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Abstract
Chris Cannings was one of the pioneers of evolutionary game theory. His early work was
inspired by the formulations of John Maynard Smith, Geoff Parker and Geoff Price; Chris
recognized the need for a strong mathematical foundation both to validate stated results and
to give a basis for extensions of the models. He was responsible for fundamental results
on matrix games, as well as much of the theory of the important war of attrition game,
patterns of evolutionarily stable strategies, multiplayer games and games on networks. In
this paper we describe his work, key insights and their influence on research by others in
this increasingly important field. Chris made substantial contributions to other areas such as
population genetics and segregation analysis, but it was to games that he always returned.
This review is written by three of his students from different stages of his career.

Keywords Evolutionary games · Evolutionarily stable strategy · War of attrition ·
Multiplayer games · Games on graphs

1 Introduction

Chris Cannings (1942–2017) is one of the most important contributors to the area of evolu-
tionary games to date. While it is impossible to do justice to the breadth of his work in this
arena, we attempt here to put in context some of his major observations. The three authors
were all PhD students of Chris at the University of Sheffield from different periods of his
career; Tim Bishop (1975–1977), Mark Broom (1990–1993) and Richard Southwell (2006–
2009), and owe a great deal to him. We should point out that Chris was also a pioneer in
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mathematical genetics and leaves an equivalent body of work and impact on that field (which
we touch on briefly in Sect. 3) and was interested in many aspects of the application of math-
ematics to understanding systems and their evolution; those who knew him will remember
his enthusiasm when discovering a worthy problem. Much of his work in genetics as well as
in game theory revolves around optimization, especially in evolutionary terms. This review,
however, focuses on his evolutionary games work.

In the sections that followwe cover seven key themes of Chris’ work. In Sect. 2 we discuss
the war of attrition; in Sect. 3 matrix games and the Bishop–Cannings theorem; in Sect. 4
patterns of evolutionarily stable strategies; in Sect. 5 multiplayer games; in Sect. 6 models
of some classic animal behaviours; in Sect. 7 games on static graphs and in Sect. 8 dynamic
network models. Finally in Sect. 9 we discuss the overall impact of his work. First we discuss
a little history, and how Chris started to work on evolutionary games.

In 1973, John Maynard Smith and Geoff Price described models of conflicts between
members of the same species competing to take some limited resources. This work is gen-
erally considered the original article underpinning modern evolutionary games (although
important earlier game-theoretic work exists on the sex-ratio game, e.g. see [70]). Their
article, published in the journal Nature, described two-opponent symmetric, conflict mod-
els. These models were formulated to investigate optimal approaches to be taken by each
opponent in response to the other’s approach and to take into account the perceived value of
winning the competition and taking the reward, be it food, habitat or partner. The motivation
was the observation that intraspecific competition is often ritualistic and unlikely to cause
harm; any challenge that led to physical injury could harm both winner and loser and make
the participants more susceptible to attack and defeat by other local members of the same
population or predators. Such observations had been interpreted as being beneficial to the
species and community, but Maynard Smith and Price wished to explore if such behaviours
could alternatively be interpreted as arising because they are beneficial to the individual.
They postulated a number of distinct behaviours such as the “mouse” who always played
the conventional low conflict approach, or “Hawk” who adopted an aggressive approach,
while other behaviours responded to the approach of the opponent. In subsequent papers
and discussions, the behaviour termed “mouse” was renamed as “Dove” but has the same
character.

This elegant game theory model together with computer simulation suggested that the
“limited war” (their term) solution could be advantageous to the individual in keeping with
their speculation. In the discussion, they coined the phrase “Evolutionarily Stable Strategy”
(ESS) to define the strategy which if adopted by the community would be advantageous
over an interloper adopting a different strategy. In their terms, denoting E[B, A] as the
expected reward to an individual adopting strategy B in a competition against an individual
adopting strategy A, then if A is a strategy for which E[A, A] > E[B, A] is true for every
potential alternative strategy B, then A is an ESS. Alternatively, if the inequality holds for
some alternative strategies, but for other alternatives we have E[A, A] = E[B, A], then
E[A, B] > E[B, B] was required for A to be an ESS (note that there is a more general
condition for an ESS to hold involving the proportion ε of the population which play the
alternative strategy, which reduces to the above for certain types of games, including those
that were considered). The motivation for this formulation is that if a competitor adopts
strategy A and the reminder of the population adopts A, then the population is stable to
invasion by a mutant adopting the B strategy [108].

Chris was particularly intrigued by the potential to use game theory to explain behaviour
and, when Tim Bishop arrived as a PhD student in 1975, proposed that their joint research
should explore these models and the properties of the overall approach.
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2 TheWar of Attrition

John Maynard Smith (JMS) had proposed a contest (the “war of attrition”) between two
individuals in which the opponent willing to wait the longest wins. If a contest is ever to be
settled, there must also be some disadvantages to the contestants in a long contest. If so, the
only choice of strategy open to a contestant is of the period for which they are prepared to
continue, and hence of the payoff they are prepared to accept. So, if one opponent’s strategy
is to wait for time t1 and the opponent is willing to wait for t2 (where t1 > t2), then the contest
ends at time t2, with both contestants paying a cost t2 and the winner gaining the reward of
value V . For pure strategies t1 and t2 we get payoffs

E[t1, t2] =

⎧
⎪⎨

⎪⎩

V − t2 t1 > t2,

V /2 − t1 t1 = t2,

−t1 t1 < t2.

(1)

JMS argued that no “pure” strategy (i.e. where a player always waits for the same amount
of time t) could be the ESS, because the strategy of waiting just a moment longer would
mean that this competitor would always win against the animal playing t , gaining the reward
without incurring extra cost. The problem then is: How should a contestant choose a value
of t , or, more precisely, is there a method of choosing t which is an ESS? JMS argued that
the optimal time would be an exponential time with mean 1/V, predominantly basing this on
the exponential distribution and no information being conveyed about the contest ending in
the next short interval. However, the argument was not complete and JMS mentioned this
to Chris. JMS was not particularly worried about having a mathematically pure argument,
indicating that he had no doubt about the solution. Chris took this as a challenge and set out
first to provide the complete solution and then to generalize these models. The initial solution
to the conflict as formulated by JMS, and confirming his conviction, was published in Bishop
and Cannings [8].

2.1 The GeneralizedWar of Attrition

In the “generalized war of attrition” [9], more general cost and reward functions are allowed
than those proposed originally by JMS. For the generalized game with contest time x having
reward for winning f (x) and cost of competing g(x), the payoffs can be written

E[t1, t2] =

⎧
⎪⎨

⎪⎩

f (t2) − g(t2) t1 > t2,

f (t1)/2 − g(t1) t1 = t2,

−g(t1) t1 < t2.

(2)

In such conflicts under reasonable assumptions about the cost and reward functions, there
are either no ESSs or a unique solution, and in this latter case, the formal solution can be
provided in closed form. For instance, if the strategy space involves competing without any
time limit, the density function for the ESS is given by:

p(x) = g′(x)

f (x)
exp

(

−
∫ x

0

g′(t)
f (t)

dt

)

x ∈ [0,∞). (3)

Note that in the standard war of attrition, f (x) = V (a constant) and g(x) = x .
Bishop et al. [11] expanded the conflict to the scenario where rewards varied randomly

(the random rewards model) and also when the reward value differed between participants
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(e.g. when one was hungrier than the other) and/or the rewards progressed or escalated
during the conflict; in these models, each opponent is aware of the reward for winning but
unaware of the reward to the opponent (other than in distribution). If the reward takes on
a series of discrete values, then the willingness to compete for longer increases, with each
reward value corresponding to an interval time range which is non-overlapping with the time
intervals corresponding to different rewards. One interesting difference with the standard war
of attrition was that allowing different rewards for winning for different competitors means
that the expected payoff is positive overall (in the war of attrition, the expected payoff is
zero meaning that there is no difference in payoff (reward–cost) between strategies). In the
random rewards model, the payoff is, on average, higher for the competitor with the highest
value attached to the reward.

