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H I G H L I G H T S

� We model the evolution of relationships in a population using graphs.
� The graph changes through time according to the choices of individuals.
� Using Markov chains, we show that the population evolves to a closed class.
� We give a method for finding the stationary distribution over this class.
� We consider some special cases of particular interest.
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a b s t r a c t

Historically most evolutionary models have considered infinite populations with no structure. Recently
more realistic evolutionary models have been developed using evolutionary graph theory, which
considered the evolution of structured populations. The structures involved in these populations are
typically fixed, however, and real populations change their structure over both long and short time
periods. In this paper we consider the dynamics of such a population structure. The timescales involved
are sufficiently short that no individuals are born or die, but the links between individuals are in a
constant state of flux, being actively governed by the preferences of the members of the population. The
process is modelled using a Markov chain over the possible structures. We find that under the specified
process the population evolves to a closed class of structures, and we show a method to find the
stationary distribution on this class. We also consider some special cases of interest.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Modelling biological populations

Traditional evolutionary models generally consider an infinite
population of individuals which is well-mixed in the sense that
each pair of individuals is equally likely to interact. This includes
the classical game theoretical models of Hamilton (1964a, 1964b,
1967), Maynard Smith and Price (1973), Maynard Smith (1982),
Hofbauer and Sigmund (1988, 1998). Whilst real populations are of
course finite, the assumption of infinite size is often a reasonable
one provided that the population is of sufficiently large size. Such
game-theoretical models are concerned with what strategies can
evolve and persist within the population. Except at equilibrium

values, some strategies have a fitness advantage over others,
and this dominates any random effects for a sufficiently large
population.

Nevertheless there are some important differences between
finite and infinite populations, in particular if there is no such
fitness advantage. The classical mathematical genetic models of
Fisher (1930) and Wright (1931) dealt with finite well-mixed
populations with no selective differences, and were concerned
with the speed of the evolutionary process. More recently evolu-
tionary games have also been investigated in finite populations, for
example in Taylor et al. (2004). The distinction between a small
(relative to the size of the population) invading group which is
effectively infinite and a single invading mutant meant that some
refinement of the classical concepts of game theory was required.

1.2. Evolution on graphs

Real populations, as well as being finite, are not homogeneous,
but contain structure. Evolutionary processes have been extended
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to structured populations e.g. Wright (1940), Kimura (1953),
Moran (1959), Cannings (1975), in the case of genetic models
where populations consisted of a number of sub-populations and
interactions between and within populations were different.
Recently population structure has been incorporated in a more
general manner with the use of graphs, starting with Lieberman
et al. (2005). In these models a population consists of N individuals
I1;…; IN . There is a set of indicators fxij : i; j∈f1;2;…Ngg, and if
xij ¼ 1 then individual i influences individual j in some prescribed
manner. We can represent the system by a graph G¼ ðV ;XÞ, where
the set V of vertices correspond to the individuals and the edges
correspond to the interactions, there being an edge joining i to j if,
and only if, xij ¼ 1. In the case where xij ¼ xji for all i and j we will
have one or no edge between i and j, and the graph is undirected.
If we also have xii ¼ 0 for all i, then the graph is said to be simple.
Throughout the paper we shall assume that our graphs are simple.

In these models the population usually consists of two types of
individuals (labelled A and B, or resident and mutant) and the state
of the population, described by the set of mutant individuals, say,
evolves according to an evolutionary dynamics and can be
represented as a discrete time Markov chain. The question of
whether a mutant placed at a random vertex can invade is
addressed, and it turns out that the population structure, i.e. the
graph, can have a significant effect on the fixation probability, the
probability that the mutant will eventually completely replace the
resident population (Antal et al., 2006; Broom and Rychtář, 2008).

In this paper we shall consider networks of individuals repre-
sented, as described above, by a simple graph. As described below,
the population itself will not evolve, but the connections between
individuals will. Of course for real populations both aspects
change, see for example Perc and Szolnoki (2010). The emphasis
here, in similar spirit to some of the above models, is to fix one
aspect (the population) and consider simple models of the other
which can be analysed.

