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Modelling Dominance Hierarchy formation as a Multi-player game
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Animals who live in groups need to divide available resources amongst themselves. This is
often achieved by means of a dominance hierarchy, where dominant individuals obtain a
larger share of the resources than subordinate individuals. This paper introduces a model of
dominance hierarchy formation using a multi-player extension of the classical Hawk–Dove
game. Animals play non-independent pairwise games in a Swiss tournament which pairs
opponents against those which have performed equally well in the conflict so far, for a fixed
number of rounds. Resources are divided according to the number of contests won. The
model, and its emergent properties, are discussed in the context of experimental observations.

r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

1.1. DOMINANCE HIERARCHIES

Many animals spend important parts of their
lives or their entire lives in groups, where the
individuals do not have separate territories, but
occupy a combined territory together. A com-
mon feature of such groups is the presence of
dominance hierarchies, where the animals sort
themselves into a preference order for feeding,
mating etc., see Alcock (1993). Two important
questions relating to dominance hierarchies are

1. How are these hierarchies formed?
2. Once formed, are they stable and if so how

are they maintained?
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There is a reliable body of theory which goes
a long way to answering the second question.
Linear hierarchies (defined below) tend to be
stable. Experiments have been carried out where
individual fowl have been removed from the
population, and reintroduced days later, where
they re-adopt their former position, often with-
out any conflict (Klopfer, 1973). On the other
hand, Guhl (1968) has reported that the correla-
tion in position is small when the whole group
establishes a hierarchy at two distinct time
points. These experiment suggests that it is not
intrinsic properties of the individuals which
determine the hierarchy, but rather the context
and overall interactions within the group. There
is evidence that dominance hierarchies are
maintained by recognizing dominant and non-
dominant individuals e.g. by scent in fish (Todd
et al., 1967) or by voice in birds (Lemon, 1967).
In monkeys coalitions between non-related
individuals have been observed, see Chapais
et al. (1991). An important group of theoretical
papers, originating with Vehrencamp (1983),
r 2002 Elsevier Science Ltd. All rights reserved.
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have considered this problem in relation to the
concept of reproductive skew, which is concerned
with how the resources within a group of
animals are divided. This division is often very
uneven, high reproductive skew (e.g. Rood,
1980), so that the top few animals receive almost
all of the pay-off. A model was developed in
Keller & Reeve (1994) where subordinate in-
dividuals are given limited mating rights (stay
and peace incentives) in order not to challenge
for dominance or leave the group.

Our interest here is in the first question and we
develop a model of how such a hierarchy might
be formed, and discuss its implications and
efficacy. Our approach is to assume that the
individuals are initially undifferentiated in any
way that would affect their competitive ability.
In contrast to the model of Bonabeau et al.
(1996) we assume that an individual’s probabil-
ity of winning is unaffected by its history, at least
during the main part of the hierarchy formation.
They choose strategies and win or lose, within a
framework which eventually establishes a partial
ordering of the individuals.

1.1.1. Forming Hierarchies

In long-term hierarchies where animals spend
their whole lives in the same group, for example
colonies of monkeys, offspring often attain the
social rank of their mother (Marsden, 1968).
Similar behaviour has also been recorded in
hyenas (Frank, 1986). Thus as individuals
join the group one by one, they slot into an
already established hierarchy at a pre-deter-
mined place.

On the other hand, many species form and
reform groups throughout their lives and dom-
inance hierarchies will be established from
scratch. This happens for example, when
groups form by a large number of adults
coming together almost simultaneously, for
example birds gathering in a lek (Hoglund &
Alatalo, 1995) at the beginning of the breeding
season.

There is considerable experimental work
investigating this establishment of hierarchies.
Interactions have been set up in the laboratory,
and the ‘‘winner’’ and ‘‘loser’’ observed in a
sequence of encounters. There are two important
findings from this work:

1. Hierarchies tend to be approximately linear
(well-ordered). A hierarchy is linear if one can
number the individuals 1; 2;y; n in such a way
that if ioj then i is dominant to j:

2. There may be correlations between the
outcomes of successive contests. A loser may
have an increased probability of losing its next
contest also, and this is not explicable by the fact
that a loser is likely to be weaker and therefore
less likely to win in general.

Linearity. Chase & Rohwer (1987), for exam-
ple, brought together groups of 12–17 Harris
Sparrows Zonotrichia quereula, and studied the
interactions over time. They were interested
primarily in the linearity of the hierarchy
formed, and more particularly in the triads. A
triad is created when three individuals A; B and
C have interacted pairwise; thus A has contested
with B; B with C and A with C: Denoting the
event that A beat B by A-B such a triad is then
termed transitive if, for example, A-B; B-C
and A-C; whereas if A-B; B-C; and C-A

the triad is cyclic. Of the 611 triads observed by
Chase and Rohmer, 540 were transitive and 41
cyclic, vis-a-vis expectations of 458 and 153 if
outcomes were random. They further observed
that the hierarchies formed were significantly
more linear than would occur by chance.

The method we use below also models the
formation of a hierarchy through pairwise
interactions, but in a highly structured way. Full
details are given below but we essentially
suppose that individuals come together to
establish the hierarchy and do so by a series of
contests, at each stage competing with another
individual who has had a similar success rate.
We envisage this happening due to some
additional feature of the environment, perhaps
spatial. For example, suppose that there is a
habitat in which higher positions (in altitude) are
favoured, as in the carpenter bee Xylocopa
(Neoxylocopa) varipuncta, (Alcock & Smith,
1987). Initially, bees might aggregate at some
intermediate height, winners moving up and
losers down so that at a particular level at any
point in time are individuals who have had
comparable success in the past. The outcome will
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be the division of individuals into sets with equal
status. We do not have every pairwise
dominance resolved, and so the issue of linearity
does not arise quite in the manner defined above.
Here if A4B; meaning A has higher status than
B; and B4C then necessarily A4C: One should
perhaps note that once the basic competition
is over, individuals may still be expected to
compete within the level that they have achieved
and thus refine the detail of the hierarchy. Thus,
one would expect to see at that stage primarily
interactions between individuals of similar
rank, and few if any, between individuals
very disparate in rank, which accords with
observation.

On the other hand, it is possible that during
the basic competition intransitive triads may
occur. In the simple case where we have only
four individuals there are essentially only two
patterns of outcomes,

1. A-B and C-D in round 1, A-C and
B-D in round 2.

2. A-B and C-D in round 1, A-C and
D-B in round 2

and neither of these has a triad. With more
individuals triads may arise. With eight indivi-
duals there are 288 permutationally distinct
configurations. Within these there can be no
cyclic triads, though exceptionally a four cycle
can occur. In general, the number of triads will
be small, and the chance of these being cyclic
also smaller than in the all-play-all situation
(where the probability is 0.25). Essentially this is
because in many triads the highest ranked
individual will have finished high up the
hierarchy and so there is a greater than 0.5
chance that he won both contests in the triad.
For example, the chance of a triad involving the
top player being cyclic is zero, and this is also
true for the individual who lost to the top player
in the last round. The bottom player and his last
round opponent are also excluded from being in
a cyclic triad. In general, the outcomes will be
fairly linear in the conventional sense.