Bishop et al. [11] also provided a solution to the “graduated risks model” where competi-
tors are willing to graduate the risk to which the conflict escalates, incurring an increased
risk of injury (and cost). In this model, the solution depends on whether the cost of being
injured exceeds the reward if successful. Of course, if the reward exceeds the cost of injury,
then playing the most aggressive strategy is the ESS.

Bishop and Cannings [10] considered ordinal conflicts in which both the cost and the
reward of competing were different between competitors. In these conflicts, the generalized
war of attrition is further broadened so that both the reward and cost functions can differ
between competitors. In these conflicts, the expected payoffs (when the ESS is played)
depend only on the reward function and not on the specific form of the cost function.

2.2 FurtherWar of Attrition Models

Haigh and Cannings [69] considered a multiplayer version of the war of attrition. Here
individuals choose their waiting time as in the standard game; they considered four scenarios.
In the first there was only a single reward, and individuals had to choose a waiting time at
the start of the game. In the second, they could update their strategy every time that a player
was observed to leave. The third and fourth variants were as for the first two except that there
were multiple rewards, and a player received a reward based upon the order in which they
left. In the first variant the ESS involved all players choosing a strategy with the following
distribution function

G(x) = (
1 − exp(−x/V )

)1/(m−1)
x ∈ [0,∞), (4)

wherem is the number of players. Subsequently,Helgesson andWennberg [76] proved further
results on this model.

Chris did further work on evolutionary game theory on Parker’s model (Cannings [38],
see also [124]), where two players choose amounts to pay, and the individual which pays the
larger amount wins the reward, but each player also incurs a cost proportional to the amount
they chose to pay. This is a variant on the war of attrition with the payoffs

E[t1, t2] =

⎧
⎪⎨

⎪⎩

V − t1 t1 > t2,

V /2 − t1 t1 = t2,

−t1 t1 < t2.

(5)

Chris considered the casewhere the strategy sets of the players are finite. In general there is no
evolutionarily stable strategy in Parker’s model. Using an interesting relationship, involving
Dyck words (see e.g. [155]), Chris was able to determine the conditions for all strategies to
be present in the stationary distribution of these systems.
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3 Matrix Games and the Bishop–Cannings Theorem

In considering the war of attrition, Chris realized that there were some general properties
of ESSs which had become apparent. Bishop and Cannings [8] subsequently provided three
theorems about ESSs. In terms of definitions, if, as above, a “pure” strategy involves playing
for a fixed amount of time, a “mixed” strategy involves playing a random time determined
by a defined probability distribution and the “support” of an ESS is the set of pure strategies
which are included in the overall mixed strategy which is the ESS; Theorem 1 states that for
each pure strategy in the support of the ESS, the payoffs for playing each such pure strategy
against the ESS are the same. Theorem 2 states that if there are multiple ESSs for a particular
conflict, then the support region for the first ESS cannot be a subset of the support region for
the second ESS and vice versa. Below we define the concept of a matrix game and then state
this theorem explicitly for this type of game.

A matrix game is one defined on pure strategies {1, 2, . . . , n} where payoffs are given by
a matrix A = (ai j )i, j=1,...,n , where ai j is the payoff for playing strategy i against strategy j .
Mixed strategy payoffs are then given by

E[p,q] = pAqT. (6)

For example, the classical Hawk–Dove game introduced by Maynard Smith and Price [109]
is a matrix game with two strategies Hawk (H ) and Dove (D) and payoffs E[H , H ] =
(V − C)/2, E[H , D] = V , E[D, D] = V /2 and E[D, H ] = 0 (individuals compete for a
reward V , Hawks beat Doves, but losers in Hawk versus Hawk contests pay a cost C).

The support of p is S(p) = {i : pi > 0}. Defining T (p) to be the set of pure strategies
which have equal payoffs against the strategy p, i.e.

T (p) = {i : E[i,p] = E[p,p]}, (7)

for matrix games Theorem 2 states:
If p is an ESS of the matrix game A and q �= p is such that S(q) ⊆ T (p), then q is not an
ESS of matrix game A (which is a slightly stronger result than that stated above).

Theorem 2 is now widely known as the Bishop–Cannings theorem and is a fundamental
result in the theory of ESSs. In particular, we see its use in studying patterns of ESSs in
Sect. 4. On the basis of this result, it follows (Theorem 3) that if an ESS involves playing
each pure strategy with some probabilities, then that ESS is unique. We have stated the above
results for a set of discrete pure strategies, but it holds for a continuous set too, such as for
the war of attrition as mentioned above.

Finally, Bishop and Cannings [8,9] developed an algorithmic approach to evaluate poten-
tial ESS solutions for any competition whether continuous or discrete. A specific algorithm
for finding ESSs of matrix games was given by Haigh [66] (but see Abakuks [1], who showed
that this does not always hold for non-generic cases). Depending on the payoff matrix, games
can have no, one or several ESSs, an observation first made by John Haigh. Chris and Glenn
Vickers subsequently worked extensively on the issue of identifying the characteristics of the
payoff matrices leading to games with specific combinations of ESS supports (see Sect. 4).

Bomze [12] returned to the issue of identifying ESSs in matrix games and gave a detailed
discussion of an algorithm to enumerate and verify candidate ESS solutions. In Sect. 4 we
discuss further recent developments relating to patterns of ESSs which build on this work,
especially in Bomze et al. [15].

We should note that the definition of an ESS as given above allows for resistance to
invasion to require an ever smaller fraction of the population, denoted by ε as mentioned in
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Sect. 1, for successive invading strategies, and so there may be no minimum fraction that
works for all invading strategies. This was pointed out by Vickers and Cannings [161]. If
there is such a fraction, then an ESS is said to have a uniform invasion barrier. It was shown
by Hofbauer et al. [79] that such a uniform invasion barrier exists for matrix games. There
are in fact many notions of evolutionary stability with a range of different properties that we
shall not discuss in detail here. For a snapshot of those defined by the time of their article’s
publication, see Apaloo et al. [3]; see also Lessard [98].

More recently, a number of important lines of research have followed building on the
mathematical framework developed primarily by Chris; while there are many citations of
this early work, we have chosen a few of the more notable strands (which are not covered
elsewhere in this paper) to illustrate the breadth of activity.

Eshel [54] considered a situation with a continuous strategy set, related to the war of
attrition. In particular he explored the relationship between the ESS and continuous stability,
that is if the population adopts a strategy similar to but not identical to the ESS, there is
an advantage of adopting a strategy closer to the ESS, see also Eshel and Sansone [55]. He
showed necessary and sufficient conditions for the ESS to be continuously stable. This was a
forerunner of the ideas of adaptive dynamics (see [60]), which we discuss briefly in Sect. 6.

Vincent and Brown [165] developed an approach to modelling evolution which explicitly
incorporates ecological factors using their G-function methodology. This was developed
following a series of earlier works such as Vincent and Brown [164] and Brown and Vincent
[34]. Vincent and Brown [166] contrasted ESSs and Nash equilibria and the importance of
stability concepts in evolutionary models. They developed these ideas more together with
Apaloo inApaloo et al. [3], where important concepts of evolutionary stabilitywere discussed
(see also [2]) and contrasted.

Rapoport [138] discussed in detail the relationship between ESSs and conventional game-
theoretic approaches stressing the equivalence of studying behaviour in biological systems
with traditional game methodology. We note that while there is a strong theoretical link
between conventional games, in particular based on economic ideas, and evolutionary games
based on biology, the two areas have for the most part developed in parallel without much
interaction. This has changed more recently, e.g. see Sandholm [143].

