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a b s t r a c t 

We propose a model with two types of cancer cells differentiated by their defense mechanisms against 

the immune system. “Selfish” cancer cells develop defense mechanisms that benefit the individual cell, 

whereas “cooperative” cells deploy countermeasures that increase the chance of survival of every cell. Our 

phenotypes capture the two main features of the tumor’s efforts to avoid immune destruction, crypticity 

against immune cells for the selfish cells, and tumor-induced immunosuppression for the cooperative 

cells. We identify steady states of the system and show that only homogeneous tumors can be stable 

in both size and composition. We show that under generic parameter values, a tumor of selfish cells 

is more benign than a tumor of cooperative cells, and that a treatment against cancer crypticity may 

promote immunosuppression and increase cancer growth. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The immune system influences cancer initiation and progres-

ion. One of the hallmarks of cancer is evasion of the immune sys-

em ( Hanahan and Weinberg, 2011 ). The immune system is how

ulti-cellular organisms mount an adaptive response to diseases

nd pathogens (including cancer). There are innate and adaptive

echanisms of immunity. Innate immunity provides a relatively

ndirected but permanent defense against pathogens using a vari-

ty of white blood cells that include phagocytes and natural killer

ells. Dendritic cells (a subset of phagocytes) provide a link be-

ween the innate and adaptive immune system. Upon encountering
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oreign proteins or molecules (antigens) the dendritic cells can en-

rain T-lymphocytes (T-cells) by modifying their receptor proteins

o recognize the antigen. As part of the adaptive immune system,

he killer T-cells now possess receptors that will recognize the sur-

ace antigen on nucleated cells such as infectious protozoans, viral

nfected normal cells, and even cancerous cells. Upon making con-

act, the T-cell is able to breach the target cell’s membrane and

ntroduce lethal cytotoxins. 

When treating cancer, a high immune system infiltration into

 tumor often begets a positive prognosis ( Parcesepe et al., 2016 )

s immune cells inhibit the growth and spread of the tumor. Im-

unotherapy tries to trigger an effective immune response to the

ancer ( Dimberu and Leonhardt, 2011 ). Such therapies may intro-

uce retroviruses into the tumor. The retroviruses present anti-

ens that induce an immune response. Or, the patient’s own im-

une system may be boosted by entraining T-cells on cancer cells

rawn from the patient ( Morgan et al., 2006 ). The antigens and en-

rained killer T-cells are then injected into the patient as a form

f ‘vaccine’ to create a more directed and effective immune re-

ponse to the cancer cells within the tumor. Finally, checkpoint

herapies directly target the immune evasion traits of cancer cells

 Goswami et al., 2016 ) making it easier for T-cells to encounter and

ttack cancer cells. 

The adaptive immune response to cancer cells via T-cell acti-

ation has been conceptualized and modeled as a competition be-

ween killer T-cells (and associated macrophages, helper-cells, neu-

rophils, etc.) and the cancer cells. Eftimie et al. (2011) provide
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an extensive review of common spatially homogeneous mathemat-

ical models describing the interactions between a malignant tu-

mor and the immune system, starting from the single equation

models for tumor growth and adding complexity. Nani and Freed-

man (20 0 0) construct a model of competition between normal cell

and cancer cells during the process of immunotherapy. Robertson-

essi et al. (2012) and Nakada et al. (2016) focus on the compo-

nents of the immune system. Our model complements the litera-

ture by focusing on the various strategies available to the cancer

cells in the game played by the cancer cells and the immune sys-

tem. 

Unfortunately for the patient, cancer cells evolve resistance to

the immune system and to immunotherapies ( Ribas, 2015; Sharma

et al., 2017 ). A number of papers have used agent based models to

examine the evolution of resistance to various types of treatment

or drugs by imagining two populations of cancer cells – one sus-

ceptible to treatment, the other not or less so ( Panetta, 1998; Sun

et al., 2016; Tomasetti and Levy, 2010 ). Other models see resistance

as the cancer cells outcompeting the immune cells ( De Pillis and

Radunskaya, 2001 ). Baar et al. (2016) build a stochastic agent-based

model where resistant phenotypes and genotypes are selected via

mutation as they interact with a heterogeneous population of T-

cells. 

We consider an evolutionary game between two types of can-

cers cells in response to the immune system ( Dhodapkar, 2013 ),

either early in cancer progression or early in the application of im-

munotherapy. Rather than susceptible versus non-susceptible, we

are interested in modeling two ways for how cancer cells evade

killer T-cells. The two strategies available to the cancer cells corre-

spond to the two major subsets of immune-resistant cancer cells

proposed by Gajewski et al. (2013) . The first represents a non-

cooperative, selfish strategy where the cancer cell using this strat-

egy enjoys some resistance to the immune system, but in a manner

that has no direct influence on other cancer cells. Biologically, this

models resistance strategies that involve the cancer cells down-

regulating or ceasing to present the antigen required for the T-

cell to recognize the cancer cell. This amounts to the cancer cells

evolving camouflage and crypticity ( Hicklin et al., 1999; Johnsen

et al., 1999; Maeurer et al., 1996; Seliger et al., 1997 ). The sec-

ond strategy amounts to cooperation as the cancer cells shut down

the immune response as a collective public good. Biologically, this

models resistance strategies where the cancer cell co-opts signal-

ing pathways by directly signaling the T-cells to cease or by sig-

naling macrophages and/or helper T-cells to cease supporting the

production and entraining of killer T-cells. The collective conse-

quence of this second strategy is immunosuppression within the

tumor ( Stewart and Smyth, 2011 ). 

In what follows we develop a predator-prey-like population

model that includes the two types of cancer cells and the T-cells.

Like Babbs (2012) and Kareva and Berezovskaya (2015) , we see

the interaction between cancer cells and the T-cells as a modi-

fied predator-prey system. A selfish cell enjoys the protection pro-

vided by its cooperative counterparts while providing no benefits

to other cancer cells. Cooperative cells work together to suppress

the immune system. Their rate of survival increases with the ratio

of cooperative cells. They gain no protection from the selfish cells.

The interplay of selfishness and cooperation represents a public

goods game, selfishness being the individually optimal strategy,

while cooperation being the socially optimal one. In our model,

any given selfish cell is more likely to survive an encounter with

an immune cell than a cooperative one. Since cooperative cells gain

strength in numbers and selfish cells do not, a tumor comprised of

cooperative cancer cells may be worse for the patient. 

As specific goals, we examine when one or the other cancer

strategy will outcompete the other. We then analyze the dynamics

and equlibria of tumors comprised of cancer cells using either the
elfish or cooperative strategy. Of considerable interest are extinc-

ion thresholds where below a critical size the immune system can

rive the cancer extinct whereas above these thresholds the cancer

ill grow to sizes largely unaffected by the immune system. Using

omparative statics, we consider the effects of various parameters

orresponding to different forms of therapies on the model. Of spe-

ific interest are therapies that may unwittingly switch the stable

teady state from selfish to cooperative cancer cells thus worsen-

ng the patient’s prognosis ( Smyth et al., 2006 ). Section 2 intro-

uces the model. In Section 3 we discuss the steady states and the

volutionary stable strategies (ESS) of the model. In Section 4 we

iscuss the effects of different therapies. Section 5 concludes this

aper. 

. The model 

We imagine a patient with a clinically detectable primary tu-

or that may or may not be metastatic. We assume that it is a

olid tissue cancer, while not specifying the exact kind of cancer.

he model considers the interaction between the cancer cells and

he immune system within the tumor. For the moment we are

magining a population of killer T-cells. Our focus will be on the

ynamics and steady-state population levels of both cancer and

mmune cells ( Section 3 ). We then consider how various forms of

herapy acting through the model’s parameters alter tumor growth

nd prolong the progression free survival of the patient ( Section 4 ).

We use a series of ordinary differential equations to model two

ancer cell phenotypes, selfish and cooperative. Let x s ( t ) and x c ( t )

enote the population sizes of the selfish and cooperative types at

ime t ∈ [0, ∞ ), respectively. Let x (t) = x s (t) + x c (t) denote the total

umor mass, and g(t) = x c (t ) /x (t ) be the proportion of cooperative

ells. Let y ( t ) denote the total amount of killer T-cells (referred to

s T-cells, for simplicity) in the tumor. We assume that the cells

re well mixed, and so the ratio of the cooperative phenotype in

ny cell’s interaction radius is g ( t ). We refer to the values of x s ( t ),

 c ( t ), x ( t ), and y ( t ) as population counts. The value g ( t ) is referred

o as the composition of the tumor. We henceforth omit the time

ariable t , whenever it does not cause confusion. For a time vary-

ng z ( t ) we use the usual notation ˙ z to denote its time derivative. 

The change in the number of both cancer cell populations and

he total population is given by: 

˙ 
 c = r c 

( 

1 −
√ 

x 

K 

) 

x c − gμc (g) 
√ 

x y, (1)

˙ 
 s = r s 

( 

1 −
√ 

x 

K 

) 

x s − (1 − g) μs (g) 
√ 

x y, (2)

˙ 
 = ( (1 − g) r s + gr c ) 

( 

1 −
√ 

x 

K 

) 

x − ((1 − g) μs (g) + gμc (g)) 
√ 

x y, 

(3)

ith r s , r c , K ∈ R + , and functions μc , μs : [0 , 1] → R + . For ecolog-

cal realism we assume that ˙ x c = ˙ x c = ˙ x = 0 , whenever x = 0 , i.e.

he patient is cancer-free. As will be made clear, this is the contin-

ous extension of the model defined by (1) –(3) . 

The non-negative parameters r s and r c denote the growth rates

f the selfish and the cooperative phenotypes, respectively. We as-

ume that in the absence of immune reaction (or other exogenous

actors, e.g. treatment), the population of cancer cells grows until

t reaches its carrying capacity, K , upon which, the population sta-

ilizes. 