Such networks arise naturally in many contexts and there has
recently been an explosion of interest in networks in biology, as
well as in economics and sociology. In economics we might
consider companies which trade with each other and in sociology
individuals who are friends or colleagues. In the biological context
there are many possible ways in which such a structure might
arise. The spatial positions of individuals will naturally define
interactions through proximity, whether this be for plants in a
fixed position or for territorial animals. The use of networks in
biology is by no means new. For example food webs, in which the
interaction of predators and prey is illustrated, go back at least to
the seminal work of Elton (1927). In social animals there will be
dominance interactions and also mutuality ones which can be
represented using the above graph idea. Primate social structures
can be particularly complex and can influence key behavioural
features such as the level of cooperation e.g. Voelkl and Kasper
(2009) and Voelkl and Noë (2008). The analysis of observed animal
social networks has been discussed in detail in Croft et al. (2009)
where various examples can be found, while aspects of the
modelling of networks is explored in Newman (2010).

1.3. Evolution of graphs

The models that we have described so far have population
structure, but it is a fixed one. In real populations over time, and
especially as individuals die and are born, the links between
individuals and the number of individuals changes, so any graph
of contacts will change over time. This was investigated in
Southwell and Cannings (2010a, 2010b, 2010c). They considered
a population and its interactions at time t represented by the
simple graph Gt ¼ fVt ;Xtg. In their basic model the populations at
time t þ 1 had graph Gtþ1 where Vtþ1 consisted of all of the

individuals in Vt together with one new individual (offspring) for
each of these individuals. The set of edges Etþ1 contained all of the
edges of Et plus additional new edges. Specifically if ði; jÞ∈Vt and in

and jn were the offspring of i and j respectively, then there were
eight models generated by the inclusion/exclusion of the edges
ðin; jnÞ; ðin; jÞ∪ði; jnÞ and ði; inÞ∪ðj; jnÞ. The underlying motivation was
that the relationships between individuals in a social population
are often, as least partially, inherited e.g. dominance in baboons
(see Amboseli Baboon Research Project, 2012). The addition or the
removal of vertices through age and/or vertex degree (number of
edges) was also incorporated.

1.4. The effect of behaviour on graph structure

The above models consider change over a long period of time.
Many individuals are born and die and the entire composition of
the population changes many times. However, populations can
also change in important ways in short periods of time. The basic
idea behind our modelling is that within a population animals may
show varying degrees of willingness or desire to interact with
others, because there are both benefits and penalties attached to
such interaction. These benefits and penalties may well vary
between individuals, and so we expect, and indeed observe, that
individuals have differing behaviours with respect to the establish-
ment and severance of links with others.

This phenomenon has been labelled “sociability” and investi-
gated in various species across a wide evolutionary range. In non-
human primates such differences have been found to be stable
across time, see for example Capitanio (2002), and references
therein. In bottlenose dolphins long term alliances are made
between males, see e.g. Wiszniewski et al. (2012), but also
relatively labile alliances are often made e.g. Connor et al.
(1999). In sheep it was demonstrated that different individuals
differed in respect of the closeness they maintained to other
members of the flock (Sibbald and Hooper, 2004). Thus as a
secondary effect the number of nearest neighbours to whom an
individual was linked would vary. Thus a sheep who had more
than enough nearest neighbours would happily move away, and in
so doing reduce the number of nearest neighbours, and a sheep
who had too few such “links” would tend to move towards others
and in so doing establish additional links.

Epidemics can be modelled on graphs where individuals move
between a number of states, containing at least two types,
susceptibles and infectives. Individuals can catch the disease and
recover, and in such models there are usually no changes in the
population itself. Often the process occurs on a fixed graph and
models are similar to the evolutionary processes from Lieberman
et al. (2005) etc. However, recent models (Kiss et al., 2010; Funk
et al., 2009) have incorporated behavioural changes as a result of
epidemics (e.g. knowledge that the disease is prevalent makes
individuals reduce their rate of contact) which can have a
significant effect upon whether an epidemic spreads.

In all of these examples we see a set of animals with temporary
links between various individuals. Of course the probability of a
link existing between a pair of individuals will often be affected by
the relatedness of those individuals, by their genders and by their
position in any dominance hierarchy. There are also likely to be
spatial components. In some of the examples, e.g. in the bottlenose
dolphin case, the links are reciprocal whereas in others they might
be considered to be initiated, or broken, by the action of one of the
individuals. Similarly the absence of a connection may benefit one
but not the other (e.g. a female and a poor quality male). This falls
into the theory of biological markets and partner choice, see Noë
(2001) and Noë and Hammerstein (1994).