3.1 Asymmetric Games

One of the key developments that emerged early in the theory of evolutionary games is that
of asymmetric games. While Chris did not work on this explicitly, this important work built
on his contributions.

The war of attrition and similar models assumed that while there could be differences in
the value of the reward for winning, there was no asymmetry in terms of external information
prior to or during the contest. However, there are many conflicts which have asymmetries,
such as when one of the participants is the current owner of a territory, so that each conflict
is between an owner and an intruder. In such scenarios, the nature of the ESS differs with
this external information, the asymmetry, assisting in defining the optimal solutions. In such
games, there are often two solutions [124], one regarded as common sense in which the owner
is willing to remain for longer and an intruder investigates whether the territory can be won
with limited expenditure or the inverse solution where the owner retreats when challenged.
Hammerstein [71] showed that even a modest modification of the Hawk–Dove game could
result in games with two ESS solutions. These two strategies are ESSs but not unexpectedly
in the owner–intruder example; the former is the commonest scenario in nature. However,
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there are real-world examples of the latter (see Parker [124] for examples). It was shown
in Selten [145] that for a wide class of such asymmetric games, it was not possible to have
mixed ESSs, so that the only ESSs are pure.

Hammerstein andParker [72] examined the conditions underwhichmultipleESS solutions
might be found. They considered the issue of incomplete information (that is imprecision in
for instance the owner–intruder conflict) or scenarios under which fighting approaches were
not continuous, e.g. Hawk vs Dove discrete behaviours as compared to the continuous nature
of the time choice in the war of attrition. They found that the criteria which allowed such
counter-intuitive solutions to be feasible included that the information had to be predomi-
nantly correct and that the decision to remain had to be taken early in the conflict with no
early opportunity for avoiding the impact of a decision to compete and that behaviours were
continuous.

The theory of asymmetric games, in particular in relation to owner–intruder relationships,
has been developed in a number of directions. A significant series of paperswas byMesterton-
Gibbons, Sherratt and co-workers, who have considered various extensions to the theme, for
example in Mesterton-Gibbons et al. [113,114]. In particular, the study by Gibbons and
Sherratt [112] considers the concept of infinite regress previously raised by JMS, where if an
owner is displaced by an intruder in an owner–intruder game the roles are then reversed, so
that the second ESS described above might lead to an infinite contest. A review of this and
other work is presented in Sherratt and Mesterton-Gibbons [146].

3.2 Genetic Models and Discrete Dynamics

While JMS coined the term evolutionarily stable strategy, the implicit assumption was that
when thewhole population adopted that strategy, such a population could not be invaded by an
interloper or a mutation which translated into a different strategy. However, it is not clear that
the population dynamics would translate into that ESS being achieved within the population
if it did not start with all individuals adopting that strategy. There is a huge literature on
evolutionary dynamics considering this and other questions, including a range of different
dynamics, and we shall not discuss it here. In particular the most widely used dynamics is
the replicator dynamics developed in Taylor and Jonker [158], where the population evolves
in continuous time using differential equations. We note that ESSs and stable rest points of
the dynamics are not identical (see [78]). While this, and other, continuous-time dynamics
are more widely used in the literature, given his interest in genetic models, Chris was more
interested in discrete-time dynamics, and a discrete version of the replicator equation appears
in Bishop and Cannings [9].

In this discrete-time model, the assumption is made that the fitness of an individual is
related to the strategy adopted plus amarginal fitness attributable to all other activitieswhich is
constant among community members. The dynamics can then be examined using approaches
such as that of Kimura [86] and Kingman [87]. The interests of these investigators were the
evolution of allele frequencies; in such a scenario, the payoff matrix A is symmetric (in the
genetics example, this represents the fitness of the heterozygote for off-diagonal elements)
and it is known that the population evolves to a stable equilibrium if one exists. The dynamic
model considers that the representation of a particular type in the population in generation
Gn is proportional to the frequency in generation Gn−1 multiplied by the fitness of that type
compared to the rest of the population. In fact, in this scenario of allele frequency changes, the
mean viability increasesmonotonically from generation to generation towards the asymptotic
equilibrium.
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Chris had employed such an approach successfully when examining the effect of selection
on a multiallelic system when the population was split between multiple niches and mating
happened within each niche [36]. Assuming the population is large, Bishop and Cannings [9]
showed that for the generalized war of attrition, if there is an ESS, then this strategy is both
attainable in a large population and achieved asymptotically. However, in the general setting
the mean fitness of the population does not necessarily monotonically increase from gener-
ation to generation. Chris was particularly interested in trying to understand the relationship
between the ESS and dynamic stability especially in the scenario where the strategy adopted
in conflicts was genetically determined. However, it is fair to say that limited progress was
made on the overall problem and it remains an interesting, unresolved issue.

One outstanding problem is to consider how the imposition of germline inheritance on
conflict behaviour might evolve, as opposed to the phenotypic modelling which had been
discussed previously. Hines and Bishop [77] and Cressman and Hines [47] showed that while
there were situations in which the ESS was not locally stable, restricting the mode of inheri-
tance by excluding situations which were less biologically plausible such as overdominance,
meant that the ESS was locally stable. Some recent works have been carried out on such
genetic models in Fishman [56,57], where a methodology of how to approach these prob-
lems was introduced and some analyses for classical games including the Hawk–Dove game
and Prisoner’s dilemma are carried out.

4 Patterns of ESSs

We have seen above how the Bishop–Cannings theorem means that certain combinations
of ESSs are not possible. What other results can be found that tell us more about what is
possible? This was the question investigated by Chris with Glenn Vickers and later by co-
workers including Mark Broom in a series of papers from the late 1980s. It is not feasible
to consider all of the possible ESS vectors that can occur for a given matrix so, as in the
Bishop–Cannings theorem, they concentrated on the supports of the ESSs. The idea of a
pattern of ESSs was introduced in Vickers and Cannings [163]. The pattern of the matrix
game A is the collection of supports of the ESSs of A, i.e. if p1,p2, . . . ,pN is the list of all
ESSs of A, then

P(A) = {S(p1), S(p2) . . . , S(pN )}. (8)

A collection of subsets of {1, 2, . . . , n}, P , is an attainable pattern if there is some matrix
A for which Eq. (8) holds. It is attainable on n pure strategies if there is such a matrix
which is n × n. We note that since the numbers here are arbitrary, any re-numbering of an
(un)attainable pattern also yields an (un)attainable pattern. Cannings and Vickers sought to
find which patterns of ESSs are possible, by generating new exclusion results, as well as
general construction methods for attainable patterns.

A pattern P on n pure strategies is maximal if it is attainable, and P ∪ S1 ∪ . . . ∪ Sk is not
attainable for any k and non-empty S1, . . . , Sk ⊂ {1, 2, . . . , n}. The following conjecture, if
true, would mean that consideration of only maximal patterns is sufficient.

Conjecture If P is attainable on n pure strategies, then P∗ ⊂ P is also attainable on n
pure strategies [42].

A weaker result, that if P is attainable on n pure strategies, then P∗ ⊂ P is attainable on
n + k pure strategies for k ≥ K for some K , was shown in Broom [17].
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The full set of attainable patterns for the cases n = 2, 3, 4 and the set of maximal patterns
(subject to two unknown cases) for n = 5 is shown in Cannings and Vickers [42,43] (see
also [162]). For instance, the full set of attainable patterns for n = 3 and n = 4 is given by
n = 3: {(1, 2, 3)}, {(1, 2), (1, 3)}, {(1, 2), (3)}, {(1), (2), (3)}
n = 4: {(1, 2, 3, 4)}, {(1, 2, 3), (1, 2, 4)}, {(1, 2, 3), (2, 4), (3, 4)}, {(1, 2, 3), (4)},
{(1, 2), (1, 3), (1, 4)}, {(1, 2), (1, 3), (4)}, {(1, 2), (2, 3), (3, 4), (1, 4)},
{(1, 2), (3), (4)}, {(1), (2), (3), (4)}.
The case of symmetric games with payoffs ai j = a ji , which can be used in genetics with
strategies corresponding to alleles, was considered in Cannings et al. [44], as discussed in
Sect. 3.