Standard logistic growth takes the form 1 − x/K, indicating a

inearly decreasing per capita growth rate with population size.
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Fig. 1. Per capita growth rates of logistic (red), and root-logistic (blue) models. Both 

assume decreasing per capita growth rates due to diminishing per capita resources 

in the environment, but root-logistic growth rate is lower. In case of cancer, the 

existence of a necrotic core implies that only a subset of the population participates 

in resource uptake, thereby lowering the growth rate of tumors. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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1 inf {∅} = ∞ . 
ur root-logistic formulation of 1 −
√ 

x/K permits more tractable

nalytic results. Furthermore, below carrying capacity, per capita

rowth rates are lower than logistic, and maximum population

rowth occurs at 4 K /9 rather that at K /2. A peaking of total pop-

lation growth rate at a smaller population size is consistent with

 necrotic core in tumors. Cells proliferate at a slower rate in the

nterior of the tumor than at the exterior ( Adam and Maggelakis,

989; Fory ́s and Mokwa-Borkowska, 2005 ), due to a decreased re-

ource availability. Our model therefore captures the increased re-

ource scarcity, and the decreased resource uptake of a growing

umor, resulting in a slower-than-logistic growth function. In all

ther ways we follow the typical assumptions Lotka–Volterra com-

etition models. 

Note that x is the sum of the population of selfish and coop-

rative phenotypes, and thus the reproduction rate of the tumor is

he linear combination of the reproduction rates of the phenotypes

sing their frequencies as weights. 

The negative terms on the right-hand sides of (1), (2) , and

3) capture the rate at which tumor cells have lethal encounters

ith T-cells. The encounter rate is given as 
√ 

x y to keep the anal-

sis tractable. Note that 
√ 

x is proportional to the perimeter of a

-dimensional object of area x , and in many cases, 
√ 

x serves as

n approximation for the surface area of a 3-dimensional object of

olume (or mass) x . Therefore, our formulation can be interpreted

s all encounters happening on (or in an area proportional to) the

urface region of the tumor ( Robertson-Tessi et al., 2012 ) ( Fig. 1 ). 

The function μc denotes the rate at which a cooperative cell is

illed by a T-cell upon encounter, and the function μs denotes the

ate with which a selfish cell is killed upon encounter. They are

iven by: 

c (g) = γ (1 − gε c ) , (4)

s (g) = γ (1 − gε c )(1 − ε s ) , (5)

ith εc , εs ∈ [0, 1]. 

The parameter γ denotes the lethality of the T-cells, while pa-

ameters εs and εc describe the resistance of the selfish and the

ooperative phenotypes, respectively. The value μc ( g ) is the proba-

ility that a cooperative cancer cell, encountering an active T-cell,

s destroyed, given composition g . The value μs ( g ) has the same

nterpretation for selfish cells. As in a public goods game, the co-

perative cancer cells contribute a shared resistance that benefits
ll cancer cells equally, including the selfish cells. In addition to

he public resistance provided by the cooperative cells, the self-

sh cells benefit themselves through their own resistance strategy.

very selfish cell benefits from the resistance provided by their co-

perative counterparts but not vice versa. As a result selfish can-

er cells always face a lower death rate than cooperative cells. In

3) the linear combination of the phenotypical death rates μx (g) =
(1 − g) μs (g) + gμc (g) = (1 − g) γ (1 − gε c )(1 − ε s ) + gγ (1 − gε c ) is

etermined using the frequencies as weights. 

The factor 1 / (1 − ε s ) = μc /μs represents the advantage of self-

shness. A value of 1, coinciding with zero selfish resistance ε s = 0 ,

eans selfish cells survive an encounter with a T-cell with the

ame rate as cooperative cells. The higher the εs value, the higher

he difference between the survival rates, favoring the selfish phe-

otype. 

Notice that μc ( g ) and μs ( g ) are given as linear functions of g ,

nd g ∈ [0, 1]. Hence, as the number of cancer cells x approaches

ero, it can be inferred from (3) by L’Hôpital’s rule that ˙ x also con-

erges to zero. Similarly, as x c , x s approach zero, ˙ x c and ˙ x s both

onverge to zero. Therefore, the assumption ˙ x c = ˙ x s = ˙ x = 0 when-

ver x = 0 is a continuous extension of (1) –(3) . 

Let ω ∈ R 

+ denote the maximum tumor mass a patient can sur-

ive. Once the total cell count of cancer cells reaches ω, the patient

ies. We assume x (0) < ω, meaning that the patient is alive at time

. Let T = inf { t ≥ 0 : x (t) ≥ ω} 1 denote the patient’s survival time. 

The change in the population of T-cells is given by: 

˙ 
 = r i 

(
1 − y 

L + a 
√ 

x 

)
y − δg 

√ 

x y, (6) 

ith a, δ, L ∈ R + . In the absence of tumor cells, the population of T-

ells grows logistically with a growth rate (or replenishment rate)

 i , and a carrying capacity L . If the patient is cancer-free, i.e. x = 0 ,

e define ˙ y = r i (1 − y 
L ) y . 

As in De Angelis and Mesin (2001) and De Pillis and Radun-

kaya (2001) , an increased tumor mass increases the immune re-

ponse. This is modeled by a rise in the carrying capacity of T-cells.

e assume that this increase is proportional to the encounter rate

er T-cell, 
√ 

x . The non-negative parameter a indicates the strength

f the increase. Setting a = 0 means no change in immune re-

ponse. 

As a deviation from standard predator-prey models we assume

hat cooperative cancer cells inhibit the growth of the T-cell pop-

lation. This captures the immunosuppression effect of a tumor,

hich in our model is induced only by the cooperative phenotype.

he effect on the growth rate of the T-cells is proportional to the

umber of cooperative cancer cells encountered, g 
√ 

x , factored by

 constant δ that measures the effectiveness of immunosuppres-

ion. This linear formalization is also in line with De Angelis and

esin (2001) . For a detailed meta-study on the molecular mechan-

cs of tumor-induced immunosuppression the reader is referred to

u et al. (2015) . 

By rearranging (1) and (2) we can derive the evolution of g . 

˙ 
 = 

˙ (
x c 

x 

)
= 

˙ x c x − ˙ x x c 

x 2 

= g(1 − g) 

( 

(r c − r s ) 

( 

1 −
√ 

x 

K 

) 

+ (gε c ε s − ε s ) 
y √ 

x 
γ

) 

. (7) 

In (7) it is stated that the frequency of cooperative cells evolves

utonomously as a result of differences of birth and death rates

f the two phenotypes. The factors 1 −
√ 

x 
K , and γ y √ 

x 
express the

elative importance of birth and death rates in determining which

henotype proliferates at a higher rate. For instance, in case of
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a low T-cell population, the difference between r c and r s deter-

mines whether the ratio of the cooperative phenotype increases or

decreases. With a high T-cell population, the phenotype with the

higher resistance prevails. 

As a technical remark, note that for x = 0 , the composition pa-

rameter g and its time-derivative are undefined. As a consequence,

with x approaching zero, the time-derivative of g can be un-

bounded in magnitude. Nevertheless, the trajectories remain con-

tinuous, and hence g will remain between 0 and 1 as per Eq. (7) . 

The system defined by (3), (6) , and (7) is equivalent to the one

defined by (1), (2) , and (6) . 

3. Steady-state analysis 

In this section we focus our attention on the steady states of

the model. Steady states are combinations of tumor population

size, tumor composition, and T-cell population size for which all

three components of the model are not changing in time. A brief

summary of our findings is as follows: No steady states exist with

both cancer cells types (cooperative and selfish) at positive popu-

lation sizes. The steady state with no cancer cells and no immune

cells is always unstable. The steady state with no cancer cells but

the presence of immune cells may or may not be stable. Finally, a

variety of steady states exist with positive populations of one can-

cer cell type and immune cells. Their stability properties can be

illustrated using zero-growth isocline diagrams. We start with the

condition that determines which cancer cell type outcompetes the

other. The sign of the following expression determines whether a

given cancer cell type can both invade and resist invasion from the

other type: 

r c 

r s 
− 1 

1 − ε s 
. 

If the ratio of reproduction rates is larger than the advantage of

selfishness, then the tumor (unless eliminated by the T-cells) is co-

operative at the ESS, otherwise, it is selfish. Since a purely cooper-

ative tumor is more aggressive than a purely selfish one thanks to

the former’s ability to suppress immune responses, the composi-

tion of the tumor, and therefore the sign of the above expression

is crucial for the patient’s prognosis. 

The remainder of this section contains the formal definitions,

statements, and proofs. 

Definition 3.1. The triple ( x ∗, y ∗, g ∗) is called a steady state of the

dynamic system defined by (3), (6) , and (7) , if ˙ x = 0 , ˙ y = 0 , and

˙ g = 0 are all satisfied. 

A steady state tumor described by ( x ∗, y ∗, g ∗) is called mixed

if g ∈ (0, 1), cooperative if g ∗ = 1 , and selfish if g ∗ = 0 . Coopera-

tive and selfish tumors comprise an ESS if they are linearly sta-

ble for deviations in x and y , and if they resist an invasion of the

other phenotype. Since our model precludes mixed steady states,

we only discuss stability for homogeneous tumors. 

Definition 3.2. Fix g . The set of ( x, y ) pairs for which ˙ x = 0 is called

the zero-growth isocline curve of x . The set of ( x, y ) pairs for which

˙ y = 0 is called the zero-growth isocline curve of y . 

For t ≥ 0 the triplet ( x ( t ), y ( t ), g ( t )) can be thought of as a snap-

shot of the tumor and the immune system at time t , specifying the

tumor size, the immune cell count, and the composition of the tu-

mor. As per Definition 3.1 , in a steady state, both population counts

and the tumor composition are constant. 

Clearly, if ( x ∗, y ∗, g ∗) is a steady state, then ( x ∗, y ∗) is located

along the zero-growth isocline curves of both x and y , given g ∗. The

system yields three trivial steady states, as listed in the following

remark. For ecological realism we include the steady-states with

x = 0 , even as the state parameter g is undefined in this case. 
emark 3.3. The following triples are all steady states. 