We note a detail of interest in the case of four
players; the same phenomenon applies more
generally. Both possible outcomes divide the
individuals into three levels, won twice, won
once and lost once, and lost twice. However,
there is a difference of some possible signifi-
cance. In the first outcome, the two players, B
and C, at the intermediate level have not played
each other, whereas in the second outcome, C
and D are at the intermediate level but C-D:
One could argue that this would therefore
resolve the hierarchy into four levels rather than
only three. This phenomenon will be less marked
with larger numbers of individuals.

Correlations. A second major issue in con-
sidering the formation of dominance hierarchies
is the possible existence of correlations between
the outcomes of the successive contests of an
individual. These effects have been investigated
in many studies (e.g. Frey & Miller, 1972; Chase
et al., 1994; Hsu & Wolf, 2001). The results tend
to suggest that losing increases the chance of
losing the next contest, whereas the effect of
winning is less clear cut. We have not included
this feature in our model. As stated above
individuals contest with others who have a
similar overall success rate and the outcome is
not affected by the specific sequence of wins and
losses they have experienced. On average in our
model a winner wins his next contest with
probability one-half, and so does a loser. There
are at least two distinct ways in which one
could justify the absense of this effect in a
population,

1. The contests take place sufficiently sepa-
rated in time that there is no carry through from
the previous contest or, equivalently, that the
individuals have short memories or rapid recov-
ery capacity.

2. The individuals have very good memories
so that they can take into account their whole
history, or that their perception of their abilities
is very strongly linked to their current position
(e.g. altitude on the hill for carpenter bees) so
that their route to that position is not relevent (a
Markovian assumption).

1.2. GAME THEORY

Game theory originated in the area of
economics with von Neumann & Morgenstern
(1944). Other important texts include Binmore
(1992) and Harsanyi & Selten (1988). Game
theoretic methods have been applied to many
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biological situations, especially those where
animals are in conflict with each other for some
resource, for example food or mates, or in our
case status, which in turn gives precedence over
others for a range of resources. Examples include
the modelling of signalling behaviour (Grafen,
1990a, b) and the modelling of anti-predator
vigilance (McNamara & Houston, 1992; Pulliam
et al., 1982).

An important early application of game
theory to biology was by Maynard Smith &
Price (1993), which introduced the Hawk–Dove
game which forms the starting point of this
paper. This idea was developed further in
Maynard Smith (1982). It was shown in May-
nard Smith & Price (1973) how game theory
could explain the apparently contradictory
behaviour of heavily armed animals which did
not use their armaments effectively, but only
engaged in ritualistic contests. The basic struc-
ture of the Hawk–Dove game is as follows;

Animals compete for a reward of value V40:
They are all of the same strength/size and each
animal is equally likely to meet all possible
opponents. There are two available pure strate-
gies, aggressive ‘‘Hawk’’ and non-aggressive
‘‘Dove’’. The reward or pay-off to players is
described below.

If a Hawk meets a Dove, the Dove flees
(receiving nothing) and the Hawk picks up the
reward V : If two Doves meet they engage in a
ritualistic display, each winning the reward with
probability 1/2, and thus each receives expected
pay-off V=2:

If two Hawks meet they fight, each winning
the reward with probability 1/2, the loser
receiving an injury of cost C40 (reward �C)
and thus receive expected pay-off ðV � CÞ=2:

The pay-off information is generally summar-
ized in the pay-off matrix A ¼ ðaijÞ; where aij is
the pay-off to an individual playing strategy i
against one playing j: Thus for the Hawk–Dove
game, where Hawk is strategy 1 and Dove is
strategy 2, the pay-off matrix is

1

2
ðV � CÞ V

0
1

2
V

2
64

3
75: ð1Þ
Suppose that the proportion of Hawk players
in the population is p: Maynard Smith (1982)
showed that the population is in stable equili-
brium [i.e. p is an Evolutionarily Stable Strategy

(ESS)] if and only if

p ¼
V

C
; VoC; p ¼ 1; VXC:

In particular, if C is much larger than V ; e.g.
cost of death vs. a mating opportunity, the
strategy Hawk would be very rare.

The Hawk–Dove game, and most other game
theory models, involve only two players. There
may be many animals in the population, but the
model assumes that the result of a contest
between one pair of animals has no bearing
upon that of another pair. When modelling the
formation of a dominance hierarchy this as-
sumption is not reasonable. The animals sort
themselves into a ranking order so that every
game which affects an animal’s position in the
order affects all of the animals in some way;
it is certainly likely to influence which opponent
an animal is likely to face next (winners will
tend to fight other winners, losers other losers,
any potential mismatched contests are likely
to end with the weaker animal backing
down). Thus, the game will be multi-player in
character.

Together with G.T.Vickers, we have recently
published a series of papers developing multi-
player models. These have been both of the
general variety where many individuals compete
simultaneously (Broom et al., 1997b) and
with a structure in which pairwise games
are played, to allow for non-independence
(Broom et al., 1996, 1997a, 2000a, b). We take
the second approach here, assuming that in-
dividuals compete in pairwise contests of Hawk–
Dove type, but that the results of these contests
determine which opponents are likely to be faced
in the future. Thus we create a tournament
structure.

1.2.1. Tournament Models

A tournament can be organized in many
ways but usually there are a number of rounds,
each round consisting of the pairing of some or
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all of the contestants. The two most familiar
structures are the knockout tournament and the
round-robin (or all-play-all) tournament. In the
knockout tournament, the 2n players are paired
in the first round (either randomly or as the
outcome of some preliminary contest), the 2n�1

losers being eliminated, while the 2n�1 progress
to the next round. This process continues until a
single undefeated individual results (the winner).
Thus there are a total of 2n � 1 contests, since
each contest produces a loser and each con-
testant, other than the winner, loses once. In
the round-robin tournament every possible
pairing occurs so there is an intrinsic
difficulty in defining an individual’s ultimate
rank, unless there is a linear outcome. The
number of contests in this case is 2n�1

*ð2
n � 1Þ

being just the number of pairings possible. The
Swiss tournament which we define below has a
number of contests equal to 2n

*n which
is intermediate between the knockout and
round-robin.

Knockout tournaments have been considered
in Broom et al. (2000a, b). In specifying the
details of a tournament one has to define the
repetoire of the individuals. In Broom et al.

(2000a) each individual was constrained to play
either Dove or Hawk in every round it reached,
whereas in Broom et al. (2000b) individuals
could choose round by round. It is this latter
approach which we adopt here. A knockout
tournament is effective in producing a single
winner in relatively few contests, and so will
be appropriate where there is essentially only
a reward for the a-animal, and indeed
emerges from within our model below. However,
when rewards are obtained for intermediate
ranks the knockout tournament may be
inappropriate.

Mesterton-Gibbons & Dugatkin (1995) model
hierarchy formation using a round-robin model
of independent pairwise conflicts for small
groups np10: It seems likely that such all-play-
all contests are only practical for very small
groups (otherwise the number of fights would be
large and lead to energy waste and injury). We
consider the Swiss tournament common in Chess
and described in detail in Section 1.3, which
establishes an order with far less conflicts. It
achieves a rough ordering very quickly, which
then might be further resolved, and so might be
efficient when there is a spread of rewards.
We compare very briefly the performance of
a variety of different ‘‘tournaments’’ in the
Discussion.