4.1 Exclusion Rules

There are a number of exclusion rules, most of which appear in Vickers and Cannings [163].
We show the two simplest rules below. The first of these is the most useful and is in fact just
an application of the Bishop–Cannings theorem.

Exclusion rule 1 Anti-chain. If S1 ⊆ S2, then no pattern can contain both S1 and S2.
Exclusion rule 2 No triangles. If Q ⊆ {4, 5, . . . , n}, S1 = {1, 2} ∪ Q, S2 = {1, 3} ∪ Q

and S3 = {2, 3} ∪ Q, then no pattern can contain {S1, S2, S3}.
All non-obtainable patterns for the case n = 3 above can be excluded using these two

rules only (the second rule excludes the triangle {(1, 2), (1, 3), (2, 3)}). For n = 4 and above
we need these two rules, but also others.

4.2 Constructing Attainable Patterns

There are also a number of construction methods, see Broom et al. [24] (also [26]) and more
recently Bomze et al. [15]. The simplest of these from Cannings and Vickers [41] involves
the idea of a clique matrix. An n × n matrix A is a clique matrix if aii = 0 for all i and
ai j = a ji = ±1 for all i �= j . A set of pure strategies S forms a clique if and only if
ai j = 1 ∀i, j ∈ S with i �= j and there is no k /∈ S s.t. akj = 1 ∀ j ∈ S.

It is easy to show that there is an ESS of A with support S if and only if S is a clique,
and so P(A) is simply the set of cliques of A. All attainable patterns for n = 3 can be found
using cliques, but for larger n we need other construction methods, and cliques fail to find
an increasing proportion of them.

Recentwork considering a variant of the cliquematrix defined above, where ai j = a ji = 1
or 0 is given in Wang et al. [168] (see also [74]). Here the precise network was chosen for
application motivational reasons, and the payoff matrix corresponds to a graph adjacency
matrix where 1(0) represents the presence (absence) of a social link, although we note that
this matrix class leads to more complex conditions and thus is less useful for constructing
ESS patterns.

4.3 TheMaximumNumber of ESSs

The maximum number of ESSs possible for n × n matrices was denoted in Broom et al. [23]
by Mn . In particular they proved that Mn Mm ≤ Mn+m and that

lim
n→∞(Mn)1/n = γ, (9)
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for some γ ≤ 2.
A lower bound for γ of 301/9 ≈ 1.459 was found in Broom et al. [23]. In fact a value

almost as good, 31/3 ≈ 1.442, can be found using clique matrices. This bound was recently
improved on in Bomze et al. [15] to 151201/24 ≈ 1.493. In that paper the authors build
on earlier work Bomze [12,13] to develop ways to tackle this and related problems (as in
Broom et al. [23] the focus was on the standard quadratic optimization problem which has
a number of other applications too). They found lower bounds for the maximum number of
ESSs for all n ≤ 24 and also investigated methods for looking for ESSs for larger n more
generally. This work was developed further in Bomze and Schachinger [14] in the same
issue of dynamic games and applications as this review, and this paper contains a number of
interesting analyses.

Upper and lower bounds on the number of ESSs of a given mean support size

f (α) = lim
n→∞(sαn)1/n, (10)

where sn(x) is the maximum number of ESSs of mean support size x on an n×n matrix, were
found in Broom [16]. Here it was shown that f (α) is continuous on the rational numbers.

The above bounds for γ and f (α) are still very wide, and it will be a considerable
challenge to improve them. Nevertheless, the recent work in Bomze et al. [15] and Bomze
and Schachinger [14] is the first significant improvement for many years and hopefully there
is more of such improvements to come.

4.4 The Expected Number of ESSs

In practice we are unlikely to have a very large number of ESSs of a matrix game, and the
question of howmany ESSs we would expect to see was considered in Cannings and Vickers
[41], when considering randomly generated clique matrices. The same problem for more
general matrices was considered in Haigh [67,68]. We note that here the distribution of the
payoffs affects the answer; in Haigh [67] all payoffs were assumed to be i.i.d from a uniform
distribution. Large ESSs supports were shown to be very unlikely to occur in Haigh [68].

This problem is significantly complicated by the stability condition required to make a
Nash equilibrium into an ESS, and addressing the problem of the number of Nash equilibria
that can occur is an easier problem to tackle, as in Han et al. [73] and Duong and Han [50],
which both actually consideredmultiplayer games (as defined in Sect. 5) aswell as two-player
games. As well as proving general results Duong and Han [50] showed that, under specific
distributional and independence assumptions, the probability of an internal equilibrium is
simply 1/2n−1. This work is part of a series of papers in this area, see Duong and Tran [51]
and Duong et al. [52].

Due to its general mathematical formulation on quadratic forms, the study by Broom
et al. [23] has been cited in various later mathematical works with no clear biological or
game-theoretic connection. A relevant biological connection is in the work of Leinster and
Meckes [95]. Here the authors develop a model of biological diversity and use a similarity
matrix between the species (values being between 0 and 1, where the similarity of a species
to itself is 1). They are interested in maximizing diversity and use a number of entropy
measures. Interestingly, the conditions for optimizing entropy closely resemble those for
ESSs of symmetric evolutionary games, when the dissimilarity matrix (1 minus the similarity
matrix) is used (see e.g. Cannings et al. [44] where such symmetric matrices are considered).
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5 Multiplayer Games

Following on from the above work, together again with Broom and Vickers, Chris considered
general multiplayer evolutionary games. He had previously published one paper on multi-
player games [69], which is mentioned in Sect. 2. This began with work on an extension of
the theory of matrix games to the general situation of multiplayer games in Broom et al. [28].

5.1 Multiplayer Matrix Games

Broom et al. [28] considered the situation of an infinite population, where randomly selected
groups of size m play a game where there are n pure strategies available. In the most general
case the specific ordering of all players could be important, and there would be a distinct
set of payoffs, one to each of the m players, for each ordered strategy selection i1i2 . . . im .
However, they concentrated on symmetric games, where the payoff to any given individual
depended only upon its own strategy and the combination of the strategies of the other players,
irrespective of their ordering.

Thus, the payoff to an individual playing i1 against players playing i2, . . . , im satisfies
ai1i2...im = ai1σ(i2)...σ (im ) for any permutation σ of the indices i2, . . . , im . Matrix games are
just a special case of this situation with m = 2.

They showed that the Bishop–Cannings theorem fails (i.e. it is possible to have two ESSs
where the support of one is a subset of the support of the other) form ≥ 3, that it is not possible
to have two ESSs with the same support for m = 3, but that this is possible for m ≥ 4. They
considered in some detail the case with n = 2, where they fully categorized the possible sets
of ESSs (not just their supports) that could occur for a single game in the generic case; this
case was further developed in Pena et al. [131]. In this case the payoffs can be simply denoted
αi j where i = 1, 2 represents the player’s strategy, and j = 0, . . . , m − 1 represents the
number of its opponents that play strategy 1, the remaining m − 1 − j thus playing strategy
2. Broom et al. [28] showed that for generic games, mixed ESSs are represented by the zeros
of the following polynomial where the derivative is less than 0,

h(p) =
m−1∑

l=0

(
m − 1

l

)

βl pl(1 − p)m−l−1, (11)

where βl = α1l − α2l . Pure strategy 1 (2) is an ESS if βm−1 > 0 (β0 < 0).
This work was developed further in Bukowski and Miȩkisz [35] who proved extensions

of classical results for matrix games, such as that a strategy p is an ESS if and only if it is
locally superior. They also gave the nice example below to illustrate that a game can have
more than one ESS with the same support for m = 4.