1. x = 0 , y = L . 

2. x = 0 , y = 0 . 

3. x = K, y = 0 , g ∈ [0, 1]. 

In Remark 3.3 , Case 1 describes a cancer-free patient with T-

ells matching the body’s carrying capacity. This patient is healthy.

ase 2 describes a patient who is cancer-free, but has no T-cells.

ases 1 and 2 are undefined in the model, but their stability prop-

rties are well-defined. This may be interpreted as an unrelated

mmune deficiency. This patient is cancer-free but is unprotected

gainst diseases due to a lack of T-cells. Since ω < K , case 3 de-

cribes a patient who has already succumbed to cancer, and has

o immune protection. 

From (7) one can deduce that both g = 0 and g = 1 guarantee

he compositional stability of the tumor, meaning that ˙ g = 0 is as-

ured. We subdivide this section into three subsections: we briefly

how non-existence of steady states in mixed tumors before go-

ng on to discuss steady states in selfish and cooperative tumors,

espectively. 

.1. Nonexistence of steady states in mixed tumors 

In this subsection we show that unless the advantage of self-

shness happens to be the same as the ratio of reproduction rates,

hen two steady state conditions, the size of the tumor being con-

tant, and its composition being constant can only be satisfied for

urely selfish or purely cooperative tumors. 

roposition 3.4. Suppose that 0 < g < 1, and 0 < x < K. 

• If we have r c 
r s 

> 

1 
1 −ε s 

and ˙ x = 0 , then it holds that ˙ g > 0 . 

• If we have r c 
r s 

< 

1 
1 −ε s 

and ˙ x = 0 , then it holds that ˙ g < 0 . 

roof. First we consider r c (1 − ε s ) > r s . Since ˙ x = 0 , we must have

˙  c = − ˙ x s . If ˙ x c > 0 and ˙ x s < 0 , then ˙ g > 0 holds, since the cooper-

tive population is rising and the selfish one dwindling. Suppose

hat ˙ x s ≥ 0 . Then we have 

 ≤ (1 − g) r s 

( 

1 −
√ 

x 

K 

) 

− (1 − g) γ
y √ 

x 
(1 − gε c )(1 − ε s ) . 

e multiply by g/ (1 − g) , divide by (1 − ε s ) and invoke r c (1 −
 s ) > r s to get 

 ≤ g 
r s 

1 − ε s 

( 

1 −
√ 

x 

K 

) 

− gγ
y √ 

x 
(1 − gε c ) 

< gr c 

( 

1 −
√ 

x 

K 

) 

− g γ
y √ 

x 
(1 − g ε c ) = 

˙ x c , 

eaning that ˙ x c > 0 , contradicting ˙ x = 0 , since both population

ounts are rising. Therefore, ˙ x s < 0 and ˙ x c > 0 must hold, implying

˙  > 0 . 

The case r c (1 − ε s ) < r s follows via similar arguments. �

Proposition 3.4 states that constant tumor size cannot coexist

ith constant tumor composition. Moreover, if the ratio of the re-

roduction rates r c / r s is higher than the advantage of selfishness,

 / (1 − ε s ) , then constant tumor size implies higher relative prolif-

ration of the cooperative cells. If the ratio of reproduction rates

s lower, the opposite holds, and the selfish cells will outcompete

he cooperative cells. Therefore, no non-trivial steady states exist in

hich the tumor is a mix of the two phenotypes (the knife-edge

ase r c /r s = 1 / (1 − ε s ) is not considered). 
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Fig. 2. Phase diagram of a selfish tumor with a positive discriminant. The steady 

state with a lower cancer cell population is unstable, and serves as an Allee thresh- 

old. The steady state with a higher cancer cell population is stable and is below the 

lethal tumor mass. Patient could survive with the cancer burden indefinitely. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3. The growth rate of a selfish tumor along the y zero-growth isocline. x ∗s 2 
serves as a strong Allee threshold. Tumor population stabilizes at x ∗s 1 . Tumor growth 

is maximized at the quarter of the tumor’s carrying capacity. 
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.2. Steady states in selfish tumors 

We now consider selfish tumors. We show that steady states in

his case correspond to the solution set of a second-degree polyno-

ial in 

√ 

x . If there are two solutions, the one with a larger tumor

opulation is stable if and only if the tumor population exceeds a

uarter of the carrying capacity. The steady state with the lower

umor cell population is unstable and functions as a strong Allee

hreshold ( Taylor and Hastings, 2005 ) below which tumor growth

s negative. 

The zero-growth isoclines of the selfish case can be calculated

y setting g = 0 , ˙ x = 0 , and ˙ y = 0 , and are as follows: The zero-

rowth isocline of y is 

 = L + a 
√ 

x , (8)

hile the zero-growth isocline of x is 

 = 

√ 

x 

( 

1 −
√ 

x 

K 

) 

r s 

γ (1 − ε s ) 
. (9) 

This allows us to calculate the steady states of the selfish case. 

roposition 3.5. The triple ( x ∗, y ∗, 0) is a steady state, if x ∗ solves

he following equation 

 = − r s √ 

K 

x ∗ + 

√ 

x ∗(r s − aγ (1 − ε s )) − γ (1 − ε s ) L 

nd y ∗ = L + a 
√ 

x ∗. 

roof. Setting the two right hand sides of (8) and (9) equal and

earranging gives 

 = − r s √ 

K 

x ∗ + 

√ 

x ∗(r s − aγ (1 − ε s )) − γ (1 − ε s ) L. 

�

Let 

 s = (r s − aγ (1 − ε s )) 
2 − 4 

L √ 

K 

r s γ (1 − ε s ) 

enote the value of the discriminant. Then, the exact values of the

teady states are as follows: 

• if D s > 0, there are two steady states, (x ∗
s 1 

, y ∗
s 1 

, 0) , and

(x ∗s 2 , y 
∗
s 2 , 0) , with √ 

x ∗
s 1 ,s 2 

= 

(r s − aγ (1 − ε s )) ±
√ 

D s 

2 

r s √ 

K 

and y ∗
s 1 ,s 2 

= L + a 
√ 

x ∗
s 1 ,s 2 

, as long as x ∗
s 1 ,s 2 

> 0 . 

• if D s = 0 , there is a single steady state, (x ∗
s 0 

, y ∗
s 0 

, 0) , where x ∗
s 0 

=
(r s − aγ (1 − ε s )) 

√ 

K / 2 r s , and y ∗
s 0 

= L + a 
√ 

x ∗
s 0 

, as long as x ∗
s 0 

>

0 . 
• if D s < 0 (or if x ∗s 1 ,s 2 < 0 ), there are no non-trivial steady states

in selfish tumors. 

The zero-growth isoclines intersect only if the discriminant con-

ition of Proposition 3.5 , D s ≥ 0 is satisfied, with two points of in-

ersection if D s > 0, and one point of intersection if D s = 0 . 

roposition 3.6. Let D s > 0 . If x ∗
s 1 

> 

K 
4 , then (x ∗

s 1 
, y ∗

s 1 
, 0) is stable in

 and y. 

The proof is shown as an appendix. It relies on showing that

he elements of the problem’s Jacobian matrix take the following

igns: 

(x ∗s 1 , y 
∗
s 1 ) = 

(
− −
+ −

)
, 

ith the negativity of the top left element hinging on the con-

ition x ∗ > K/ 4 . Graphically, this condition means that the larger

s 1 
quilibrium is to the right of the peak of the x zero-growth iso-

line. Thus, the trace of the Jacobian is negative, and the determi-

ant positive, meaning that the steady state is stable. As long as

he advantage of selfishness is larger than the ratio of phenotypi-

al reproduction rates, this is an ESS. 

orollary 3.7. Let D s > 0 . If x ∗
s 1 

> K/ 4 , and if r c /r s < 1 / (1 − ε s ) then

(x ∗s 1 , y 
∗
s 1 , 0) is an ESS. 

roof. By Proposition 3.6 we have linear stability in x and y , and

ince the advantage of selfishness is higher than the ratio of repro-

uction rates, Proposition 3.4 ensures that the selfish phenotype

esists invasion by the cooperative one. �

We illustrate the steady states in the selfish case, as well as

ome typical dynamic properties in the following example. 

xample 3.8. Consider a tumor of selfish cells and the following

arameter values: K = 625 , L = 20 , r s = 0 . 2 , γ = 0 . 1 , ε s = 0 . 7 . The

nterpretation is the following. The carrying capacity of tumor cells

s significantly higher than that of T-cells. The unconstrained rate

f proliferation is 20%. In 10% of encounters, T-cells become acti-

ated, and the cancer cells resist destruction with a rate of 70%

nce a T-cell is activated, for an effective kill rate of 3% per en-

ounter. These parameters satisfy D s > 0, hence we have a total of

ve steady states. Fix a = 1 and ω = 470 . 

Fig. 2 shows the zero-growth isoclines, phase diagram, and

teady states of this system. Black dots denote the trivial steady

tates of Remark 3.3 , (0,0), (0, L ), ( K , 0), and red ones denote the

teady states where both the tumor size and the T-cell count is

on-zero from Proposition 3.5 . 
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Fig. 4. Phase diagram of a selfish tumor with a negative discriminant. The zero- 

growth isoclines do not intersect. A healthy immune system drives the cancer cells 

to extinction. Patient is expected to become cancer free. 
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In Fig. 3 we plot the growth of the tumor population as a func-

tion of population size, moving along the y zero-growth isocline,

a smooth function of x . Notice that the tumor’s growth rate along

the zero-growth isocline is maximized near a cancer cell popula-

tion size of 150, or 24% of carrying capacity. The change of pop-

ulation, compared to distances between steady states, is small, a

useful property for discretization of the model in conducting sim-

ulations. 