1.3. SWISS TOURNAMENTS

Swiss tournaments are commonly used in
chess competitions. All players play in every
round (provided that the number of competitors
is even), players being matched with opponents
on the same score, if possible. If this cannot
be done, opponents are paired as closely as
possible (there are precise rules for how this
should be done). There are three main advan-
tages of organizing tournaments in this way, the
second and third of which are pertinent to the
modelling of dominance hierarchies;

(1) In knockout tournaments, losers are
eliminated after the first game, which is un-
satisfactory for players who will have paid a
(possibly substantial) fee to enter the tourna-
ment. Also, many tournaments are played over a
single weekend when only five or six games of
chess can be played, so that a round-robin
tournament could only involve a small number
of competitors (typical Swiss tournaments in-
volve about 40).

(2) After a couple of rounds, players tend to
play opponents at roughly their own playing
level, since such players will generally be on or
near the same score. Thus games are roughly
even. In the animal world, individuals generally
fight opponents of roughly equal strength
(though we assume here that individuals only
differ in their strategies and previous success and
not in their strength), since if it is obvious who
will win before the contest, the inferior animal
will usually back down.

(3) Swiss tournaments establish a reasonably
accurate order according to ability in a very
short number of contests. If there were no draws,
a winner could be established in n rounds if the
number of players is 2n or less, although the
ordering in the middle of the field is less precise
than at either end. This feature is important in
the real world to minimize the risk of injury and
the amount of energy wasted.
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We do not claim that animals will actually
organize such structured tournaments, but the
tendency to play compatible opponents and the
necessity to minimize the number of fights means
that such a tournament might be a reasonable
approximation.

In this paper, we explore the strategic beha-
viour in an n-round Swiss tournament. Section 2
introduces a minor generalization of the Hawk–
Dove game suitable for embedding in a multi-
round contest. After specifying the ESS for such
a contest we derive two results relating pay-offs
to plays. Section 3 introduces the Swiss tourna-
ment formally, each round consisting of contests
played as per Section 2. We derive a number of
results which simplify the task of finding
potential ESSs. Section 4 considers some exam-
ples, i.e. choices of the rewards and costs.
Specifically, we consider the cases where the
reward doubles with each increment of unity in
the number of wins, and the case where only the
‘‘overall winner’’ (the individual which has won
every contest) receives a reward. Section 5
addresses the question of what strategies can
exist. Earlier the set of strategies was shown to
be at most ðn þ 1Þ! in number. It is proved that
these are all achievable. We discuss in particular
the cases n ¼ 2 and 3 and give diagrams of parts
of the strategy space, which show that this is
rather complex. Section 6 discusses certain issues
relating to comparisons of the Swiss, knockout,
all-play-all and other tournaments.

2. Preliminaries

In the classical Hawk–Dove game, animals
compete for a reward value V ; the loser receiving
0 (if the contest was Hawk–Hawk the loser also
incurs a cost C). We generalize this game so that
winners receive W and losers receive L: This is
important for the sections which follow. In such
a contest the pay-off matrix becomes

1

2
ðW þ L � CÞ W

L
1

2
ðW þ LÞ

2
64

3
75: ð2Þ

There is always a unique ESS of this game.
If p is the probability of playing Hawk in the
ESS, then

(i) p ¼ 0 if W � Lo0: The pay-off to this
strategy which is just ‘‘play Dove’’ is

1
2
ðW þ LÞ:

(ii) p ¼ 1 if W � LXC: This strategy is ‘‘play
Hawk’’ and the pay-off is

1
2ðW þ L � CÞ:

(iii) If 0pW � LoC; then

p ¼
W � L

C

and the pay-off is

1

2
ðW þ LÞ �

1

2C
ðW � LÞ2:

In general, the pay-off is

1
2
ðW þ L � p2CÞ;

and

p ¼ mid 0;
W � L

C
; 1

� �
;

where midða; b; cÞ is the second largest value of
a; b and c: It turns out that in our model, as in
the original Hawk–Dove game, case (i) never
occurs [although p ¼ 0 is possible from the lower
limit of case (iii)], so that the pay-off can be
rewritten as

1

2
W þ L �

1

C
fminðC; ðW � LÞÞg2

� �
:

To facilitate later proofs, we define the
function Rðx; yÞ as

Rðx; yÞ ¼
1

2
x þ y �

1

C
fminðC; ðx � yÞÞg2

� �

for xXy:
Thus Rðx; yÞ is the expected pay-off at an ESS,

when W ¼ x and L ¼ y: We also prove two
results which are used later in the paper.

Result 2.1. If xXy then xXRðx; yÞXy:
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Thus the expected pay-off in any contest lies
between the pay-off to the winner and the pay-
off (excluding the cost) to the loser.

Proof.

Rðx; yÞ ¼
x þ y

2
�

1

2C
fminðC; ðx � yÞÞg2

X
x þ y

2
�

1

2C
fCðx � yÞg ¼ y;

Rðx; yÞ ¼
x þ y

2
�

1

2C
fminðC; ðx � yÞÞg2

p
x þ y

2
px: &

Result 2.2. If xXyXz and y�zXC then Rðx; yÞ
�Rðy; zÞXC:

Here an individual is looking two contests
ahead. The rewards for winning twice will be x;
for winning once and losing once y; and for
losing twice z: The reward for winning exactly
one contest, y; is at least C greater than that
for winning no contests, z: If the individual
wins the first contest then his expected
payoff under the ESS in the second contest
is Rðx; yÞ; while if he loses it is Rðy; zÞ: We
prove the difference between these quantities is
at least C:

Proof.

Rðx; yÞ � Rðy; zÞXy � 1
2
ð y þ z � CÞ

¼ 1
2
ðy � z þ CÞXC: &

3. The Swiss Tournament Model

We consider a game where there are 2n

players, and every pairwise game ends in a win
for one of the players (no draws). n rounds are
played, thus giving a unique winner, and
ensuring every player is always paired with an
opponent on the same score.

Initially there are 2n players of equal strength
on 0/0 (i.e. 0 wins from 0 contests). These are
paired, and the games are played. There are now
2n�1 players on 0/1 and 2n�1 on 1/1. They are
repaired with players on the same score giving
2n�2 on 0/2, 2n�1 on 1/2 and 2n�2 on 2/2. In
general after j rounds there are

ðjiÞ2
n�j

players on i=j i ¼ 0;y; j:
Suppose that the reward for finishing on a

score of i=n is Vi i ¼ 0;y; n such that
V0pV1p?pVn:

Players play a Swiss tournament where the
pairwise games are Hawk–Dove, the winner
gaining an extra point and the loser staying on
the same score.

We find the optimal play at every stage of the
game, i.e. on every score before the competition
ends i=j 0pipjpn � 1; by finding the optimal
play and the expected pay-off for a player on the
score i=j; conditional upon the optimal play
and expected pay-offs to a player on the scores
i=ð j þ 1Þ and ði þ 1Þ=ð j þ 1Þ; which are the two
possible positions the player could be in the next
round.