Example 1 ([35]) Consider the game with payoffs α11 = α22 = − 13
96 ,

α13 = α20 = − 3
32 and α10 = α12 = α21 = α23 = 0. Thus β0 = 3/32,

β1 = −13/96, β2 = 13/96, β3 = −3/32 giving

h(p) = − 3

32
p3 + 13

32
p2(1 − p) − 13

32
p(1 − p)2 + 3

32
(1 − p)3 (12)

= −
(

p − 1

4

) (

p − 1

2

) (

p − 3

4

)

, (13)

and thus the game has two internal ESSs at p = (1/4, 3/4) and p = (3/4, 1/4) (and no pure
ESSs).
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Broom et al. [28] also considered the case with n = m = 3, the simplest case where
both m and n are greater than two, for the special case of supersymmetric games, where
ai1i2...im = aσ(i1)σ (i2)...σ (im ) for any permutation σ of the indices i1i2, . . . , im , which is the
extension to multiple players of the genetics-based model of Cannings et al. [44]. The range
of combinations of ESSs that resulted showed the difficulty in dealing with this problem
more generally.

Platkowski has written a number of papers on multiplayer evolutionary games [134,136,
137]. Recently he introduced the idea of evolutionary coalitional games [135], i.e. incorpo-
rating classical coalition games into the evolutionary setting, where the population evolves
following the replicator dynamics. Here he showed that, contrary to the corresponding evo-
lutionary models in well-mixed populations, cooperation can be supported in the system in
the long run. The two-strategy game of Broom et al. [28] was also recently used in labora-
tory experiments to investigate human cooperative behaviour in Kuzmics and Rodenburger
[92].

The stochastic stability for a finite population playing three-player games with two strate-
gies was the subject of a series of papers by Miekisz and co-authors, where they studied this
situation for the well-mixed case [85], a spatially structured population [115] and a popula-
tion where there was an added time delay in the games [116] (see also Miekisz et al. [117]
in the same journal issue as this review).

This area was further explored more recently by Gokhale and Traulsen [62,63],
Wu et al. [170], see also Han et al. [73] and Duong and Han [50], as discussed
in Sect. 4.4. The study by Gokhale and Traulsen [64] is a good review of work
up until 2014. In Gokhale and Traulsen [62], the authors investigated both infinite
and finite populations. The question of the number of Nash equilibria (as opposed
to ESSs) it was possible to have in a multiplayer game was considered. In gen-
eral it was shown that the maximum number of internal equilibria possible is (m −
1)n−1.

The possible emergence of multiplayer games from pairwise ones was considered in Wu
et al. [171]. Here the authors considered pairwise games that occurred in sets that broke up
at rates that depended upon their composition, and which led to games that were multiplayer
in character, with payoff functions as in multiplayer matrix games. These were compared to
linear independent combinations of pairwise games to show how multiplayer games might
emerge. The effect of a multiplayer game being the result of non-independent pairwise ones
is also the subject of Sect. 5.2.

There are also more computational applications for evolutionary games and in particular
multiplayer evolutionary games. In Rota Bulo and Pelillo [142] (see also [127]) evolu-
tionary game methodology was applied to the problem of hypergraph clustering, that is
the process of finding the most coherent groupings from a set of objects using high-order
(i.e. not just pairwise) similarities. Here the authors devised a hypergraph clustering game
and showed equivalence between the ESSs of the game (with multiplayer ESSs of level
1 as defined in [28]) and dominant set clusters, an important concept from clustering the-
ory.

The concept of games, including evolutionary games, has been combined with quantum
dynamics to give quantum games, [53] with potential applications to evolution at the molec-
ular level. Evolutionary aspects have particularly been considered by Iqbal and colleagues
for the two-player and multiplayer settings [45,80–82]. See Orlin Grabbe [122] for an intro-
duction to this area.
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5.2 Knockout Contests and Swiss Tournaments

In Broom et al. [30,31] the same authors considered pairwise games built into a dependent
structure that meant, unlike for standard matrix games, players did not play games indepen-
dently of their strategy and so a more complex multiplayer contest resulted. The game was
built on knockout contests like the Wimbledon tennis tournament (although this involves
some non-random element by seeding the leading players) where individuals are randomly
paired, but only the “winner” qualifies for the next round, and a similar randomdraw is carried
out between the winning players. This process starts with 2n players and is repeated until a
final between two players occurs. An individual receives a reward Vj for being eliminated in
the round of 2 j players, with the winner receiving V0. Individuals can also receive costs from
a contest, depending upon their strategic choice and that of their opponent. The probability of
progression also depends upon these choices, and this means that later pairings are depended
upon strategy. They considered two versions of the game, where individuals had to play the
same pure strategy in every round (the fixed case) and where they could change it , following
a (possibly round-dependent) mixed strategy, every round.

An example component game considered was the Hawk–Dove game. Here Hawk versus
Hawk contests resulted in a cost of C , and otherwise there were no costs, as standard. Here
the reward V was replaced by progression to the next round. Thus Hawks always beat Doves,
and contests between individuals playing the same strategy resulted in each progressing with
a probability of 1/2. For the fixed strategy case there are fewer Hawks in the population the
more rounds there are, as Hawks are more likely to progress to later rounds and have contests
against increasingly Hawkish opponents; the distribution of observed contests can also be
significantly different from the comparable case with independent contests.

This game was further developed by Broom and Cannings [18] to consider a different type
of contest where all players were involved in every round, based upon the “Swiss tournament”
common in chess competitions. Individuals should be aggressive in early rounds and, if
successful, later rounds. Losers however should become less aggressive, and this nicely
mirrors the “loser effect” described in the models below.

Classic models of dominance hierarchy formation consider a series of contests within a
group where winning increases the chance of winning another contest (winner effects) and/or
losing decreases this chance (loser effects). Various models have considered the evolution of
dominance hierarchies under winner and loser effects and in particular whether and how fast
a linear hierarchy can be established including Dugatkin [48], Dugatkin and Dugatkin [49],
Mesterton-Gibbons and Dugatkin [111] and Kura et al. [89]. In Dugatkin [48] individuals
could assess the relative fighting ability of their opponent and concede if it was above a certain
threshold. Kura et al. [90] considered an explicitly game-theoretic model where individuals
could select their concession threshold strategically. Here a pure strategy solution was found,
and this corresponded with fast establishment of a linear hierarchy.

Through a detailed study of data in hens and cichlid fish, Lindquist and Chase [103]
(see also [46,102]) found a dynamic relationship more complex than the linear dominance
hierarchies from previous models. They suggested that the outcomes of hierarchies to a great
extent depended upon two rules only. Rule 1 was that there were aggressive contests between
all pairs of animals, and rule 2 that intransitive configurations of attacks were transformed to
transitive ones faster than vice versa, but that there is a continuous dynamic updating.

A model of a population of birds arriving at a nesting area was developed in a further
series of papers by Chris and colleagues. Here birds arrived sequentially and had to select
one of the nests sites, which varied in quality. Good sites were likely to be contested by later
arrivals, so sometimes it was best to select intermediate sites to avoid costly contests. They
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thus arrived at a set of dependent pairwise contests which combined to be a potentially very
complex multiplayer game. Two extremes of birds with great and poor calculating powers
were considered in Broom et al. [27,29], respectively. An interesting situation where birds
cooperated by selecting the worst sites and avoiding all conflicts, reminiscent of Tit-for-Tat
in the Iterated Prisoner’s Dilemma, occurred in Broom et al. [25].