By Proposition 3.5 , we have the two steady states, x ∗s 1 = 281 . 6 ,

y ∗
s 1 

= 36 . 78 and x ∗
s 2 

= 20 , y ∗
s 2 

= 24 . 47 . The interpretation is the fol-

lowing. At the theoretical maximum population count, the cancer

cells are at 45% carrying capacity, while the T-cells are at 184% of L ,

meaning that the immune reaction to the tumor burden is signif-

icant. At the Allee threshold, the tumor burden is 3.2% of carrying

capacity, whereas T-cells are at 122% of L . 

Below a tumor burden of 20, a strong immune system over-

comes and eliminates the cancer despite its relatively large growth

potential. Above the Allee threshold, the reproduction of cancer

cells offsets e ven a strong immune response. Tumor growth is

maximized for values of about 150, and stops at the theoretical

maximum of 281.6. The model has two reasons for this absence

of growth. First, a larger tumor induces a larger immune reaction

that directly hinders the proliferation of cancer cells, and second,

a larger tumor will face a lower abundance, and a lower uptake of

resources that the cells use to reproduce. 

Note that if for any reason (i.e. hidden tumors, or immune de-

ficiency) a smaller tumor burden can manage to exceed the Allee

threshold, reversing tumor growth becomes harder and harder as

time passes. Another implication of this example is that if a suc-

cessful treatment eradicates a large fraction of the tumor, but not

enough to go below the Allee threshold, then in time the cancer

will return. 

Example 3.9. Consider the same parameter values as Example 3.8 ,

but with γ = 0 . 2 instead of 0.1, corresponding to a stronger im-

mune system. Then D s < 0, and the zero-growth isocline of y lies

above the zero-growth isocline of x . Fig. 4 shows the appropri-

ate phase diagram. As per Proposition 3.5 , there are no non-trivial

steady states. Note that the steady state, (0, L ) behaves as an

attractor for every initial condition with y (0) > 0, meaning that

the cancer is always eradicated (unless the lethal tumor mass is

reached before that happens). 

3.3. Cooperative steady states 

We now examine tumors composed of cooperative cancer cells.

As before, the set of steady states corresponds to the solution set

of a second degree polynomial in 

√ 

x , and in case of two coop-

erative steady states the one with a higher cancer cell population

count is stable if the number of cancer cells exceed K /4. Similarly

to the selfish case, we calculate the zero-growth isocline curves by

setting (3) and (6) to 0 and substituting g = 1 . The zero-growth
socline of y in the cooperative case is 

˙ 
 = 0 ⇔ y = (L + a 

√ 

x ) 

(
1 − δ

r i 

√ 

x 

)
= L + a 

√ 

x 

(
a − δL 

r i 

)
− a 

δ

r i 
x, 

(10)

hile the zero-growth isocline of x is 

˙ 
 = 0 ⇔ y = 

√ 

x 

( 

1 −
√ 

x 

K 

) 

r c 

γ (1 − ε c ) 
. (11)

roposition 3.10. The triple ( x ∗, y ∗, 1) is a steady state, if x ∗ solves

he following equation: 

 = 

(
− r c √ 

K 

+ aγ (1 − ε c ) 
δ

r i 

)
x ∗

+ 

(
r c − γ (1 − ε c ) 

(
a − δ

r i 
L 

))√ 

x ∗ − γ (1 − ε c ) L, 

nd y ∗ = 

√ 

x ∗(1 −
√ 

x ∗
K ) r c 

γ (1 −ε c ) 
. 

roof. Setting the right hand sides equal and rearranging gives 

˙ x √ 

x 
= 

(
− r c √ 

K 

+ aγ (1 − ε c ) 
δ

r i 

)
x 

+ 

(
r c − γ (1 − ε c ) 

(
a − δ

r i 
L 

))√ 

x − γ (1 − ε c ) L, 

ence the roots of the above expression are the steady-state tumor

asses. �

Let 

 c = 

(
r c − γ (1 − ε c ) 

(
a − δ

r i 
L 

))2 

− 4 

L √ 

K 

r c γ (1 − ε c ) + 4 aγ 2 (1 − ε c ) 
2 δ

r i 
L 

enote the value of the discriminant in the cooperative case. The

xact values of the steady states are as follows: 

• if D c > 0, there are two steady states, (x ∗c1 , y 
∗
c2 , 1) , and

(x ∗
c2 

, y ∗
c2 

, 1) , where 

√ 

x ∗
c1 ,c2 

= 

(r c − γ (1 − ε c )(a − δ
r i 

L )) ± √ 

D c 

2 

r c √ 

K 
− 2 γ (1 − ε c ) 

δ
r i 

, 

and y ∗c1 ,c2 = (L + a 
√ 

x c1 ,c2 )(1 − δ
r i 

√ 

x ∗c1 ,c2 ) , provided that y ∗c1 

and y ∗
c2 

are positive. 
• if D c = 0 , there is a single steady state, (x ∗

c0 
, y ∗

c0 
, 1) , where√ 

x ∗
c0 

= 

(r c −γ (1 −ε c )(a − δ
r i 

L )) 

2 
r c √ 

K 
−2 γ (1 −ε c ) 

δ
r i 

, and y ∗
c0 

= (L + a 
√ 

x ∗
c0 

)(1 − δ
r i 

√ 

x ∗
c0 

) ,

provided that y ∗c0 is positive. 
• if D c < 0, there are no steady states. 

By analyzing the zero-growth isoclines in both cases one can

ee that the main difference between the purely selfish and the

urely cooperative case comes from the suppression of T-cells by

he cooperative phenotype. Notice that the T-cell zero-growth iso-

line includes a factor of 1 − (δ/r i ) 
√ 

x . This factor is increasing in

-cell reproduction rate r i and decreasing in the suppression pa-

ameter δ, as well as the encounter rate per T-cell 
√ 

x . Hence a

ositive δ leads to a diminished T-cell population as a direct result

f suppression. 

Note however, that immunosuppression also indirectly raises

he T-cell population. A lower T-cell population permits a higher

teady-state tumor size, which in turn raises the T-cell population
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Fig. 5. Phase diagram of a cooperative tumor with two non-trivial steady states. 

The steady state with lower cancer cell population is unstable, and serves as an 

Allee threshold. The steady state with higher cancer cell population is stable, and is 

above the lethal tumor mass. Patient prognosis is poor. 

v  

e

 

s

P  

e

 

c  

p  

g  

b  

p

C  

P  

s  

d  

t

 

u  

b

E  

t  

γ  

r  

t  

i  

c  

t  

p  

s  

i  

a  

δ  

a  

i

 

i  

p  

d  

b  

n  

(  

m

Fig. 6. Phase diagram of a cooperative tumor with a single non-trivial steady state. 

The zero-growth isoclines intersect in the positive quadrant only once. A complete 

suppression of the immune system becomes possible. Patient prognosis is grave. 
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ia an increased carrying capacity of T-cells. This induces a higher

ffective replenishment rate of the T-cell population. 

We now state the conditions of a cooperative stable steady

tate. 

roposition 3.11. Let D c > 0 . If x ∗
c1 

> K/ 4 , then (x ∗
c1 

, y ∗
c1 

, 1) is lin-

arly stable in x and y. 

The proof is shown as an appendix. The negativity of the Ja-

obian’s trace is assured by the x ∗
c1 

> K/ 4 condition, whereas the

ositivity of the determinant is due to the fact that the T-cell zero-

rowth isocline intersects the cancer’s zero-growth isocline from

elow. If the advantage of selfishness is lower than the ratio of

henotypical reproduction rates, this steady state is also an ESS. 

orollary 3.12. Let D c > 0 . If x ∗s 1 > K/ 4 , and if r c /r s > 1 / (1 − ε s ) then

(x ∗
c1 

, y ∗
c1 

, 1) is an ESS. 

roof. By Proposition 3.11 we have linear stability in x and y , and

ince the advantage of selfishness is lower than the ratio of repro-

uction rates, Proposition 3.4 ensures that the cooperative pheno-

ype resists an invasion by the selfish phenotype. �

Together, Corollaries 3.7 and 3.12 mean that there is always a

nique ESS of the system, and the phenotype therein is determined

y the advantage of selfishness. 

xample 3.13. Consider a tumor with only cooperative cells and

he following parameter values: K = 625 , L = 20 , r c = 0 . 2 , r i = 0 . 1 ,

= 0 . 1 , ε c = 0 . 7 , a = 1 . We retain the values for the reproduction

ate and resistance parameter of Example 3.8 so that we can bet-

er demonstrate the effect of immunosuppression. Fig. 5 shows the

socline diagram, plotted for δ = 0 . 003 . The interpretation is that T-

ells are killed with a rate of 0.3% per encounter. In this example,

he cancer cell population and the T-cell population act as com-

etitors, as both zero-growth isoclines have negative slopes at the

table non-trivial steady-state. Notice that the cancer’s zero-growth

socline is unaffected by the change in the suppression parameter

nd remains a concave curve, as in Example 3.8 . However, with

> 0, the zero-growth isocline for y has an upward sloping part

nd becomes downward sloping. Two non-trivial steady states ex-

st. 

In Fig. 6 we plot the same diagram with δ = 0 . 005 , correspond-

ng to a stronger immunosuppression ability of the cooperative

henotype (for this calibration, the zero-growth isocline of y re-

uces to a line). In this case, the steady state (x ∗c1 , y 
∗
c1 ) is out of

ounds, since x ∗
c1 

> K and y ∗
c1 

< 0 , meaning that we only get one

on-trivial steady state, (x ∗
c2 

, y ∗
c2 

) , a saddle point, leaving (0, L ) and

 K , 0) as stable steady states. A complete suppression of the im-
une system is therefore possible. e  
. Treatment effects 

The principal objectives behind cancer modeling are to improve

nd inform the research into therapy. Here we explore the implica-

ions of our model for cancer therapy strategies. We do this by in-

estigating how a change in the tumor’s micro-environment affects

he tumor and the immune system and then draw conclusions on

heir influence on the patient’s prognosis. 