Consider the overall strategy that a player
employs, i.e. a choice of strategy for every
possible position i=j: For the overall strategy to
be optimal, it is clear that the final round play
must be as in the ESS of the original Hawk–
Dove game (otherwise it is invaded by a strategy
playing as it does except playing the Hawk–
Dove ESS in the final round). Thus, the strategy
must assume that this is how play occurs in
the final round (which is true if every player
plays it) and on this assumption the expected
reward for each possible score immediately
before the final round can be found. This in
turn gives us the optimal play for the previous
round, etc.

It is easy to show that this overall strategy
cannot be invaded by any strategy whose play
differs only in a single round, but it may be
invaded by a strategy which differs in more than
one round. Note, however, that there is always
some evolutionary pressure towards this optimal
strategy, since any other strategy can be invaded
by a strategy identical except in the last round it
does not play as the optimal strategy, at which
point the invading strategy plays as the optimal
strategy. Thus, it can be invaded by a strategy
one step closer to the optimal. This also means
that the optimal strategy is the only one which
cannot be invaded by a strategy a single change
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away. On the assumption that mutations pro-
duce strategies which closely resemble the
original, the optimal strategy is the only one
which is resistant to invasion.

Define the following:

(1) Wij is the expected reward to a player with
a score of i=j (i.e. at the end of round j). Thus
Win ¼ Vi8i:

(2) Mij is the pay-off matrix for a player with a
score of i=j playing in round j þ 1: The player
has expected reward Wið jþ1Þ if it loses and
Wðiþ1Þð jþ1Þ if it wins. So we have
ð3ÞMij ¼
1
2
ðWðiþ1Þð jþ1Þ þ Wið jþ1Þ � CÞ Wðiþ1Þð jþ1Þ

Wið jþ1Þ
1
2
ðWðiþ1Þð jþ1Þ þ Wið jþ1ÞÞ

" #
:

Result 3.1. ipkpj ) WijpWkj :

Thus the expected reward for a player with a
score k is at least as good as for a player with a
lower score i; at the end of round j:

Proof. We know that V0pV1p?pVn: Since
Wiðn�1Þ ¼ RðViþ1;ViÞ 8i; Result 2.1 implies that
W0ðn�1ÞpW1ðn�1Þp?pWðn�1Þðn�1Þ: An inductive
argument shows that W0jpW1jp?pWjj for all
j; thus proving the result. &

(3) Further define pij as the probability of
playing Hawk in the ESS of Mij; giving

pij ¼ mid

�
0;

Wðiþ1Þð jþ1Þ � Wið jþ1Þ

C
; 1

�

and

Wij ¼ 1
2

Wðiþ1Þð jþ1Þ þ Wið jþ1Þ � p2
ijC

� �
yð1Þ:

Result 3.1 implies that

pij ¼ min
Wðiþ1Þð jþ1Þ � Wið jþ1Þ

C
; 1

� �
yð2Þ

and

Wij ¼ RðWðiþ1Þð jþ1Þ;Wið jþ1ÞÞ

for all ipjpn � 1:

Result 3.2a. WijpWðiþ1Þð jþ1Þ if ipjpn � 1:
If you win a game your expected pay-off
cannot decrease.

Proof. Wij ¼ RðWðiþ1Þð jþ1Þ;Wið jþ1ÞÞpWðiþ1Þð jþ1Þ

since Rðx; yÞpx for all xXy (from Result
2.1). &

Result 3.2b. WijXWið jþ1Þ if ipjpn � 1:

If you lose a game your expected pay-off
cannot increase (even ignoring any cost which
might have been incurred).
Proof. Wij¼RðWðiþ1Þð jþ1Þ;Wið jþ1ÞÞXWið jþ1Þ since
Rðx; yÞXy for all xXy (again from Result
2.1). &

The above results are intuitively what we
would expect; a win improves our position, a loss
makes our situation worse and a high score is
better than a low one. The following result is less
intuitive;

Result 3.3. If pið jþ1Þ ¼ 1 then pij ¼ 1:

Equivalently if pijo1 then pið jþ1Þo1; so that if
your optimal play is a mixed strategy, and you
lose the contest, the optimal play for the next
round is also a mixed strategy. Note that the pij

are not necessarily monotonically decreasing
with j for a given i (see Example 1).

Proof. pið jþ1Þ ¼ 1 ) Wðiþ1Þð jþ2Þ � Wið jþ2ÞXC:
We know from Result 3.1 that Wðiþ2Þð jþ2ÞX

Wðiþ1Þð jþ2ÞXWið jþ2Þ: Using Result 2.2 this im-
plies that

RðWðiþ2Þð jþ2Þ;Wðiþ1Þð jþ2ÞÞ � RðWðiþ1Þð jþ2Þ;

Wið jþ2ÞÞXC ) Wðiþ1Þð jþ1Þ � Wið jþ1ÞXC

) pij ¼ 1: &

Thus if an animal starts off playing aggres-
sively, if it incur’s a few losses the strategy
should become more cautious. If it starts playing
cautiously it should not then become aggressive
if it loses.
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4. Examples

4.1. EXAMPLE 1. DOUBLING REWARDS

Consider the game with C ¼ 5; n ¼ 8;Vi ¼
2i i ¼ 0;y; 8:

This is an example of high reproductive skew,
as the rewards for the top animals are far larger
than for the lower animals. Successive values
of Wij and pij are found using the recurrence
relations from eqns (1) and (2), namely

pij ¼ min
Wðiþ1Þð jþ1Þ � Wið jþ1Þ

5
; 1

� �
;

Wij ¼ 1
2 Wðiþ1Þð jþ1Þ þ Wið jþ1Þ � 5p2

ij

� �
:

For example, the expected rewards for the scores
1/7, 2/7 and 3/7 are W17 ¼ 2:6;W27 ¼ 4:4 and
W37 ¼ 9:5:

W37 � W27X5 ) p26 ¼ 1 ) W26

¼ 1
2
ð9:5þ 4:4� 5Þ ¼ 4:45:
Tabl

Expected pay-offs to

i=j 0 1 2 3

8 F F F F
7 F F F F
6 F F F F
5 F F F F
4 F F F F
3 F F F 48.25
2 F F 30.59 17.93
1 F 17.23 8.875 4.819
0 8.050 3.868 3.860 3.340

Tabl

Probability of playing

i=j 0 1 2 3

8 F F F F
7 F F F F
6 F F F F
5 F F F F
4 F F F F
3 F F F 1
2 F F 1 1
1 F 1 1 1
0 1 1 0.296 0.290
W27 � W17o5 ) p16 ¼
W27 � W17

5

¼
4:4� 2:6

5
¼ 0:36 ) W16

¼
1

2
ð4:4þ 2:6� 5ð0:36Þ2Þ ¼ 3:176:

The values of Wij are given in Table 1. The
values of pij are given in Table 2.