In this paper we do not attempt to model all of these complex-
ities but instead concentrate on a model which examines only the
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network of interactions. Thus the individuals (vertices) in our
networks are distinguishable only by the number of links they
would like to form with others in the population, and they do not
differentiate in any way between those other individuals. They are
indifferent to whom they link with. We consider such a dynamic
process on a short timescale. We follow a population where
individuals have a desired number (or range) of links to other
individuals and the process evolves through each trying to achieve
its desired number. We do not address the issue of how these
desired values arose in the first place, they may well be secondary
effects of intrinsic differences between the individuals which
might be subject to natural selection. Of course that selective
pressure will be affected to some extent by the outcomes resulting
from the linking. Each individual will only make a change which
improves its number of links, but since all links involve two
individuals, the actions of others can make an individual's situa-
tion worse, though in the transient phase it may improve it, or
leave it unaffected. In Broom and Cannings (submitted for
publication) we considered the possible transitions under this
process and proved some fundamental results. Here we discuss
the Markov chain which results when a probability is associated
with the selection of the next individual who attempts to improve
their number of links. We are particularly interested in situations
where the wishes of the members of the population are incompa-
tible, meaning that the links between the population members are
continually changing. We show that the Markov chain associated
with what we term the minimal set (involving states where no
mutually beneficial addition or removal of a link can occur) is
reversible, and so there is always a unique stationary distribution.

2. The general model

2.1. The graph of the population and graphic deviations

We have some set (the population) V ¼ f1;2;…;ng and we
consider simple graphs G¼ ðV ;XÞ where X describes the links
(alternatively edges) between pairs of individuals. Whilst the
vertices are fixed, the edges evolve. We will consider a random
process on the edge set X . Thus the state of the process at time t is
the edge set Xt. Since the vertices are fixed there is a one to one
correspondence between the edge set and the graph, and we will
often refer to Xt as the graph.

At any given time t individual i will have a number of edges ei;t
to other individuals. We refer to the vector et ¼ ðe1;t ; e2;t ;…; en;tÞ as
the sequence et .

At each time point an individual is chosen and is allowed to add
or remove an edge to one other individual in the population. Each
vertex has an acceptable range ½mi; Mi� of edges to other vertices,
where 0≤mi≤Mi≤n−1.

If i is selected, and it has a number of edges eiomi (we shall
call such a vertex a Joiner) then it forms a new edge, connecting to
one of the other vertices it is not connected to at random. If ei4Mi

(we call this a Breaker) then it breaks one of its edges at random.
Otherwise, it neither breaks nor creates an edge (we call this a
Neutral vertex).

The distance between two sequences u and v is zðu; vÞ ¼
∑i ¼ 1;njui−vij.

The deviation of individual/vertex i is ϵi ¼max½ðmi−eiÞ;
ðei−MiÞ;0�.

The deviation of the above graph Xt is defined as the sum of the
vertex deviations, ϒ t ¼∑i ¼ 1;nϵi.

Clearly there will be a minimum value of the deviation for any
given collection of the ranges ½mi; Mi�, and this is termed the score.
There is a set of sequences, and a corresponding set of graphs,
which achieve this minimum, and these are termed J(min) and

K(min) respectively. In Broom and Cannings (submitted for
publication) we proved that there is always a path of allowable
moves enabling the process to reach a member of the minimal set,
K(min). The set of sequences (graphs) with minimum deviation
will of course depend upon the values of the mi and Mi, but we
shall just use JðminÞ ðKðminÞÞ for notational convenience. Further
we proved that, since our process could never increase the
deviation of the graph, once JðminÞ=KðminÞ is reached, that set
cannot be left.

2.2. A random process

In Broom and Cannings (submitted for publication) we inves-
tigated the possible paths and end states of the process described
above. In this paper we consider the random process describing
the changing population graph generated when individuals are
allowed (in a specific manner) to add and remove edges.

At successive time points, a vertex is chosen at random, with i
being selected with probability pi40, and it changes its number of
links according to the process defined above. We thus have a
random process which is a homogeneous Markov chain, since the
probability of each transition only depends upon the most recent
state and not the history of the process.