Patient outcome in our model can be measured as survival time

nd/or as the tumor’s steady-state size. Our survival time measure

elates to what is known as progression free survival time follow-

ng the initiation of therapy. This can be actual time before pa-

ient death, or it may represent the time before another line of

herapy becomes necessary. The steady-state size of the primary

umor may be of interest as this may correlate with the likelihood

r rate of metastases. We can use our model to examine the nature

nd effectiveness of various forms of immunotherapy. Specifically,

e are interested in how changes in model parameter values and

utcomes can be interpreted from a therapeutic standpoint. Im-

unotherapy likely influences three key parameters of the model: 

1. Increasing γ , the rate at which cancer cells have lethal encounters

with T-cells . In immunotherapy this is often accomplished by

using retroviruses or vaccines that tag the cancer cells with an

antigen that can be detected by the patient’s immune system,

thus eliciting the production of antigen specific T-cells. Alterna-

tively, immune cells from the patient may be entrained and cul-

tured in vitro to recognize cancer cells collected through biopsy.

These immune cells are then injected into the patient. 

2. Decreasing δ, the suppression parameter of the cooperative phe-

notype . Targeted therapy can be used to lower the coopera-

tive phenotype’s ability to suppress the immune system. Such

therapy by neutralizing the cancer cells’ signaling or by killing

cells that overexpress PDL-1, either reduce δ, or strongly select

against cancer cells with high values of δ. 

3. Decreasing εc and εs , the resistance rates of the two phenotypes .

The T-cells kill cancer cells through direct contact, and the in-

jection of proteins that initiate apoptosis (cell death). Cancer

cells may exaggerate glycolysis to produce lactic acid. The se-

creted lactic acid by reducing pH creates a protective moat that

impairs contact with an encountered T-cell. This is often associ-

ated with the upregulation of carboanhydrous IX (CAIX) that as-

sists the cancer cell in maintaining and surviving an acidic en-

vironment. Buffer therapies can be added to the immunother-

apy as a means of raising the pH of the tumor and rendering

the cancer cells’ acidic moat ineffective to lower εc ( Ibrahim-

Hashim et al., 2017 ). Checkpoint inhibitors may unmask the

selfish phenotype, making the selfish phenotype more suscep-

tible to destruction by the T-cells ( Pardoll, 2012 ). 

With such therapies in mind, in this section we consider the

ffects of these key parameters on the trajectory of tumor growth
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Fig. 7. The effect of an increased γ on cooperative steady states. The cancer zero- 

growth isocline is compressed towards the horizontal axis. Tumor mass becomes 

higher at the Allee threshold, and lower at the stable steady state. Steady-state tu- 

mor mass falls below the lethal value. Patient prognosis improves as a result of the 

treatment. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 8. The effect of an decreased δ on cooperative steady states. The T-cell zero- 

growth isocline is tilted upward. Tumor mass becomes higher at the Allee thresh- 

old, and lower at the stable steady state. Steady-state tumor mass falls below the 

lethal value. Patient prognosis improves as the result of the treatment. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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and the steady-state size of the tumor. We do this by using com-

parative statics and simulations on a discretized model, using finite

difference approximation. Our conclusions are as follows. 

1. Increased immune system efficiency and/or decreased coopera-

tive resistance prolongs the patient’s survival time and lowers

tumor mass at the stable steady state. 

2. Decreased immunosuppression prolongs the patient’s survival

time in tumors that feature the cooperative phenotype. It de-

creases tumor mass at the stable steady state, if it is coopera-

tive, and has no effect on the stable steady state, if it is selfish.

3. Decreased crypticity has ambiguous effects. It may increase or

decrease the patient’s survival time and increase or decrease

tumor mass at the stable steady state. 

The first two findings are in line with expectations, while the

third may seem counter-intuitive. The reason for this is that re-

duced crypticity lowers the advantage of selfishness, and thus

pushes the cancer cells towards an ESS with cooperative cancer

cells. If the tumor becomes cooperative instead of selfish at the

stable steady state, the patient’s prognosis may be worse due to

the cooperative phenotype’s immunosuppression. Treatments that

increase the immune system’s efficiency, decrease the cooperative

resistance, or decrease immunosuppression have no effect on the

advantage of selfishness. Hence, these treatment strategies do not

influence the tumor’s steady-state composition and there is no am-

biguity in their benefits on the patient’s prognosis. 

The remainder of this section formalizes, extends, and illus-

trates the above results. 

4.1. Effective treatment strategies 

Any treatment that does not change the advantage of selfish-

ness can be shown to be effective. We first formalize the effects of

the parameters γ and εc on the steady-state tumor size. 

Proposition 4.1. 

1. If D c is positive then, for every parametrization, the following com-

parative statics hold: 

a. 
∂x ∗

c1 
∂γ

< 0 , 
∂x ∗

c2 
∂γ

> 0 , 

b. 
∂x ∗

c1 
∂ε c 

> 0 , 
∂x ∗

c2 
∂ε c 

< 0 . 

2. If D s is positive then, for every parametrization, the following com-

parative statics hold: 

a. 
∂x ∗

s 1 
∂γ

< 0 , 
∂x ∗

s 2 
∂γ

> 0 , 

b. 
∂x ∗

s 1 
∂ε c 

= 0 , 
∂x ∗

s 2 
∂ε c 

= 0 . 

Proof. 

1.a. Consider the zero-growth isoclines of the cooperative case,

(10) and (11) . Since D c > 0 we have two intersection points,

and since the zero-growth isocline of x includes the origin,

while that of y has a positive y -intercept, it must hold that

at x ∗
c2 

the zero-growth isocline of y intersects that of x from

above, while at x ∗c1 the zero-growth isocline of x intersects

that of y from below. Raising γ affects only the zero-growth

isocline of x , compressing it towards the x -axis. It follows

that the points of intersection must move closer together,

hence tumor mass decreases at the stable steady state, and

the Allee threshold is achieved at a higher tumor mass. 

b. Decreasing εc has the same effect as increasing γ . 

2.a. This case is identical to 1.a, but instead of the isoclines of

the cooperative case we need to use (8) and (9) . 

b. Changing εc has no effect on the zero-growth isoclines

in the selfish case, hence the selfish steady states do not
change. � m  
Proposition 4.1 confirms the first point outlined at the begin-

ing of this section. Treating for immune system efficiency and/or

ooperative resistance decreases tumor mass at the stable steady

tate, making metastases less likely. In addition, this treatment in-

reases the Allee threshold, thereby making the cancer population

ore vulnerable to other forms of treatment ( Tobin et al., 2011 ).

ig. 7 shows the qualitative effects of an increased immune effi-

iency parameter on the two cooperative steady states with orig-

nal parameters taken from Example 3.13 . The dashed red line

hows the original cancer zero-growth isocline, the solid red line

hows the zero-growth isocline after the increase. Note that in this

xample the treatment results in the cancer cell population at the

table steady state being lower than the critical tumor mass, hence

 patient may survive indefinitely with the tumor burden due to

his therapy. 

Next, we formulate the relationship between the suppression

arameter and steady-state tumor sizes for cooperative tumors. 

roposition 4.2. If D c is positive then, for every parametrization, the

ollowing comparative statics hold: 
∂x ∗

c1 
∂δ

> 0 , 
∂x ∗

c2 
∂δ

< 0 . 

roof. We again consider the two zero-growth isoclines of the co-

perative case, (10) and (11) . Raising δ has no effect on the can-

er zero-growth isocline, while it decreases the slope of the T-cell

socline. Hence the points of intersection of the two curves must

pread farther apart, implying the stated inequalities. �

Proposition 4.2 confirms the second point highlighted in the be-

inning of this section. It implies that lowering the immunosup-

ression parameter via treatment has the same qualitative effect

n steady states in cooperative tumors as strengthening the im-

une system. Clearly, such a treatment has no effect on a purely

elfish tumor as the selfish phenotype does not display immuno-

uppression. Fig. 8 shows the qualitative effects of a decreased im-

unosuppression parameter on the two cooperative steady states
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Table 1 

Survival times for different combinations of γ and δ. Patient prognosis improves with increase in γ

and decrease in δ. 

T 1 γ T 2 γ

0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 

δ

0.001 13 15 20 41 

δ

0.001 17 20 27 58 

0.003 13 15 19 31 0.003 16 19 25 48 

0.005 13 15 18 26 0.005 16 19 23 37 

0.007 13 15 17 23 0.007 16 18 22 31 

0.009 13 14 17 21 0.009 16 18 21 27 

T 3 γ

0.025 0.05 0.075 0.1 

δ

0.001 20 24 36 90 

0.003 20 23 31 76 

0.005 20 23 28 54 

0.007 19 22 26 39 

0.009 19 22 25 33 
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t  
ith original parameters retained from Example 3.13 . The dashed

lue line shows the original T-cell zero-growth isocline, the solid

ed line shows the zero-growth isocline after the treatment. Once

gain, this example shows a treatment that results in the cancer

ell population at the stable steady state being lower than the criti-

al tumor mass. We now consider the effects of therapy on the sur-

ival time of the patient, T , a variable determining the viability of

 treatment strategy. We develop a round of simulations in a dis-

rete model to obtain approximations of the effects of treatments

ia γ and in δ on survival time. Let x t c , x 
t 
s , y 

t denote cooperative,

elfish, and T-cell populations at time t = 0 , 1 , 2 . . . for a given ini-

ial state (x 0 c , x 
0 
s , y 

0 ) . For t ≥ 0 the dynamics of the state-variables

ere determined by finite difference approximations of Eqs. (1),

2), (6) with time step 1. The differences between values of time

 and t − 1 , �x t c = x t c − x t−1 
c , �x t s = x t s − x t−1 

s , and �y t = y t − y t−1 

re given by the right hand sides of the respective equations, sub-

tituting the previous values x t−1 
c , x t−1 

s , and y t−1 . The time step 1

as chosen for intuitive simplicity, and because the differences are

f a suitably small magnitude to ensure smooth dynamics (see e.g.

ig. 3 ). 