In Example 1, the rewards are high only for
those on the highest scores, most players
receiving relatively low scores. This is reason-
able, since in many species the number of males
with mating rights, for example, tends to be
small. The optimal play is to play Hawk when
you have a chance of occupying one of these top
spots (early in the contest, or later if you have a
high score), and to play a more cautious mixed
strategy otherwise. Note the non-monotone
behaviour of pij in rows i ¼ 0 and 1.
e 1
players on score i=j

4 5 6 7 8

F F F F 256
F F F 189.5 128
F F 139 93.5 64
F 100.5 67 45.5 32
71 46.5 31 21.5 16
30.5 19.5 13 9.5 8
10.36 6.225 4.45 4.4 4
4.275 3.651 3.176 2.6 2
2.825 2.342 1.856 1.4 1

e 2
Hawk on score i=j

4 5 6 7 8

F F F F F
F F F 1 F
F F 1 1 F
F 1 1 1 F
1 1 1 1 F
1 1 1 1 F
1 1 1 0.8 F
0.515 0.255 0.36 0.4 F
0.262 0.264 0.24 0.2 F
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4.2. THE SINGLE REWARD CASE

Suppose that C40;Vn ¼ V and Vi ¼ 0; ion:
Thus, we have the most extreme case of high

reproductive skew, where a single individual
receives the entire reward. Such situations occur
in ant and termite colonies (Wilson, 1971). If a
player loses any contest, it cannot score n=n and
so the reward it receives at the end of the contest
is 0.
V0 ¼ ? ¼ Vn�1 ¼ 0 ) p0ðn�1Þ ¼ ? ¼ pðn�2Þðn�1Þ

¼ 0:
This in turn implies that W0ðn�1Þ ¼ ? ¼
Wðn�2Þðn�1Þ ¼ 0 and so on, giving Wij ¼ 0; pij ¼
0 if iojpn � 1: So unless a player has a 100%
score, it should play Dove.

Consider Wii and pii; 0pipn � 1: Wiðiþ1Þ ¼ 0
so that pii ¼ 1 if and only if Wðiþ1Þðiþ1ÞXC:

From Result 3.2a, we know that Wii is an
increasing function of i; so that pii ¼ 1 if and
only if iXI for some I : What is the value of I?

If VoC then I ¼ n: If VXC then

Wðn�1Þðn�1Þ ¼ 1
2
ðV � CÞ:

If Wðn�1Þðn�1ÞXC then

Wðn�2Þðn�2Þ ¼ 1
2
ðWðn�1Þðn�1Þ � CÞ ¼ 1

4
V � 3

4
C:

In general, if Wðn�kþ1Þðn�kþ1ÞXC; then

Wðn�kÞðn�kÞ ¼
1

2

� �k

V � 1�
1

2

� �k
 !

C

We know that pII ¼ 1 and pðI�1ÞðI�1Þo1; so that
WðIþ1ÞðIþ1ÞXC but WIIoC; i.e.

1

2

� �n�I�1

V � 1�
1

2

� �n�I�1
 !

CXC

4
1

2

� �n�I

V � 1�
1

2

� �n�I
 !

C

Tabl

Expected pay-off and probabilit

i 0 1 2 3

Wii 0.122 0.257 0.582 3.156
pii 0.051 0.116 0.631 1
) 2n�I � 1p
V

C
o2n�Iþ1 � 1

) n � Ip
ln 1þ V=C
� �

ln2
on � I þ 1

) I ¼ n � int
ln 1þ V

C

� �
ln2

� �
:

Example 2. Let n ¼ 8;C ¼ 5;V8 ¼ 256;Vi ¼ 0
io8: The values of Wii and pii are given in
Table 3.

For this example I ¼ 3 (i.e. WiiX5 if iX4 and
pii ¼ 1 if iX3).

In Example 2 there is only one reward
available. If you have no chance of winning it
(having already lost a contest), then play Dove.
If you have a good chance of winning the reward
(all games have been won with a few rounds
remaining) play Hawk. If there is a small non-
zero chance of winning the reward (maximum
score, but early round) then play a mixed
strategy.

5. Game Profiles

We define the game profile as the string
ðrijÞi¼0;y; n�1; jXi where rij ¼ 1 if pij ¼ 1 and rij ¼
0 otherwise. Thus for Example 1, the game
profile is (11 000 000,1 110 000, 111 110, 11 111,
1111,111,11,1) which we can simplify in the
obvious way as ð64 100 000Þ; i.e just listing the
number of mixed strategies which occur for
individuals with 0-wins, 1-win, and so on. This
simplification is possible in general since Result
3.3 implies that for the row of scores i=j; j ¼
i;y; n � 1; the optimal play for the earliest I � i
strategies is pure Hawk (rij ¼ 1) and for the
remaining n � I strategies is a mixed strategy
(rij ¼ 0). This would be the order of optimal
plays for a player on i=i who goes on to lose
every subsequent game. The possible number of
profiles for this row is thus n � i þ 1 (I could be
e 3
y of playing Hawk on score i=i

4 5 6 7 8

11.313 27.625 60.25 125.5 256
1 1 1 1 F



Table 4
Regions for the game profiles for n¼ 2

Profile No.

(00) 1 xX0; yX0
(01) 2 xX0; yo0
(10) 3 xo0; yX0 f ðx; yÞX0
(20) 4 xo0; yX0 f ðx; yÞo0
(11) 5 xo0; yo0; gðx; yÞX0
(21) 6 xo0; yo0; gðx; yÞo0
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anything from i to n). The maximum number of
game profiles thus has upper bound ðn þ 1Þ �
n �?� 2� 1 ¼ ðn þ 1Þ!

Result 5.1. For the n-round tournament, all (n+1)!
profiles are possible, for every n.

Result 5.1 is proved in the Appendix.

5.1. THE CASE WHEN n¼ 2

Define

y ¼
V2 � V1

C
� 1; x ¼

V1 � V0

C
� 1;

f ðx; yÞ ¼ x2 þ 3x þ y; gðx; yÞ ¼ x2 þ 3x � y2 � y:

The game with two rounds, i.e. four players,
has 3! ¼ 6 different profiles. Figure 1 shows the
strategy space, i.e. the regions of the ðx; yÞ plane
in which each strategy is optimal (numbering is
as per Table 4). For example, in the region
labelled ð10Þ [equivalent to (10,1) in the original
method], the optimal play is to play Hawk in
round 1, a mixed strategy in round 2 if you lose
in round 1, and Hawk in round 2 if you win in
round 1.

The calculations which define the regions are
shown in the Appendix. These results are
summarized in Table 4.
Fig. 1. Strategy space for n ¼ 2 and range of x and y:
For example, if V2 ¼ 4;V1 ¼ 1;V0 ¼ 0 and
C ¼ 2; then y ¼ 0:5;x ¼ �0:5 and f ðx; yÞ ¼
�0:75 and so the optimal play is a mixed
strategy in the first round, a mixed strategy in
the second round if the first round has been lost,
and Hawk in the second round if the first round
has been won.

5.2. THE CASE WHEN n¼ 3

The number of profiles is 4! ¼ 24:
We define the following:

z1 ¼
V1 � V0

C
� 1; z2 ¼

V2 � V1

C
� 1;

z3 ¼
V3 � V2

C
� 1:

The functions f and g are as defined in Section
5.1. The regions where each profile occurs are
summarized in Table 5. The final two columns
are new functions, h1

aðz1; z2Þ and h2
aðz1; z2; z3Þ

which are used in the determination of the
strategy on scores 0=j for j ¼ 1; 2; 3; a represents
the strategy for non-zero scores, which of course
depends only on z2 and z3: Given a we then find
the strategy to be used on score zero via the
decision tree shown in Fig. 2, where ði; aÞ
specifies the complete strategy. Thus in
Table 5, which essentially expands the informa-
tion of Fig. 2, the first four rows correspond to
a ¼ ð00Þ; the next four to a ¼ ð01Þ; and so on.