5.3 Multiplayer Games in Structured Populations

We shall discuss structured populations in more detail in Sects. 7 and 8. However, it is worth
discussing them a little here in connection to multiplayer games. While none of the work
below in this section was done by Chris, both structured populations and multiplayer games
were a significant interest of his and his ideas influenced someof thework below.The classical
game models from previous sections have all relied on the population being unstructured, or
well-mixed, with every pair or group of individuals as equally likely to interact as any other
of the same size. Populations with structure, based upon an underlying graph representing
possible interactions (evolutionary graph theory), were introduced in Lieberman et al. [101].
The early models did not involve games at all, and when games were introduced [119,121]
inevitably these were pairwise, reflecting the edges of the graph. Multiplayer games were
introduced on a graph by Santos et al. [144] (see also [99,100]) where each individual played
a multiplayer game involving all of its neighbours (and so if it had k neighbours it would
also be involved in k further games centred upon each of them).

For finite structured populations, it is known that when considering the two-player Pris-
oner’s dilemma, an important property to assess whether cooperation evolves is the structure
coefficient. How does this extend to multiplayer games? This question was addressed by
McAvoy and Hauert [110] and Pena et al. [132] who considered the specific coefficients to
be used; a more general type of structural coefficient is needed here, and typically m − 1 are
needed for an m player game (see [141]). This has only been developed for specific types
of graph so far. Pena et al. [133] consider the concepts of volume order and containment
order which can use structure coefficients to assess the relative likelihood of the evolution of
cooperation for different structures in a wide class of games.

Multiplayer games, including those with variable size, were introduced with the devel-
opment of a new modelling framework in Broom and Rychtář [22] (see also [32,125,126]).
This is a flexible framework with many possibilities, and a range of structures, games and
dynamics has been considered. See also Tarnita et al. [157] and Pena and Rochat [130] for
alternative ideas. Having variability in group size can have significant effects on the evolution
of populations, see Pena and Noldeke [128,129] and Broom et al. [33]. For instance Pena and
Noldeke [128] found conditions on the payoffs for when increased variability would favour,
or inhibit, the evolution of cooperation for a specific class of games.

6 Models of Classical Animal Behaviour

The early classical evolutionary game theory models, such as the sex-ratio game, Hawk–
Dove game or war of attrition, were developed with a specific biological application in
mind, but were nevertheless very simple idealized games designed to show key insights with
clarity. Subsequently models of animal behaviour which incorporated more realistic detail
were developed, and now there are very many such models. Chris and colleagues developed
some of these models in the 1990s and early 2000s. We shall consider three types of model
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here: the co-evolution of predator–prey interactions, parasitoid superparasitism and sperm
competition models. In each case we shall briefly describe the mathematical model, before
discussing the key conclusions and connections to later work.

6.1 Predator–Prey Co-evolution

Models of predator–prey interactions are some of the earliest in mathematical biology
[105,167]. These early models were not game-theoretic, but there have been a number of
models developed from this classical interaction that have involved strategic behaviour of
the predators and/or the prey. An influential model of this type was developed by Marrow
et al. [107] (see also [106]) which considered the classic predator–prey population dynamic
model, but where there was also a slower evolutionary process affecting the body sizes of
both predators and prey.

They considered a polymorphic population with two types of prey, with slightly different
body sizes s1 and s1 + ε1, and two types of predator, with body sizes s2 and s2 + ε2. The
population then followed the ecological dynamics below:

dx1
dt

= x1(r1 + αs1(x1 + xε
1) + βs1,s2 x2 + βs1,s2+ε2 xε

2), (14)

dxε
1

dt
= xε

1(r1 + αs1+ε1(x1 + xε
1) + βs1+ε1,s2 x2 + βs1+ε1,s2+ε2 xε

2), (15)

dx2
dt

= x2(r2 + γs1,s2 x1 + γs1+ε1,s2 xε
1), (16)

dxε
2

dt
= xε

2(r2 + γs1,s2+ε2 x1 + γs1+ε1,s2+ε2 xε
1), (17)

where x1(xε
1) is the population size of the prey with body size s1(s1 + ε1), and x2(xε

2) is the
population size of the predator with body size s2(s2 + ε2). The r parameters (both positive)
represent low density growth, the αs (negative) are self-limiting parameters for the prey,
and the βs (negative) and γ s (positive) are predator–prey interaction terms, where any given
predator type is more likely to kill certain types of prey than others.

The result of these ecological dynamics then determined whether the mutant body sizes
s1 + ε1, s2 + ε2 could invade a population (s1, s2) (we will omit discussions of the conditions
here). Thus over time the body sizes within the population would evolve, governed by the
predator–prey interactions.

For plausible functional forms for these parameters, Marrow et al. [107] identi-
fied ten distinct evolutionary scenarios, including a continuous “red-queen” cycling
though the body sizes. This paper demonstrates some of the possibilities of trait evo-
lution and was cited in some of the important early works in the theory of adap-
tive dynamics (such as [60,88,93]), which is a very flexible and general mathemat-
ical theory of trait evolution, a discussion of which is beyond the scope of this
paper.

A range of later works that considered the evolution of traits in co-evolving populations
also cites this paper, and while it is often not the central paper considered, it is touched upon
in a number of different approaches and scenarios. These include Mougi and Iwasa [118]
which investigates when such oscillatory evolutionary behaviour will and will not occur, and
Lion and van Baalen [104] which considers the influence of spatial factors in trait evolution.
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6.2 Superparasitism of Hosts by Parasitoids

Many wasp species are parasitoids which lay their eggs within the larvae of other species,
eventually leading to the host’s death. A larva can be parasitized by more than one egg [61],
although only one offspring will survive; this is called superparasitism. Commonly females
leave a pheromone mark on a host that they have parasitized and so can distinguish hosts that
are unparasitized, parasitized by themselves or parasitized by conspecifics [96].

This behaviour was modelled in Haccou et al. [65], who considered a scenario with
two parasitizing wasps Fv and Fw at a patch of host larvae. The first female enters a
patch of non-parasitized hosts, the second arriving at a random time later. Each host can
be in one of the five states: unparasitized, or parasitized by the first only, by the second
only, by both (with the offspring of the first the survivor) or by both (with the offspring
of the second the survivor). Females can distinguish the states, except the fourth from
the fifth. They assumed that females began by parasitizing only unparasitized larvae (a
non-superparasitizing female), perhaps switching at some time to both parasitizing and super-
parasitizing.

Non-superparasitizing females encounter (and parasitize) hosts at rateλ. Superparasitizing
females encounter hosts at rate μ < λ and superparasitize if a host contains at least one egg
of the other individual; this latest egg is the one to yield an offspring with probability σ .

The state of the patch is denoted by the proportions in the different cases u (state 1, unpara-
sitized hosts), v (states 2 and 4, first female’s offspring survives) andw (states 3 and 5, second
female’s offspring survives). The female strategy is a choice of leave, parasitize or superpara-
sitize for every potential scenario, as either first or second female. The payoff to Fv(Fw) is the
derivative of v(w) with respect to t . Different trajectories within the region (u, v, w) occur
for different strategies. For example when there is only a single superparasitizing female Fw

present, the trajectory follows

du

dt
= −μu,

dw

dt
= μu + σμv,

dv

dt
= −σμv. (18)

There is also a background environmental gain rate γ . At any point, the two females
choose a strategy based upon how long they should wait, and when one leaves, the reward to
the other will suddenly increase. This is equivalent to receiving a reward at that point, and
Haccou et al. [65] thus analysed Fv and Fw as playing in a generalized war of attrition (see
Sect. 2 and [9]).

The asymmetry of this model means that the first female to arrive effectively finds a better
quality patch than the second, since there is a patch of completely unparasitized hosts. This
led to the prediction that the first female would spend longer in the patch than the second.
This prediction was empirically tested in Le Lann et al. [94] who conducted experiments
with an aphid parasitoid Aphidius ervi Haliday in a patch of larvae from a grain aphid species
Sitobion avenae Fabricius.