We thus wish to consider the Markov chain with transitions
defined as follows: (1) For any xn which differs from x in a single
entry, where xij ¼ 0; xnij ¼ 1 for some i; j,

PðXtþ1 ¼ xn

���Xt ¼ xÞ ¼

pi
1

n−1−ei
þ pj

1
n−1−ej

eiomi; ejomj

pi
1

n−1−ei
eiomi; ej≥mj

pj
1

n−1−ej
ei≥mi; ejomj

0 ei≥mi; ej≥mj:

8>>>>>>>>>><
>>>>>>>>>>:

(2) For any xn which differs by x in a single entry, where
xij ¼ 1; xnij ¼ 0 for some i; j,

PðXtþ1 ¼ xn

���Xt ¼ xÞ ¼

pi
1
ei

þ pj
1
ej

ei4mi; ej4mj

pi
1
ei

ei4mi; ej≤mj

pj
1
ej

ei≤mi; ej4mj

0 ei≤mi; ej≤mj:

8>>>>>>>>>><
>>>>>>>>>>:

(3) Similarly for any other xn, differing from x in two or more
entries,

PðXtþ1 ¼ xnjXt ¼ xÞ ¼ 0:

The probability of the sequence being unchanged is simply 1 minus
the sum of the above probabilities.

2.3. The reversibility of the process

We now show that once the population reaches J(min) then the
process is a reversible one. This will later allow us to use the
detailed balance conditions to find the unique stationary
distribution.

Theorem 1. The above described Markov process, when restricted to
J(min), is reversible.

Proof. We apply Kolmogorov's criterion. A Markov chain is rever-
sible if, and only if, for every finite sequence of states
G1;G2;…;Gk ¼ G1, the probability of this sequence occurring is
equal to the probability of the reverse sequence G1 ¼
Gk; Gk−1;…;G1.
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Consider the system when it has reached K(min), and some
sequence of states G1;G2;…;Gk ¼ G1. All transitions involve one
element xij changing from 0 to 1 or vice versa. Since the process
has reached K(min), for any pair of vertices i and j without an edge,
at most one can be a Joiner, since otherwise it would be possible to
reduce the score further. Similarly, for any pair of vertices with an
edge, at most one can be a Breaker. The probability of any
transition which involves the move xij ¼ 0-1 (Joiner i selected
and forming a link with j) is

pi
n−1−ei

and the probability of any transition which involves the move
xji ¼ 1-0 (Breaker j selected and breaking a link with i) is

pj
ej
:

Suppose that in the sequence of changes in G1;G2;…;Gk ¼ G1 xij
changes from 0 to 1 vij times (and so it must change from 1 to 0 vij
times also), then the probability of the whole sequence occurring
is

∏
i;j
p∑kvik
i ∏

∑kvik

l ¼ 1

1
n−1−eiðlÞ

p∑kvkj
j ∏

∑kvkj

l ¼ 1

1
ejðlÞ

;

where the elements ej(l) are the collection of the different
numbers of edges connected to j prior to all the increases in that
number, and n−1−eiðlÞ are the collection of the different numbers
of edges absent from i prior to all the increases in this number.
It is clear that when reversing the sequence through the states G

vertex i must be selected to form an edge the same number of
times as in the original sequence, and must be selected to break an
edge the same number of times as in the original sequence, since
xij increases from 0 to 1 the same number of times as it decreases
from 1 to 0 in the original sequence, which is the same number of
increases from 0 to 1 in the reverse sequence.
It is also clear that following the ej(l)s in the original sequence,

every change from ej to ej þ 1 must have a corresponding change
from ej þ 1 to ej, which is a change from ej to ej þ 1 in the reverse
sequence (and similarly for the n−1−eiðlÞ terms).
Hence the probability in the reverse direction is identical to that

in the original sequence, and so the process is reversible.

In what follows we will not attempt to be systematic in finding
all of the results that we can in fullest generality, but will give
more restrictive cases of specific interest and show some impor-
tant results at each stage. A more systematic analysis will be left
for later work. We start by restricting each individual to a unique
target, before in Section 3 looking at a specific class of target sets.

2.4. A unique target

It may be that mi ¼Mi ¼ ai, in which case we call ai the target of
i, and the sequence a¼ ða1; a2;…; anÞ the target sequence.