All of the conditions above are generated by
using a general procedure applying to any
number of rounds, which is described in the
Appendix.

For example if V3 ¼ 6;V2 ¼ 3;V1 ¼ 1;V0 ¼ 0
and C ¼ 2; z3 ¼ 0:5; z2 ¼ 0; z1 ¼ �0:5; f ðz1; z2Þ ¼
�1:25 and f ð0:5f ðz1; z2Þ; 0:5ðz2 þ z3ÞÞ ¼ �1:234:



Fig. 2. Determination of first round strategy given later
plays and ðz1; z2; z3Þ: a is determined by ðz1; z2; z3Þ:
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The profile is thus (300), which means that
the best play is a mixed strategy initially and
whenever a player has not won a game, and
Hawk at every position where at least one win
has been recorded.
Tabl

Regions for the gam

Profile No.

(000) 1 z2X0; z3X0 z1X
(100) 2 z2X0; z3X0 z1o
(200) 3 z2X0; z3X0 z1o
(300) 4 z2X0; z3X0 z1o

(001) 5 z2X0; z3o0 z1X
(101) 6 z2X0; z3o0 z1o
(201) 7 z2X0; z3o0 z1o
(301) 8 z2X0; z3o0 z1o

(010) 9 z2o0; z3X0 f ðz2; z3ÞX0 z1X
(110) 10 z2o0; z3X0 f ðz2; z3ÞX0 z1o
(210) 11 z2o0; z3X0 f ðz2; z3ÞX0 z1o
(310) 12 z2o0; z3X0 f ðz2; z3ÞX0 z1o

(011) 13 z2o0; z3o0 gðz2; z3ÞX0 z1X
(111) 14 z2o0; z3o0 gðz2; z3ÞX0 z1o
(211) 15 z2o0; z3o0 gðz2; z3ÞX0 z1o
(311) 16 z2o0; z3o0 gðz2; z3ÞX0 z1o

(020) 17 z2o0; z3X0 f ðz2; z3Þo0 z1X
(120) 18 z2o0; z3X0 f ðz2; z3Þo0 z1o
(220) 19 z2o0; z3X0 f ðz2; z3Þo0 z1o
(320) 20 z2o0; z3X0 f ðz2; z3Þo0 z1o

(021) 21 z2o0; z3o0 gðz2; z3Þo0 z1X
(121) 22 z2o0; z3o0 gðz2; z3Þo0 z1o
(221) 23 z2o0; z3o0 gðz2; z3Þo0 z1o
(321) 24 z2o0; z3o0 gðz2; z3Þo0 z1o
The three-dimensional space of ðz1; z2; z3Þ is
subdivided into the 24 possible regions in a
complex manner. For a slice defined by some
fixed z1X0 the regions are exactly the same
shape as for n ¼ 2; with a for n ¼ 2 mapping into
ð0; aÞ for n ¼ 3: For a slice defined by some fixed
z1o0 the region for a given a is (potentially)
divided into pieces corresponding to ð1; aÞ; ð2; aÞ
and ð3; aÞ; there possibly being several pieces for
a single strategy. As an illustration of this we
show the subdivision of the plane defined by
z1 ¼ �2:98 in which all 18 possible regions
occur. The 18 regions do not always occur in
such a plane, in fact the range of z1 for which it
occurs is fairly small. The total number of pieces
for z1 ¼ �2:98 is 33, the profile labelled 23 being
represented 5 times. Fig. 4 shows a small piece of
Fig. 3 around the origin.

6. Discussion

In this paper, we have introduced a multi-
player model of dominance hierarchy formation
starting from a group with no established order.
e 5
e profiles for n¼ 3

h1
aðz1; z2Þ h2

aðz1; z2; z3Þ

0
0 f ðz1; z2ÞX0
0 f ðz1; z2Þo0 f ð0:5f ðz1; z2Þ; 0:5ðz2 þ z3ÞÞX0
0 f ðz1; z2Þo0 f ð0:5f ðz1; z2Þ; 0:5ðz2 þ z3ÞÞo0

0
0 f ðz1; z2ÞX0
0 f ðz1; z2Þo0 f ð0:5f ðz1; z2Þ; 0:5ðz2 � z3 � z23ÞÞX0
0 f ðz1; z2Þo0 f ð0:5f ðz1; z2Þ; 0:5ðz2 � z3 � z23ÞÞo0

0
0 gðz1; z2ÞX0
0 gðz1; z2Þo0 f ð0:5gðz1; z2Þ; 0:5ðf ðz2; z3ÞÞX0
0 gðz1; z2Þo0 f ð0:5gðz1; z2Þ; 0:5ðf ðz2; z3ÞÞo0

0
0 gðz1; z2ÞX0
0 gðz1; z2Þo0 f ð0:5gðz1; z2Þ; 0:5ðgðz2; z3ÞÞX0
0 gðz1; z2Þo0 f ð0:5gðz1; z2Þ; 0:5ðgðz2; z3ÞÞo0

0
0 gðz1; z2ÞX0
0 gðz1; z2Þo0 gð0:5gðz1; z2Þ; 0:5ðf ðz2; z3ÞÞX0
0 gðz1; z2Þo0 gð0:5gðz1; z2Þ; 0:5ðf ðz2; z3ÞÞo0

0
0 gðz1; z2ÞX0
0 gðz1; z2Þo0 gð0:5gðz1; z2Þ; 0:5ðgðz2; z3ÞÞX0
0 gðz1; z2Þo0 gð0:5gðz1; z2Þ; 0:5ðgðz2; z3ÞÞo0



Fig. 3. Strategy space for n ¼ 3 and z1 ¼ �2:98:
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We further assume that all the individuals are of
equal prowess and have available equivalent
behavioural repetoirs. Such a group will need to
establish its dominance hierarchy through a
series of conflicts. There are many possible
scenarios. In order to specify the particular
model one needs

1. the rules of the conflict,
2. the pattern of pairing of individuals to fight

(all our contests are assumed to be between a
Fig. 4. Inset of strategy space for n ¼ 3 and z1 ¼ �2:98:
pair of animals, with no interference from
others),

3. the effect of a particular outcome of a fight
between two particular individuals.

We have chosen as our basic conflict the
classical Hawk–Dove model, and we have
further supposed that individuals are rewarded
according to the score they finally obtain
(number of wins) less costs; the particular
individuals they have fought is no longer
relevant; animal A may have beaten individual
B but still be lower in the hierarchy.

The pattern of pairings is based upon a Swiss
tournament. We do not claim that animals will
adopt this structure exactly, but believe that
under some circumstances their conflicts may
approximate to it, e.g. when there is some spatial
division of reward, or a geographical cue is used
in mate choice. The model possesses some
important features which are desirable in real
populations; individuals generally fight with
well-matched opponents (in the sense that they
have a similar number of wins to date), the
number of contests is kept to a relatively small
number and a unique a-individual is produced.
All these features are intrinsic to the model; they
are built in. On the other hand, we have not set
the behaviours or strategies across the rounds in
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any way. Thus, the features which we observe
from the models are emergent, rather than
implicit in the assumptions. We discuss some of
these properties below.