Three different scenarios were considered: (a) simultaneous patch exploitationwith differ-
ent arrival times, (b) exploitation of an unexploited patch by a single female, (c) exploitation
of a previously exploited patch by a single female. The results found in this paperwere entirely
consistent with predictions made in Haccou et al. [65]. In particular, in patches where two
individuals were present at the same time, the first arriving individual stayed for a longer
time; indeed, it was usually the last to leave.
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6.3 Sperm Competition

Males can compete with each other directly for mates through fights, as represented by the
Hawk–Dove game. However, they can also compete indirectly, and one key way they do
this is through sperm competition. A series of sperm competition models was developed by
Parker and colleagues (see e.g. [4,5,123]). An interesting alternative was developed by Chris
and colleagues in Fryer et al. [58,59], which we describe below.

Consider a population consisting of a proportion f females and m = 1− f males, which
participates in two rounds of mating. Males will try to mate in each round, females mate
only if receptive, and they may be receptive in either, neither or both rounds (in each round
every receptive female will mate). fi j and mi j denote the proportion of males and females,
respectively, who mate i times in round 1 and j times in round 2 (i, j taking values 0 or 1).
The amount of sperm needed to guarantee fertilization is ε0. If two males’ sperm compete
for fertilization, any given sperm from the round 2 male is r times more likely to fertilize
the female than any given sperm from the round 1 male. The aim was to find the best male
strategy s of what proportion of sperm to invest in round 1.

Setting f1 = f10 + f11, the payoff to an s∗ player in a population of s players was given
by

E[s∗, s] = f10
m

min

(
s∗

ε0
, 1

)

+ f01
m

m − f1
m

+ f01
m

f1
m

min

(
1 − s∗

ε0
, 1

)

+ f11
m

[
m − f1

m

(
s∗

s∗ + r
+ r

s + r

)

+ f1
m

(
s∗

s∗ + r(1 − s)
+ r(1 − s∗)

s + r(1 − s∗)

)]

.

(19)

They found that, except for non-generic cases, there is always a unique pure ESS value
of s. This value was in general at least 1/2 but could be any value up to 1. The value of 1/2
occurred principally when every male mates in the first round, i.e. m = f1. The larger m/ f1,
the larger s, and it could be that s = 1 so all sperm is used in the first round (this occurred
more commonly when ε0 was relatively large).

They also considered developments of this model, either where males could replenish
some sperm between rounds or the females could oviposit some eggs between rounds. In
each case, as expected, the ESS value of s increases as a result.

The model of Fryer et al. [59] extended the above analysis to consider a guarding strategy,
where instead of attempting to mate in the second round, a male could guard the female
that he had mated with in the first round. If another male then attempted to mate with the
female, this mating was prevented with probability φ. They again found a unique ESS for
each case, where this could either be monomorphic guarding, a monomorphic population
of non-guarders with a single s strategy (as in the original model where guarding was not
allowed) ormuchmore rarely a polymorphicmixture of guarding and a range of non-guarding
strategies. An interesting recent model [160] made similar predictions to the above and was
fitted with some success to data for three species.

7 Games on Static Graphs

Strategic interactions often occur in spatial situations where individuals only interact with
their neighbours. This results in games on graphs. The types of games on graphs Chris studied
can be separated into two categories. Firstly, the systems where the network remains static,
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and the strategies of individuals change over time. Secondly, Chris also considered games
within which the network itself evolves as a result of the result of the strategic interactions
of the nodes within.

We shall start by discussing systems where the network remains static, and the strategies
employed by the nodes change over time. Many such models are reviewed in Szabo and Fath
[156], although we will focus on the models inspired by Chris’ research.

7.1 Best Response Games

In Southwell and Cannings [151], the state evolves over discrete-time steps, so that at each
time step, each vertex simultaneously updates to the best response to their neighbours’ strate-
gies.

A best response game on a graph is specified by an undirected graph G = (V , E), with
a vertex set V and an edge set E and an n by n payoff matrix M . Vertices of the graph
represent players. A state s of the system, at time step t, is where each vertex v of G employs
some pure strategy s(v) in {1, . . . , n} . The model update rules are such that, in the state
s′ at time step t + 1, a vertex v will employ the pure strategy i in {1, . . . , n} which would
have maximized their total payoff

∑
u:{u,v}∈E Mi,s(u) against the strategy configuration their

neighbours used at time step t . In other words, each player simultaneously updates to what
they should have chosen against their current surroundings. Best response games of a similar
nature were considered earlier in Berninghaus and Schwalbe [6,7]; however, the study by
Southwell and Cannings [151] was the first work to examine the possible dynamics of games
with more than two strategies. In Southwell and Cannings [151] a geometric method was
used to enumerate the different best response games on various graph structures like the
complete graph and the circle. The best response for a particular vertex just depends upon
the fraction of its neighbours which are using the different pure strategies. This information
can be represented as a point in the n − 1-dimensional strategy simplex using barycentric
coordinates. The type of dynamics of a game just depends upon how such discrete points are
partitioned into different best response regions (i.e. regions of the strategy simplex which
have different pure best responses). By considering the different ways to partition the strategy
simplex into convex best response regions with respect to the discrete points (that represent
local strategy configurations) Southwell and Cannings [151] were able to enumerate the best
response games on simple graph structures like circles and complete graphs. A classification
of the dynamics of two-strategy best response games on circle graphs was also given. When
there are more than two strategies, best response games on the circle can have complex
dynamics. For example, there is a three-strategy game which (when played on the infinite
circle/line) corresponds to the chaotic cellular automata rule 90 (see [91,169]). Similarly
complex dynamics have been observed in other types of games upon graphs [120].

7.2 Majority/Minority Games

Closer study of particular two-strategy best response games on graphs (and generalizations
thereof) was carried out by Chris in Cannings [37]. In a majority game a player adopts
the same strategy as the majority of its neighbours. The dual idea is the minority game,
where a player adopts the same strategy as the minority of its neighbours. In Cannings [37]
a combination of simulations and combinatorial methods was used to study such games on
complete networks, hypercubes and a certain class of cubic networks. The different attractors
of these dynamical systems, and their basins of attraction, were found in many cases. An



Dynamic Games and Applications

interesting duality between the dynamics of minority and majority games was also noted.
Further work along these lines was done in Haslegrave and Cannings [75] where it is shown
that more interesting dynamics can take place when the network holds a single vertex that
updates its strategy via different criteria.

The majority game can be thought of as a game on a graph, where matching a neighbour’s
strategy provides unit payoff, whereas not matching its strategy provides zero payoff. A gen-
eralization of this is where each vertex v gets a payoff for using a strategy i in {1, . . . , n}
that is given by some (player, and strategy-specific) function of the number of neighbours
using the same strategy. For such systems, Cannings and Cannings [40] settled the conjecture
about the existence of a pure Nash equilibrium, negatively, by demonstrating the existence
of such generalized coordination games with three players and three strategies which do not
have pure Nash equilibria. This aided wider efforts to classify the game-theoretic properties
of generalized network congestion games. These generalized congestion games have found
numerous applications, especially for resource sharing in wireless networks [152,154,159].
Asynchronous updating is typically assumed in these systems, but results about Nash equi-
libria are useful irrespective of such details.

8 Dynamic NetworkModels

In addition to studying these games on static graphs, Chris also consideredmodels on dynamic
graphs. These dynamicmodels often yielded complex outcomes, even before considering any
explicit game-theoretic element involving finding optimal strategic choices.

8.1 Games with ReproducingVertices

We shall start by discussing such games where the vertices on a graph reproduce and die
based on their success levels in local interactions (see [147,150]). As with the best response
games, focus was on the deterministic case where the condition of each vertex is updated
simultaneously. This allowed the usage of combinatorial methods to gain significant insights.

