, the ease of finding brood balls to steal and the cost
of making your own ball. The harder balls are to find, and the lower
the cost of making a ball, the more the strategy ð2;3Þ prevails in the
population. This strategy is always present in some numbers, and
for sufficiently low cost of ball making and high difficulty of finding
balls all beetles play this strategy. As these parameters change
(cost of ball making increases, difficulty of finding a ball decreases),
then the parasitic individuals can appear, and at more extreme
values the individuals that use considerable time resources defend-
ing their brood balls can appear.

Our model predicts that very new pats should not be used for
brood balls. This seems to agree with reality. Crowe et al.
(unpublished manuscript) conducted an experiment which docu-
mented the density of O. taurus beetles on dung pats every 12 h
from creation. Data suggests that dung beetles are found in the
pat at fairly consistent levels at 12, 24, 36 and 48 h but after 48 h
there are very few beetles in the pat (probably because the pat is
relatively dried out at that point). The number of beetles in the
soil below the pat is significantly lower than the numbers in the
pat and beetles do not make their way below the pat until about
24 h after pat creation. The data also indicates that the act of
burying dung (to create brood balls) does not begin until the pat
is at least 12 h old. Thus, O. taurus likely uses different aged pats
for different things. Although the density may be high in newly
created dung pats (12 h or less old) the adults are likely to be
feeding (not all feeding beetles use a dung pat for brood ball
production as the density of beetles found below a dung pat is
significantly lower than the number of beetles within the
dung pat).

A key assumption of our model is that all beetles are potential
parasites and whether they parasitise or not is governed by their
arrival and departure strategies. In real populations beetles do
indeed arrive and depart at very different times (Crowe, 2011)
and it seems reasonable to assume that they would take the
opportunity to parasitise if the chance presented itself (Crowe
et al., 2009).

Our model predicts that although parasitism is an effective
strategy for the beetles to employ, we cannot necessarily expect it
to occur at high frequency or, in some cases, at all. In real
populations parasitism generally occurs at a low frequency
(roughly 13%, Moczek and Cochrane, 2006) which might corre-
spond to the type of situation that we predict to occur when balls
are easy to find (e.g. see Fig. 1d).

We have also assumed that beetles only arrive or leave at
discrete times, and this is clearly a simplification as in real
populations they arrive and depart throughout the day. However,
our aim was to make the model tractable whilst retaining the key
features of beetles being able to arrive or depart at early or late
times, and stay for short or long periods. Similarly the beetles
search for brood balls is idealized, effectively assuming random
searching with balls spread evenly across the search area; we

again retain the key feature of balls being either easy or hard to
find. Finally, we assumed that dung was usable if sufficiently
young, and not after a cut-off point. If dung deteriorated in
quality, then it may be possible that arrival on the first day could
be a playable strategy.

It would be of great interest to obtain realistic estimates of our
two key parameters e and k0 from real populations to see how
well our predictions match reality. One can extend the model by
incorporating another parameter, the effectiveness of guarding
(treated as 100% in the current model). The parameter may be
negatively correlated with the cost of egg production and depend
on to what degree a female can guard the brood ball and feed
simultaneously. Further model developments including using
continuous rather than discrete arrival and departure times, and
potentially more complex searching strategies for the beetles,
would also help improve our understanding of these important
and fascinating animals.
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