In real populations the resources are often
split very unevenly, so that the vast majority
go to the top few individuals; Examples 1 and 2
are examples of such populations. Our model
predicts that in such populations the last
few contests between individuals who could
become the dominant ones will be violent,
whereas contests between subordinate indivi-
duals will be relatively peaceful, because at this
stage there is relatively little to gain. The level of
violence in the early contests will be somewhere
between the two extremes, although this
can be quite variable; p00 ¼ 1 in Example 1
and p00 ¼ 0:051 in Example 2. Note that
the model described in Keller & Reeve (1994)
gives conditions for when aggression is optimal
in terms of a cut-off point where it is either
best to be aggressive or not, whereas in our
model there is a sliding scale of aggressiveness
depending upon the size of the rewards available
and how they are divided amongst the
population.

An interesting result is Result 3.3, which
implies that if the optimal strategy at any
stage is a mixed strategy, then if that contest
is lost, the next optimal strategy is also a
mixed strategy; thus, defeats should imply a
lower level of aggression for logical reasons as
opposed to psychological ones, even where
an animal’s fighting ability is unimpaired by
the defeat.

Note that some non-intuitive behaviour is
possible under our model. Result 5.1 implies
that all profiles allowable by Result 3.3 are
possible, so that, for example, there are rewards
and costs such that after three rounds indivi-
duals who have three wins employ a mixed
strategy, but those with two wins and a loss
play Hawk. This type of phenomenon will occur,
for example, in a four round set-up if the
rewards for winning three times and for winning
four times are similar, and the reward for
winning only twice is substantially smaller.
Thus the reverse of the above result, regarding
aggression following defeat, does not
follow; winning a contest does not always
logically imply the level of aggression should
be increased.

The phenomena described above does
match well with the observations on correlations
in outcome. In our model there can be no
such correlation but in a different context the
reduction in aggression following a defeat
would lead to a greater probability of losing
again, while there is no necessity for a winner
to increase the level of aggression. This
might happen in our model if there was
some inaccuracy in the pairing but individuals
still adopted the strategy appropriate to their
score. Reproductive skew, as typified by our
numerical examples, would tend to strengthen
these effects.

Finally, we expand a little on the nature
of possible tournaments, and on some
measures of their efficacy in determining a
hierarchy. There are various ways in which
one can create a multi-round contest to include
the Swiss tournament as a special case. One
model which includes, as its extremes, the
knockout and the Swiss is the following: in
each round pair individuals on the same
score and after the conflicts have taken place
eliminate those who have lost a specified
number of conflicts, k say. If k ¼ 1 then we
have the knockout and if k ¼ n; for an n-round
contest, we have the Swiss. The ordering of
the players at the end can be done through
the number of contests they have won (this
accounts for all the costs as well as the rewards).
Furthermore, it may be the case that the
particular tournament used may vary from
time to time depending on the particular
pattern of rewards. If there is only a single
reward, all others effectively being zero,
then any individual who has lost once will
have nothing to gain or lose in future
conflicts, and so will play Dove from then
on. Effectively this means that the tourna-
ment, though organized as a Swiss is no
different from a knockout. In a similar
manner, one can demonstrate that if there
are precisely n þ 1 non-zero payoffs then after
two losses individuals play Dove, so this
scenario is identical to the case k ¼ 2: It is
clear that further work on these aspects would
be of interest.
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APPENDIX

Proof of Result 5.1. Suppose that for the
ðk � 1Þ-round tournament, all k! profiles are
possible with the additional condition that C �
ek�1pViþ1 � VipC þ ek�1 8i; where ek�1 is
small. Pick one of these profiles, and find a set
of rewards which give the profile and satisfy the
above condition. Consider a k-round game with
rewards Vn

0 ;y;Vn
k defining Vn

jþ1 ¼ Vj þ C j ¼
0;y; k � 1 (note the C is added to ensure that
there is a positive Vn

0 ). Let the cost again be C:
After one round, the game for a player winning
in the first round is identical to the ðk � 1Þ-round
game, and so the second to kth elements of the
profile are identical to the profile of the ðk � 1Þ-
round game.

What is the optimal play in the posi-
tion 0=j for all j? If Vn

0 ¼ Vn
1 � C � d;

ðdoek�1Þ; then p0ðk�1Þ ¼ 1 ) p0j ¼ 1; jok � 1:
C � ek�1pVn

iþ1 � Vn
i pC þ ek�18i: Thus if
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Vn
iþ1 � Vn

i ¼ C � d; then

Wiðk�1Þ ¼
1

2
ðVn

i þ Vn

iþ1Þ �
1

2

Vn
iþ1 � Vn

i

C

� �2

C

¼
1

2
ð2Vn

i þ C � dÞ �
1

2
C 1�

d
C

� �2

pVn

i þ 1
2
dpVn

i þ 1
2
ek�1:

If Vn
iþ1 � Vn

i ¼ C þ dðdoek�1Þ; then

Wiðk�1Þ ¼ 1
2
ðVn

i þ Vn

iþ1Þ �
1
2
C ¼ Vn

i þ 1
2
d

pVn

i þ 1
2
ek�1;

i.e. Vn
i pWiðk�1ÞpVn

i þ ek�1: Thus,

C � 2ek�1pWðiþ1Þðk�1Þ � Wiðk�1ÞpC þ 2ek�1:

Using the same argument as above, we obtain
Vn

i pWiðk�1ÞpWiðk�2ÞpWiðk�1Þ þ 2ek�1pVn
i þ

4ek�1 and

C � 4ek�1pWðiþ1Þðk�2Þ � Wiðk�2ÞpC þ 4ek�1;

and in general, we obtain Vn
i pWiðk�jÞp

Wiðk�jþ1ÞpWiðk�jþ1Þ þ 2j�1ek�1pVn
i þ 2je: Thus,

C � 2jek�1pWðiþ1Þðk�jÞ � Wiðk�jÞpC þ 2jek�1;

this implies that Vn
1pW11pVn

1 þ 2k�1ek�1: We
know that W01XVn

0 ; and so if we set Vn
0 ¼

Vn
1 � C þ 2kek�1; then W11 � W01oC and so

p00o1 ) r00 ¼ 0; i.e. r0j ¼ 0 8j:
Can we obtain all intermediate possibilities?

Suppose that for some value of Vn
0 ; r0j ¼

r0ð jþ1Þ ¼ 1: Then

W0j ¼ 1
2
ðW1ð jþ1Þ þ W0ð jþ1Þ � CÞ;

W1ð jþ1Þ � W0ð jþ1Þ

C
� 1X0;

W1j � W0j

C
� 1

¼
W1j � 1

2
W1ð jþ1Þ � 1

2
W0ð jþ1Þ þ 1

2
C

C
� 1

¼
1

2

W1ð jþ1Þ � W0ð jþ1Þ

C
� 1

� �

þ
W1j � W1ð jþ1Þ

C
X0:
Note that W1j � W1ð jþ1Þ ¼ 0 if and only if
W2ð jþ1Þ ¼ W1ð jþ1Þ or W2ð jþ1Þ ¼ W1ð jþ1Þ þ C:
This occurs on a region of dimension less than
the parameter space, and so it is easy to find a set
of Vis with the required properties where this
does not occur.