Such games on growing graphs are specified by an n by n payoff matrix, and a number
called the fitness threshold. A system state is an undirected graph, where each vertex is
associatedwith a pure strategy. The system is updated over discrete-time steps.Agiven update
consists of two stages, the reproduction stage and then the killing stage. In the reproduction
stage, each vertex simultaneously produces an offspring vertex, with the same strategy as the
parent. There are eight possiblemodels for how the connections of the offspring depends upon
the parent, as we discuss below. For example, in the m = 1 model the offspring just inherit
their parent’s neighbourhood (i.e. the offspring are born connected to the same individuals
as the parent is connected to). After this reproduction stage, the second part of the update
(the killing stage) consists of destroying all vertices that have a total payoff (added up, by
playing a game with each neighbour, using their allocated strategies) that is below the fitness
threshold.

Each of the eight different reproduction models is specified by three binary numbers
r0, r1, r2 in {0, 1}.The parents always retain their pre-existing connections, but the offspring’s
connections are specified as follows:

– If r0 = 1, then the offspring are connected to their parent’s neighbours. Otherwise they
are not.

– If r1 = 1, then the offspring are connected to their parent. Otherwise they are not.
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Fig. 1 The vertex reproduction
model of Southwell and
Cannings [147]. In the version
where reproduction occurs under
the m = 1 model and vertices
with more than Q = 2 links are
killed, a single-edge
self-replicates after two updates

– If r2 = 1, then the offspring of connected parents are connected to one another. Otherwise
they are not.

The model specified by the binary string r0, r1, r2 is called model number m = r020+r121+
r222. In models with m = 0, 2, 4, 5, 6 and 7 it is possible to gain significant understanding
of the dynamics of general games [147,150]. However, extremely complex and interesting
behaviour can be produced in the m = 1 and m = 3 models.

One case that was studied in detail [147,150] is where there is just one strategy, which
scores a payoff of−1 against itself, and the fitness threshold is−Q. In this case an individual
survives the killing stage if and only if it has a degree less than Q, and so these systems
correspond to a kind of degree capped reproduction where individuals reproduce, but die
from overcrowding once they get more than Q neighbours. When reproduction takes place
according to them = 1 orm = 3models, these systems can generate complex self-replicating
structures.

Figure 1 shows a simple example of a self-replicating structure under the m = 1 model
with degree cap Q = 2. When the degree cap Q is larger, much more interesting dynamics
can occur, because the graph can grow larger before the highly connected vertices die. In
many cases simple initial graph structures, like two vertices connected by a single edge,
evolve to generate large collections of different connected components, which grow, change
and self-replicate. For Q = 8 the degree capped reproduction model (using reproduction
method m = 1) eventually produces 723 different self-replicating structures. More struc-
tures are produced for higher-degree cap values, and there are many unanswered questions
about these systems. In particular, it is unknown whether systems with a finite degree cap Q
can generate connected components of arbitrary size or generate arbitrarily large numbers of
non-isomorphic connected components. Studying these questions may give insight into how
complex self-replicating structures arise from simple biologically inspired rules. Other types
of model where the network structure changes as a result of strategic interaction were con-
sidered in Richter [139,140]. Also, the remarkably complex dynamics observed in Southwell
and Cannings [147] inspired the further search for simple network evolution rules inducing
complexity [153].
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8.2 Further Models with ReproducingVertices

In order to understand the basic network growth processes introduced in Southwell and
Cannings [147], a study of the network dynamics under pure reproduction (i.e. with no game-
based death) was considered in Southwell and Cannings [148]. In this case many aspects of
the dynamics of the degree distribution, chromatic number, diameter, adjacency matrix, etc.,
can be understood. In most cases the growth dynamics are quite simple and can be expressed
by applying graph products. However, in model m = 3, where each vertex is born connected
just to its parent and its parent’s neighbours, a complicated degree distribution arises, which
was studied more closely in Jordan and Southwell [84]. In addition to studying the dynamics
under pure reproduction, there has also been study of the systems where vertices die after
they have survived more than a certain number of time steps [149]. The resulting systems
could be considered to be a type of graphical generalization of the Leslie population model
[97], where not only the number of individuals of different ages is modelled, but also the
network structure connecting them. In Jordan [83] a generalization of the reproducing graph
model was considered where links are formed at random.

8.3 Link FormationModels

A different type of model of network evolution was considered in Broom and Cannings
[19], within which individuals form or break links at random, according to their degree. This
forms an interesting model of sociability and behavioural response to epidemics. The basic
idea is that each vertex has a pre-allocated minimum and maximum allowed degree. The
system evolves via a Markov chain so that, at any given time, a vertex is chosen at random.
If the vertex has more links than its maximum allowed degree, then one of its links is deleted
randomly. If the vertex has less links than itsminimumallowed degree, then a link is formed to
a randomly selected unconnected individual. Otherwise no action is taken. Analysis revealed
that these systems evolve to a closed class of structures, the minimal set, which Broom and
Cannings [19] shows how to find the stationary distribution of, focusing on the special case
where the maximum and minimum degrees are the same, i.e. each individual has a unique
target.

Later work [20,21,39] explored the nature of the minimal set, classifying the vertices into
four categories depending upon whether they always achieved their target, were never over
target, never under target or could be under or over target. Interestingly, some vertices could
be always on target even for a continuously changing process. They also investigated game-
theoretic generalizations of this model, where formation and breaking of links also depend
upon strategies employed by the vertices. In Broom and Cannings [21] in particular we can
see that such games are inherently very complex, even for small populations.

9 Discussion

Aswehave described in this articleChrisCannings, togetherwith varied collaborators, played
an important part in the development of the theory of evolutionary games, including in the
early stages of the development of the theory by John Maynard Smith. We have seen how his
earliest work on evolutionary games helped establish the mathematical results on which the
theory was based including the Bishop–Cannings theorem, which is a central result in the
theory and is thus applied widely. It was particularly useful in a later theme of Chris’ work,
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the investigation of patterns of ESSs, which considered matrix games and the possibilities
and restrictions on what ESSs could occur in detail.

One of the earliest models developed was the war of attrition, and much of the theory of
these games is due to Chris and collaborators, including the development of the generalized
war of attrition. He also introduced a multiplayer version, which was a forerunner of his
more general theory of multiplayer games, including games with structures such as knockout
contests. Chris considered different kinds of structured games in later work, including games
on static structures (as opposed to well-mixed populations) and also networks that were
dynamically changing.

As well as developing the fundamental mathematical theory, Chris also worked on a range
of models of real biological situations, for example on wasp superparasitism, which included
an application of the generalized war of attrition which he had developed, and predator–prey
co-evolution which used an early version of the method of adaptive dynamics.

His work has been influential in a number of areas which we have discussed in this paper.
His early work on the war of attrition and on matrix games, and in particular the Bishop–
Cannings theorem, has become a fundamental part of the theory of evolutionary games. His
work contributed near the start of John Maynard Smith’s project and is therefore part of the
foundation of evolutionary game theory. He was also one of the only researchers to try to
span the theories of evolutionary games and population genetics, and this is still an area ripe
for development. As he is the originator of the theory of patterns of ESSs and of multiplayer
evolutionary games, modern work in both of these areas rests strongly on his early work.
His innovative dynamic network models are also part of one of the most important areas of
modern evolutionary theory.

The greatest tribute that can be paid to Chris, and the other early pioneers of evolutionary
games, is that the work of a small number has developed into an ever-growing and complex
field of enthusiastic young (and not so young) researchers who have built their models based
upon the foundations they have laid. Chris was particularly noted for his enthusiasm for
research, his wide range of interests and his mathematical intuition, combined with a deep
knowledge. He was still producing new research until shortly before he died.
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