The configurations used are as follows: K = 625 , L = 20 , r s =
 . 19 , r c = 0 . 2 , ε s = 0 . 7 , ε c = 1 , a = 1 . We considered three possible

ritical tumor masses ω 1 = 150 , ω 2 = 200 , ω 3 = 250 . The initial

onditions of the system are characterized by x (0) = 40 , y (0) = 20 ,

(0) = 0 . 7 . Note that recalibrating the model with different pa-

ameters and initial conditions does not change the qualitative

ffects but may lead to an early extinction of the tumor, mak-

ng survival times infinite. For different combinations of γ and δ,

able 1 gives the times T 1 , T 2 , and T 3 at which the tumor mass

xceeds the critical tumor masses ω 1 , ω 2 , and ω 3 , respectively, i.e.

 i = inf { t > 0 : x (t) > ω i } . The trends in each table are clear, for all

hree critical tumor masses, increasing γ or decreasing δ weakly

ncreases survival time. Clearly, patients live the longest when the

mmune system is strongest and immunosuppression is weakest,

orresponding to the upper right corners of each table. Conversely,

hen the immune system is weak and immunosuppression is the

trong, life expectancy is lowest, corresponding to the bottom left

orners of the tables. Furthermore, notice that a stronger immune

ystem means a stronger effect of immunosuppression. All of these

bservations predicted by our model fall in line with basic intu-

tions about immunotherapy. 

.2. Ambiguous effects of treating against cancer crypticity 

Treating for the selfish resistance rate – the crypticity parame-

er – may have ambiguous effects on the patient. Specifically, we

rst show that reducing the resistance rate may both increase or
ecrease the tumor population at the stable steady state. On first

lance this may seem counter-intuitive as it is easy to show that

elfish steady states react the same way to a treatment of εs as

ooperative ones to that of εc . 

roposition 4.3. If D s is positive then, for every parametrization, the

ollowing comparative statics hold: ∂ x ∗c1 /∂ ε s > 0 , ∂ x ∗c2 /∂ ε s < 0 . 

roof. Very similar to Proposition 4.1 1.b. �

Proposition 4.3 indicates that marginal changes of the selfish

esistance parameter also constitute an effective treatment, as they

ave no effect on steady-state composition. However, if due to a

ajor change of εs , the advantage of selfishness becomes lower

han the ratio of the reproduction rates, r c / r s , then the system’s

SS may become cooperative instead of selfish. This may worsen

he patient’s prognosis. We provide an example to illustrate this. 

xample 4.4. Consider the following calibration: K = 625 , L = 20 ,

 c = 0 . 2 , r s = 0 . 19 , ε c = ε s = 0 . 7 , δ = 0 . 001 , γ = 0 . 1 . In this case,

 c (1 − ε s ) = 0 . 06 < 0 . 19 = r s , so the advantage of selfishness is

ubstantial. The system’s only ESS is (x ∗s 1 , y 
∗
s 1 , 0) where the tumor

ize is x ∗
s 1 

= 261 . 5 . At the steady state, the cancer cells are at 42%

f carrying capacity, while the T-cell population is 36.17, 181% of

arrying capacity. 

Suppose that the selfish phenotype’s defenses are fully elimi-

ated, i.e. ε ′ s = 0 due to a successful treatment. The interpretation

s that cancer cells are no longer able to block immune check-

oints. As a result, the advantage of selfishness is minimized, and

 c (1 − ε ′ s ) > r s . The new ESS is (x ∗
c1 

, y ∗
c1 

, 1) . The tumor size is x ∗
c1 

=
49 . 2 , or 56% carrying capacity, which is a 34% increase in size. For

he number of T-cells, we have 31.45, 157% of carrying capacity,

 decrease of 13% in population. Additionally, we face a decrease

n the Allee threshold, from x ∗
s 2 

= 23 . 8 , or 3.8% carrying capacity

o x ∗c2 = 17 . 4 , 2.8% carrying capacity, a decrease of 27%. The tumor

as switched from selfish to cooperative cancer cells. 

Example 4.4 shows the importance of treatment effects on tu-

or composition: a treatment of the selfish phenotype’s crypticity

as led to an increase in the steady-state tumor size. However, this

s not a general rule. As per Proposition 4.3 , such a treatment al-

ays decreases tumor size if the tumor composition at the steady

tate is preserved. 

The effects of treatment on the patient’s prognosis are also am-

iguous. Consider once again the configuration used for the pre-

ious simulation: K = 25 , L = 20 , r s = 0 . 19 , r c = 0 . 2 , ε c = 1 , a = 1 ,

omplete with γ = 0 . 1 and δ = 0 . 005 , and critical tumor masses

 1 = 150 , ω 2 = 200 , ω 3 = 250 . The initial conditions for the sys-

em are x (0) = 40 , y (0) = 20 , g(0) = 0 . 7 . Table 2 contains the T ,
1 
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Fig. 9. Transient dynamics of the system with different selfish resistance parameter values. For small and large values of εs the tumor progresses to its stable equilibrium, 

for intermediate values, it is eliminated. Intermediate values of selfish resistance result in better patient prognosis than extreme ones. 

Table 2 

Survival times with different values of εs for different criti- 

cal tumor masses. Decreasing the selfish resistance rate be- 

low 0.6 decreases the patient’s survival time. 

εs T 1 T 2 T 3 

0 23 29 33 

0.1 24 30 35 

0.2 25 31 37 

0.3 26 33 41 

0.4 27 36 ∞ 

0.5 27 45 ∞ 

0.6 28 ∞ ∞ 

0.7 26 37 54 

0.8 24 32 39 

0.9 22 28 33 

1 20 25 29 
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T 2 , and T 3 levels for different values of εs with the same initial

conditions as before. Unsurprisingly, survival times are minimized

for the maximum resistance rate of 1, and go higher as εs is low-

ered. However, instead of a monotonic relationship, survival times

are maximized for a resistance rate of 0.6 and go down again. This

implies that treating a patient with resistance rate of 0.7 is dan-

gerous, as exposing the selfish cancer cells to the immune system

too much will lower life expectancy. 

The explanation of this phenomenon comes from the pheno-

types’ competition for resources. Treatment of the selfish phe-

notype results in increased proliferation by the cooperative phe-

notype, making the tumor more aggressive without slowing its

growth. This is in line with Proposition 3.4 , as lowering the ad-

vantage of selfishness results in a cooperative tumor. For ε s = 0 ,

the advantage of selfishness is nil, and lower than r c / r s , meaning

that the tumor converges to the stable cooperative steady state,

x ∗
c1 

. For all other displayed values of εs , the advantage of selfish-

ness is higher than the ratio of birth rates, meaning that the tu-

mor either converges to the stable selfish steady state x ∗s 1 , or goes
xtinct. In the above cases, for 0.1 ≤ εs ≤ 0.6, the tumor goes ex-

inct (but not before potentially visiting the critical tumor mass),

nd for values 0.7 ≤ εs ≤ 1, it converges to the stable selfish steady

tate. 

Fig. 9 shows the transient dynamics of the cancer and the im-

une system for four different values of selfish resistance rate, 0,

.3, 0.6, and 0.9. For a value of 0, the tumor grows rapidly, then

rogresses to the cooperative steady state, with the selfish pheno-

ype slowly going extinct. For a value of 0.3, the tumor shows rapid

rowth, but the cooperative cells are outcompeted by the selfish

ells. As the cooperative phenotype declines, the T-cells experience

 comeback, and eradicate all cancer cells. For a value of 0.6, the

ame thing happens, but in this case the selfish phenotype is more

esistant, which results in a quicker extinction of the cooperative

ells, a slower tumor growth, and a slower extinction of the tumor.

or a value of 0.9, the cooperative cells are eradicated even faster,

ut the selfish cells are resistant enough to withstand the immune

ystem, resulting in rapid tumor growth towards a stable equilib-

ium with large tumor size. Interestingly, optimal patient progno-

is occurs when the selfish cells have moderately strong resistance.

his produces a rapid eradication of the tumor cells and a smaller

aximum tumor size prior to the immune system eventually elim-

nating the selfish cells as well. 

Note that the ambiguous outcome of treatment effects in εs is

aintained for different configurations, even if r c < r s . In this case,

he advantage of selfishness is always larger than r c / r s , hence the

nly ESS is the stable selfish steady state. However, if the immuno-

uppression parameter is large enough, a treatment of the selfish

esistance rate may still worsen the patient’s prognosis, as with-

ut enough selfish cells to compete with the cooperative cells, the

ighly aggressive cooperative phenotype gains a larger growth rate.

hus, even though steady-state tumor composition is preserved

nd treatment decreases steady-state tumor size, the survival time

f the patient may still decrease. 
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. Conclusion 

We use game theory to model the dynamics of cancer cells and

he immune system as a predator-prey system. The cancer cells ex-

ibit two strategies. One confers resistance (safety) to the focal in-

ividual with no effect on the survival of others, while the second

onfers safety to both the individual and its neighbors. We refer

o the former strategy as “selfish” because it only helps itself, and

he latter as “cooperative” because it provides a public good. The

odel always exhibits three general outcomes: extinction of the

ancer cells with some residual population of T-cells, the coexis-

ence of one or the other cancer strategy with a population of T-

ells, or the extinction of the T-cells with cancer cells going to their

arrying capacity (this can only happen when the cancer cells are

ooperative). 

The model always results in a single pure-strategy ESS. If the

wo strategies share the same growth parameters, save for those

ssociated with providing the public good, then the selfish strategy

utcompetes the cooperative one. In this way, the game is a kind

f prisoner dilemma embedded within a population model based

n logistic growth and “predation” from the immune system. Oth-

rs who have addressed the more general question of the evolu-

ion of cooperation, such as Axelrod and Axelrod (1984) have found

hat cooperation can prevail against selfishness if there are non-

andom interactions such as the clumping of individual by type in

pace ( Ale et al., 2013; Nowak and May, 1992 ), or if cooperators

an either withhold benefits from selfish individuals through con-

itional strategies such as Tit-for-Tat ( Nowak and Sigmund, 1992 ),

r otherwise punish defectors ( Fudenberg and Maskin, 1986 ). Nei-

her of these feature for evolving cooperation occur within our

odel. However, cooperation can be the ESS if the intrinsic growth

ate of the cooperators is sufficiently higher than that of the selfish

ndividuals. If the advantage of selfishness is higher than the ratio

f reproduction rates, the tumor is selfish, if it is lower, the tumor

s cooperative. 