Thus as we increase Vn
0 ; the first of

these inequalities will be violated before
the second. Thus as Vn

0 increases, the number
of r0j’s which are equal to 0 increases by 1
at certain points. Both extreme values of
this number (0 and k þ 1) are possible, so
that all values are possible, with the condition
C � ekoVn

jþ1 � Vn
j pC þ ek satisfied, where

ek ¼ 2kek�1:
We can repeat this argument for any of

the profiles of the ðk � 1Þ-round game, thus
giving all k! profiles of the k-round game,
with the rewards satisfying the same condition.
Both profiles are possible for the 1-round
game. Thus, by induction, all ðn þ 1Þ!
profiles are possible for the n-round game for
all n: &

Calculations defining the regions for n ¼ 2:
We shall find the values of r00; r01 and r11 under
all possible values of x and y:

yX0 ) V2 � V1XC ) r11 ¼ 1:
If yo0 then r11 ¼ 0:
xX0 ) r01 ¼ 1 ) r00 ¼ 1:
If xo0 then r01 ¼ 0:

So if xX0; yX0 the profile is (00), if xX0; yo0
the profile is (01).

If xo0 and yX0 then r01 ¼ 0; r11 ¼ 1: r00 ¼ 1
if W11 � W01XC; i.e.

1

2
ðV2 þ V1 � CÞ

�
1

2
V1 þ V0 �

1

C
ðV1 � V0Þ

2

� �
XC

) CðV2 � V1Þ þ CðV1 � V0Þ

þ ðV1 � V0Þ
2 � 3C2

X0

) f ðx; yÞ ¼ x2 þ 3x þ yX0:

Otherwise r00 ¼ 0:
So if xo0; yX0; f ðx; yÞX0 the profile is (10), if

xo0; yX0; f ðx; yÞo0 the profile is (20).
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If xo0 and yo0 then r01 ¼ 0; r11 ¼ 0: r00 ¼ 1
if W11 � W01XC; i.e.

1

2
V2 þ V1 �

1

C
ðV2 � V1Þ

2

� �

�
1

2
V1 þ V0 �

1

C
ðV1 � V0Þ

2

� �
XC

) CðV2 � V1Þ þ CðV1 � V0Þ � ðV2 � V1Þ
2

þ ðV1 � V0Þ
2 � 2C2

X0

) gðx; yÞ ¼ x2 þ 3x � y2 � yX0:

Otherwise r00 ¼ 0:
So if xo0; yo0; gðx; yÞX0 the profile is (11), if

xo0; yo0; gðx; yÞo0 the profile is (21).
A general procedure for finding game profiles.

Define zij by

zij ¼
Wðiþ1Þð jþ1Þ � Wið jþ1Þ

C
� 1:

Thus rij ¼ 1 if and only if zijX0: We will find zij

as a function of zðiþ1Þð jþ1Þ and zið jþ1Þ: There are
four cases to consider.

(1) rðiþ1Þð jþ1Þ ¼ 1; rið jþ1Þ ¼ 1: Thus the optimal
play on the scores i þ 1=j þ 1 and i=j þ 1 is to
play Hawk. This is equivalent to zðiþ1Þð jþ1ÞX

0; zið jþ1ÞX0:

Wðiþ1Þð jþ1Þ � Wið jþ1Þ ¼ 1
2
ðWðiþ2Þð jþ2Þ

� Wðiþ1Þð jþ2ÞÞ þ 1
2
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

) zij ¼ 1
2
ðzðiþ1Þð jþ1Þ þ zið jþ1ÞÞ:

Note that zij must be positive, as Result 3.3
demands.

(2) rðiþ1Þð jþ1Þ ¼ 1; rið jþ1Þ ¼ 0: The optimal play
on score ði þ 1Þ=ð j þ 1Þ is to play Hawk, the
optimal play on i=ð j þ 1Þ is a mixed strategy.
Thus, zðiþ1Þð jþ1ÞX0; zið jþ1Þo0:

Wðiþ1Þð jþ1Þ � Wið jþ1Þ ¼
1

2
ðWðiþ2Þð jþ2Þ

� Wðiþ1Þð jþ2ÞÞ þ
1

2
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

�
1

2
C þ

1

2C
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

2

) zij ¼
1

2
ð3zið jþ1Þ þ zðiþ1Þð jþ1Þ þ z2ið jþ1ÞÞ
¼
1

2
f ðzið jþ1Þ; zðiþ1Þð jþ1ÞÞ:

zij may be positive or negative, and so rij can be 1
or 0.

(3) rðiþ1Þð jþ1Þ ¼ 0; rið jþ1Þ ¼ 1: The optimal play
on score ði þ 1Þ=ð j þ 1Þ is to play a mixed
strategy, the optimal play on i=ð j þ 1Þ is a to
play Hawk. Thus, zðiþ1Þð jþ1Þo0; zið jþ1ÞX0:

Wðiþ1Þð jþ1Þ �Wið jþ1Þ¼
1

2
ðWðiþ2Þð jþ2Þ �Wðiþ1Þð jþ2ÞÞ

þ
1

2
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

þ
1

2
C �

1

2C
ðWðiþ2Þð jþ2Þ � Wðiþ1Þð jþ2ÞÞ

2

) zij ¼
1

2
ðzið jþ1Þ � zðiþ1Þð jþ1Þ � z2ðiþ1Þð jþ1ÞÞ:

It is again clear that zij is positive and so rij ¼ 1;
as implied by Result 3.3.

(4) rðiþ1Þð jþ1Þ ¼ 0; rið jþ1Þ ¼ 0: The optimal play
on the scores i þ 1=j þ 1 and i=j þ 1 is a mixed
strategy, i.e. zðiþ1Þð jþ1Þo0; zið jþ1Þo0:

Wðiþ1Þð jþ1Þ�Wið jþ1Þ¼
1

2
ðWðiþ2Þð jþ2Þ�Wðiþ1Þð jþ2ÞÞ

þ
1

2
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

�
1

2C
ðWðiþ2Þð jþ2Þ � Wðiþ1Þð jþ2ÞÞ

2

þ
1

2C
ðWðiþ1Þð jþ2Þ � Wið jþ2ÞÞ

2

)zij ¼
1

2
ð3zið jþ1Þ �zðiþ1Þð jþ1Þ þz2ið jþ1Þ �z2ðiþ1Þð jþ1ÞÞ

¼
1

2
gðzið jþ1Þ; zðiþ1Þð jþ1ÞÞ:

zij may be positive or negative, and so rij can be 1
or 0.

From the above four cases, a general proce-
dure can be constructed to find the values of zij

and rij for every pair i; j ipj: Thus, the profile of
an arbitrarily large knockout game can be
found. Moreover, the values of pij and Wij are
found along the way, due to the relationship

pij ¼ 1þ minðzij ; 0Þ

and eqn (1).
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