As a predator-prey model, our immune-cancer model has sev-

ral properties and consequences. As victims of the T-cells, the

ancer cells experience mortality that increases with the pop-

lation size of T-cells. Furthermore, the T-cells exert mortality

s a Type II-like functional response. This means that the can-

er cells experience safety in numbers, regardless their type, and

o their isocline is humped shaped as seen in Rosenzweig and

acArthur (1963) . The upward sloping region of a cancer cell’s iso-

line (in the state space of cancer cell and T-cell population sizes)

epresents an Allee effect ( Taylor and Hastings, 2005 ) as safety in

umbers more than compensates for intra-cancer cell competition.

The T-cell population is not a predator in the traditional sense.

n our model they have a carrying capacity set by the innate im-

une system of the patient. This attribute is in line with predator-

rey models where the predators receive a subsidy from outside of

he system ( Nevai and Van Gorder, 2012 ). But, unlike these models,

he T-cells gain no resources nor survival advantages from killing

ancer cell. The growth rate of the T-cells does not increase with

he mortality that they induce, rather, it is the overall population

ize of cancer cells that stimulates their growth rate. To incorpo-

ate this reality of T-cells, we let their carrying capacity increase

ith cancer cell population size. When the cancer cells are selfish,

his produces a T-cell zero-growth isocline with a positive slope

nd a positive T-cell intercept. Combining the selfish cancer cell’s

nd T-cell’s isoclines produces up to two interior solutions. The

rst is an unstable extinction threshold, typical of many ecological

odels with an Allee effect. If the cancer population size drops too

ow they will go extinct and the cancer is cured. If the population

ize grows to a level above this threshold then a second, stable

quilibrium is achieved (for some parameterizations this second

nterior equilibrium may yield a stable limit cycle) with a substan-
ially higher cancer cell population and a higher T-cell population

s well. 

The interaction between the cooperative cancer cells and the

mmune system causes the model to deviate further from a stan-

ard predator-prey model. The immunosuppressive effect of the

ooperative cancer cells means their presence exerts mortality on

he T-cells — the cancer cells now have a predator-like effect on

he T-cells even as they still enhance the T-cells’ carrying capacity.

he combined effects of the cooperative cancer cells on the T-cells

eans that the T-cell’s zero-growth isocline can now either exhibit

 hump (allowing for either two or even three interior equilibria),

r it may be everywhere negatively sloped (allowing for either two

nterior equilibria or a single interior equilibrium). In this case, if

he isoclines only permit a single interior equilibrium then it is a

ouble extinction threshold, meaning that it separates the region

here the T-cells drive the cancer cells extinct from the region

here the cancer cells drive the T-cells extinct, meaning complete

mmunosuppression. 

By considering the two immune evasion strategies our model

eveals a more diverse array of transient dynamics and equi-

ibria than the models of Robertson-Tessi et al. (2012) and

akada et al. (2016) . Furthermore, we have included the two ways

hat cancer cells might promote or inhibit T-cell persistence and

ecruitment in a more sophisticated and realistic fashion. Our two

mmune evasion strategies of selfish and cooperative mimic two

road classes of resistance strategies by cancer cells. In response

o the immune system some cancer cells down-regulate the anti-

en that elicits T-cell attacks. This amounts to a form of crypticity

hat selfishly protects the focal cell while likely having little impact

n the other cancer cells around it. On the other hand, cancer cells

an also evolve the means to actually suppress T-cell recruitment

nd proliferation. This can be done by either directly signaling T-

ells to cease functioning or by downregulating the cues that sig-

al macrophages to stimulate T-cell proliferation ( Gajewski et al.,

013 ). 

Immunotherapy in our model acts through model parameters

hat enhance the lethal encounter rate of T-cells with cancer

ells, reduce the advantage of selfishness (render crypticity inef-

ective), or decrease the immunosuppressive effect of cooperators

 Ghirelli and Hagemann, 2013 ). These actions generally have pos-

tive therapeutic outcomes in terms of slowing the rate of tumor

rowth, increasing the extinction threshold below which the can-

er will be cured, and decreasing the ultimate size of the tumor. If

his size is below the lethal threshold for the patient then this may

e a durable outcome, akin to adaptive therapy ( Gatenby et al.,

009 ). However, by rendering crypticity ineffective, the tumor may

hift from one dominated by selfish cells to one dominated by co-

perative ones. As an unintended consequence, tumor size at the

volutionarily ESS may increase, and the patient’s prognosis may

e substantially worsened. 

Our model can also consider other therapies (singly or in com-

ination) where a cytotoxic drug or radiation therapy may influ-

nce the efficacy of the patient’s natural immune system or ad-

itional immunotherapy. For instance, a cytotoxic drug may re-

uce the cancer cell’s intrinsic growth rate by targeting cells with

igh proliferation rates. Or a targeted therapy may reduce the pop-

lation size of cancer cells to below their extinction threshold.

his becomes akin to the abscopal effect ( Mole, 1953 ). A num-

er of clinical examples exist where radiation therapy can induce

 stronger immune response. If the cancer cell population is suffi-

iently depressed by radiation therapy, ours and other models sug-

est an extinction threshold where the immune system can now

radicate the residual cancer cell population. 

A main takeaway of this paper is that in order to shrink, or

x tumor size through immunotherapy, the effects on tumor com-

osition cannot be ignored. This is a well-known thesis in other
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aspects of cancer therapy, e.g. in the treatment of prostate cancer

( You et al., 2017 ), but is yet to be adopted in immunotherapy. More

specifically, our model identifies increasing immune efficiency and

decreasing immunosuppression as viable treatment options. Both

are shown to lower tumor burden and decrease the likelihood of

cancer progression and metastasis via decreasing tumor size at the

ESS, as well as to increase the patient’s life expectancy. In most

dynamic models of heterogeneous tumors – this paper’s included

– the quantitative effects of treatment with respect to tumor com-

position are analytically intractable. The same holds for life ex-

pectancy or most other proxies of the patient’s prognosis. How-

ever, based on our work, a general qualitative statement can be

formalized: treatment strategies that influence tumor composition

are risky, whereas those that preserve composition are viable. Our

findings merit more research aimed out identifying the risks and

potential benefits of the former kind of treatment, and to validate

our conclusions for the latter, whereas our proposed framework

opens the possibility of integrating game theoretic concepts and

ideas into the modeling of the interactions between heterogeneous

tumors and the immune system. 

Appendix A 

Proposition 3.6 Let D s > 0. If x ∗
s 1 

> 

K 
4 , then (x ∗

s 1 
, y ∗

s 1 
, 0) is linearly

stable in x and y . 

Proof. The system is as follows. 

˙ x = r s 

( 

1 −
√ 

x 

K 

) 

x − γ (1 − ε s ) 
√ 

x y = F (x, y ) , 

˙ y = r i 

(
1 − y 

L + a 
√ 

x 

)
y = G (x, y ) . 

Consider the Jacobian of the problem. 

J(x ∗s 1 , y 
∗
s 1 ) = 

⎛ 

⎜ ⎝ 

∂F (x, y ) 

∂x 

∂F (x, y ) 

∂y 
∂G (x, y ) 

∂x 

∂G (x, y ) 

∂y 

⎞ 

⎟ ⎠ 

(x ∗s 1 , y 
∗
s 1 ) . 

The elements are as follows. 

1, ∂F (x,y ) 
∂x 

(x ∗s 1 , y 
∗
s 1 ) < 0 . We can show this by taking 

∂F (x, y ) 

∂x 
= r s 

(
1 − 3 

√ 

x 

2 

√ 

K 

)
− y 

2 

√ 

x 
γ (1 − ε s ) . 

Note that since ˙ x = 0 at the steady state, we have r s (1 −
√ 

x ∗
s 1 √ 

K 
) =

γ (1 − ε s ) 
y ∗

s 1 √ 

x ∗
s 1 

. Thus, substituting gives 

∂F (x, y ) 

∂x 
(x ∗s 1 , y 

∗
s 1 ) = r s 

( 

1 

2 

−
√ 

x ∗
s 1 √ 

K 

) 

< 0 , 

by using 
√ 

x ∗
s 1 

> 

√ 

K / 2 . 

2, ∂F (x,y ) 
∂y 

(x ∗
s 1 

, y ∗
s 1 

) < 0 . This is shown by simply taking 

∂F (x, y ) 

∂y 
= −γ (1 − ε s ) 

√ 

x < 0 , 

for all x > 0. 

3, ∂G (x,y ) 
∂x 

(x ∗
s 1 

, y ∗
s 1 

) > 0 . This is shown by taking 

∂G (x, y ) 

∂x 
= r i 

a 

2 

√ 

x 

y 2 

(L + a 
√ 

x ) 2 
> 0 , 

for all x, y > 0. 

4, ∂G (x,y ) 
∂y 

(x ∗
s 1 

, y ∗
s 1 

) < 0 . This is shown by taking 

∂G (x, y ) 

∂y 
= r i −

2 y 

L + a 
√ 

x 
. 
t the steady state we have y ∗s 1 = L + a 
√ 

x ∗
s 1 

, thus ∂G (x,y ) 
∂y 

(x ∗s 1 , y 
∗
s 1 ) =

 i − 2 r i = −r i < 0 . 

So, qualitatively, we have 

(x ∗s 1 , y 
∗
s 1 ) = 

(
− −
+ −

)
, 

eaning that Tr (J(x ∗s 1 , y 
∗
s 1 )) < 0 , and Det (J(x ∗s 1 , y 

∗
s 1 )) > 0 , thus the

teady state (x ∗
s 1 

, y ∗
s 1 

) is stable for deviations in x and y . �

emma A.1. For (x ∗
c1 

, y ∗
c1 

, 1) it holds that 

x ∗c1 √ 

K (L + 

ad 
r i 

x ∗
c1 

) 
> 

γ (1 − ε c ) 

r c 
. 

roof. At (x ∗
c1 

, y ∗
c1 

, 1) , the zero isocline of y intersects that of x

rom below. Hence, the derivative of the former, evaluated at the

teady state, is greater: 

 

x ∗
c1 

( 

1 

2 

−
√ 

x ∗
c1 √ 

K 

) 

r c 

γ (1 − ε c ) 
< 

a 

2 

√ 

x ∗
c1 

− δ

2 r i 
L 
√ 

x ∗
c1 

− a 
δ

r i 
x ∗c1 . 

(A.1)

t the same time, since the point (x ∗c1 , y 
∗
c1 ) lies upon both isoclines

e have 

 

∗
c1 = 

√ 

x ∗
c1 

( 

1−
√ 

x ∗
c1 √ 

K 

) 

r c 

γ (1 − ε c ) 
=L + a 

√ 

x ∗
c1 

− δ

r i 
L 
√ 

x ∗
c1 

− a 
δ

r i 
x ∗c1 . 

ence, we get 

 

x ∗
c1 

( 

1 −
√ 

x ∗
c1 √ 

K 

) 

r c 

γ (1 − ε c ) 
− L + a 

δ

r i 
x ∗c1 = a 

√ 

x ∗
c1 

− δ

r i 
L 
√ 

x ∗
c1 

. 

pplying (A.1) gives 

 

x ∗
c1 

( 

1 −
√ 

x ∗
c1 √ 

K 

) 

r c 

γ (1 − ε c ) 
− L + a 

δ

r i 
x ∗c1 

> 2 

√ 

x ∗
c1 

( 

1 

2 

−
√ 

x ∗
c1 √ 

K 

) 

r c 

γ (1 − ε c ) 
+ 2 a 

δ

r i 
x ∗c1 . 

fter rearranging we have 

x ∗c1 √ 

K 

r c 

γ (1 − ε c ) 
− L − a 

δ

r i 
x ∗c1 > 0 . 

 final rearrangement gives 

x ∗c1 √ 

K (L + 

ad 
r i 

x ∗
c1 

) 
> 

γ (1 − ε c ) 

r c 
, 

s stated. �

Proposition 3.11 Let D c > 0. If x ∗
c1 

> 

K 
4 , then (x ∗

c1 
, y ∗

c1 
, 1) is linearly

table in x and y . 

roof. The system is as follows. 
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y

A

J

A

ε

 

z

 

s  

r

 

t

 

w

D

D

 

i  

l

D

 

D

R

B

R

A  

A  

 

A  

B  

B  

 

D  

 

D  

 

D  

D  

E  

 

F  

F  

G  

G  

G  

G  

H  

H  

 

I  

 

 

 

˙ x = r c 

( 

1 −
√ 

x 

K 

) 

x − γ (1 − ε c ) 
√ 

x y = F (x, y ) , 

˙ 
 = r i 

(
1 − y 

L + a 
√ 

x 

)
y − δ

√ 

x y = G (x, y ) . 

gain, consider the Jacobian of the problem. 

(x ∗c1 , y 
∗
c1 ) = 

⎛ 

⎜ ⎝ 

∂F (x, y ) 

∂x 

∂F (x, y ) 

∂y 
∂G (x, y ) 

∂x 

∂G (x, y ) 

∂y 

⎞ 

⎟ ⎠ 

(x ∗c1 , y 
∗
c1 ) . 

s before, we have 1, ∂F (x,y ) 
∂x 

(x ∗
c1 

, y ∗
c1 

) = r c (1 − 3 
√ 

x ∗
c1 

2 
√ 

K 
) − y ∗

c1 

2 
√ 

x ∗
c1 

γ (1 −

 c ) = r c ( 
1 
2 −

√ 

x ∗
c1 √ 

K 
) . 

2, ∂F (x,y ) 
∂y 

(x ∗
c1 

, y ∗
c1 

) = −γ (1 − ε c ) 
√ 

x ∗
c1 

. Since (x ∗
c1 

, y ∗
c1 

) is on the

ero-growth isocline of x we have γ (1 − ε c ) 
√ 

x ∗
c1 

y ∗
c1 

= r c (1 −√ 

x ∗
c1 √ 

K 
) x ∗

c1 
, hence 

∂F (x, y ) 

∂y 
(x ∗c1 , y 

∗
c1 ) = −r c (1 −

√ 

x ∗
c1 √ 

K 

) 
x ∗c1 

y ∗
c1 

. 

3, ∂G (x,y ) 
∂x 

(x ∗
c1 

, y ∗
c1 

) = r i 
a 

2 
√ 

x ∗
c1 

y 2 
c1 

(L + a √ 

x ∗
c1 

) 2 
− δ

2 
√ 

x ∗
c1 

y ∗
c1 

. Since the

teady state is on the zero-growth isocline of y we have

 i (1 − y ∗
c1 

L + a √ 

x ∗
c1 

) = δ
√ 

x ∗
c1 

, hence 

∂G (x, y ) 

∂x 
(x ∗c1 , y 

∗
c1 )= 

1 

2 

r i (a 
√ 

x ∗
c1 

y ∗c1 

(L + a 
√ 

x ∗
c1 

) 2 
+ 

y ∗c1 

L + a 
√ 

x c1 

− 1) 
y ∗c1 

x ∗
c1 

. 

4, ∂G (x,y ) 
∂y 

= r i (1 − 2 y 

L + a √ 

x 
) − δ

√ 

x . Using the steady-state condi-

ion r i (1 − y ∗
c1 

L + a √ 

x ∗
c1 

) = δ
√ 

x ∗
c1 

gives 

∂G (x,y ) 
∂y 

(x ∗c1 , y 
∗
c1 ) = −r i 

y ∗
c1 

L + a √ 

x ∗
c1 

. 

As before, Tr (J(x ∗
c1 

, y ∗
c1 

)) < 0 , for x ∗
c1 

> K/ 4 . For the determinant,

e calculate 

∂F (x, y ) 

∂x 
(x ∗c1 , y 

∗
c1 ) 

∂G (x, y ) 

∂y 
(x ∗c1 , y 

∗
c1 ) 

= − r c r i 

( 

1 

2 

−
√ 

x ∗
c1 √ 

K 

) 

y ∗c1 

L + a 
√ 

x ∗
c1 

, 

∂F (x, y ) 

∂y 
(x ∗c1 , y 

∗
c1 ) 

∂G (x, y ) 

∂x 
(x ∗c1 , y 

∗
c1 ) 

= − 1 

2 

r c r i 

( 

1 −
√ 

x ∗
c1 √ 

K 

) ( 

a 
√ 

x ∗
c1 

y ∗c1 

(L + a 
√ 

x ∗
c1 

) 2 
+ 

y ∗c1 

L + a 
√ 

x c1 

− 1 

) 

. 

Therefore, the determinant is as follows: 

et (J(x ∗c1 , y 
∗
c1 )) = 

1 

2 

r c r i 

( √ 

x ∗
c1 √ 

K 

− 1 −
√ 

x ∗
c1 √ 

K 

a 
√ 

x ∗
c1 

y ∗c1 

(L + a 
√ 

x ∗
c1 

) 2 

+ 

a 
√ 

x ∗
c1 

y ∗c1 

(L + a 
√ 

x ∗
c1 

) 2 
+ 

√ 

x ∗
c1 √ 

K 

y ∗c1 

L + a 
√ 

x c1 

) 

, 

et (J(x ∗c1 , y 
∗
c1 )) = 

1 

2 

r c r i 

( ( 

1 −
√ 

x ∗
c1 √ 

K 

) ( 

a 
√ 

x ∗
c1 

y ∗c1 

(L + a 
√ 

x ∗
c1 

) 2 
− 1 

) ) 

+ 

√ 

x ∗
c1 √ 

K 

y ∗c1 

L + a 
√ 

x c1 

) 

. 
We use the fact that the steady state lies along the zero-growth

socline of x and substitute y ∗
c1 

= 

√ 

x ∗
c1 

(1 −
√ 

x ∗
c1 √ 

K 
) r c 
γ (1 −ε c ) 

into the

ast bracketed term to get 

et (J(x ∗c1 , y 
∗
c1 )) = 

1 

2 

r c r i 

( 

1 −
√ 

x ∗
c1 

K 

) 

( 

x ∗c1 

K 

r c 

γ (1 −ε c ) 

1 

L + a 
√ 

x ∗
c1 

+ 

y ∗c1 a 
√ 

x ∗
c1 

(L + a 
√ 

x ∗
c1 

) 2 
−1 

) 

. 

Now we use the zero-growth isocline of y and substitute y ∗c1 =
(L + a 

√ 

x ∗
c1 

)(1 − δ
r i 

√ 

x ∗
c1 

) , which gives 

et (J(x ∗c1 , y 
∗
c1 )) = 

1 

2 

r c r i 

( 

1 −
√ 

x ∗
c1 √ 

K 

) ( 

x ∗c1 √ 

K 

r c 

γ (1 − ε c ) 

1 

L + a 
√ 

x ∗
c1 

+ a 
√ 

x ∗
c1 

(1 − δ

r i 

√ 

x ∗
c1 

) 
1 

L + a 
√ 

x ∗
c1 

− 1 

) 

. 

Therefore, Det (J(x ∗
c1 

, y ∗
c1 

)) > 0 if and only if we have 

x ∗c1 √ 

K 

r c 

γ (1 − ε c ) 
+ a 

√ 

x ∗
c1 

(1 − δ

r i 

√ 

x ∗
c1 

) > L + a 
√ 

x ∗
c1 

. 

earranging gives the condition as 

x ∗c1 √ 

K (L + 

ad 
r i 

x ∗
c1 

) 
> 

γ (1 − ε c ) 

r c 
. 

y Lemma A.1 , this holds, hence the proof is complete. �
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