For some target sequences it is possible for all of the individuals
in the population to have precisely the required number of edges,
and so if this population state is reached, no individual will want
to change and the process that we will describe will come to an
end. If this is the case, the sequence is called graphic (see e.g.
Gould, 1988). Often this is not the case, however. The score of a
sequence that we introduced in Section 2.1 is here the distance of
the nearest graphic sequence to a specific target sequence. We
investigate the score for certain classes of target sequence, and
properties of this set of minimal graphs.

We denote the set of graphic sequences by H.
The score of a is sðaÞ ¼minu∈H zða;uÞ.
The minimal set of a is JðaÞ ¼ fu∈Hjzðu;aÞ ¼ sðaÞg.
The set of graphs which yield a minimal score (and so have

sequence in JðaÞ) is defined as KðaÞ.
Following the random process previously defined, there is a

path from any sequence to a member of the set of sequences JðaÞ
which has positive probability of being followed, and so JðaÞ is an
absorbing set, as is the corresponding set of graphs KðaÞ. Thus
consideration of the process eventually comes down to a con-
sideration of the process within the set KðaÞ. We note that it was
shown in Broom and Cannings (submitted for publication) that if
the target sequence is not graphic, then the set JðaÞ is connected
(of course if the target sequence is graphic, then jJðaÞj ¼ 1, so JðaÞ is
connected by default).

Corollary 1. For the case with a unique non-graphic target a, there is
a unique stationary distribution over the sets JðaÞ and KðaÞ which can
be found using the detailed balance conditions.

This result follows immediately from the fact that JðaÞ and KðaÞ
are connected, and the process is reversible over this set.

We shall now look at an example. Consider the target sequence
a¼ ðn−1; n−2; …;1; 0Þ, which we shall refer to as the arithmetic
sequence. In a subsequent paper we will investigate this target
sequence more generally, but for now we shall consider the case
with n¼5 only. It is easy to see that, denoting each vertex by its
target score, all of the minimal score graphs have the edges 0–1,
0–2 and 1–2 broken and the edges 2–3, 2–4 and 3–4 formed. Four
of the twelve remaining combinations do not lead to minimal
score graphs, leading to 8 distinct graphs in total. We show these
in Table 1, together with their sequence and their probability in
the stationary distribution.

The stationary distribution is found from the transition matrix
M, which listing the graphs in the order from Table 1, is given by

10nM¼

6 0 2 1 1 0 0 0
0 8 0 0 1 1 0 0
2 0 6 0 0 0 1 1
2 0 0 6 0 0 2 0
1 1 0 0 6 0 0 2
0 2 0 0 0 6 0 2
0 0 1 1 0 0 8 0
0 0 1 0 2 1 0 6

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

3. The All or Nothing system

It will be of specific interest to consider graphs with a large
score, as this will generally lead to a set KðaÞ with a large number
of elements, and a consequently richer structure. Graphs of the
form n1 vertices with value m1 and n2 ¼ n−n1 vertices with
value m2om1 have large minimal scores for certain values of

Table 1
The steady state probability distribution over the eight minimal score states in the
arithmetic case with n¼5.

Number 0–3 0–4 1–3 1–4 Sequence Probability

1 N Y Y Y 43 221 1/7
2 Y Y N Y 43 212 1/7
3 N N Y Y 33 220 1/7
4 N Y Y N 33 211 1/14
5 N Y N Y 42 211 1/7
6 Y N N Y 33 211 1/14
7 N N Y N 23 210 1/7
8 N N N Y 32 210 1/7
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m1; m2; n1 and n2. For sufficiently large m1−m2, minimal scores
are achieved when we join all of the n1 vertices to each other, and
leave the n2 broken from each other. This leaves each of the n1
with m1 þ 1−n1 edges to find from links to the n2. Whatever links
are added between the two types, the score will then be n1ðm1 þ
1−n1Þ−n2m2 if this is positive.

We now suppose that m1 ¼ n−1 and m2 ¼ 0, so that for vertex i
either ai ¼ 0 or ai ¼ n−1. Thus we have two types of individuals,
which we will denote by J and B. Js want to be linked to as many
other individuals as possible, and will be a Joiner unless they are
connected to all other individuals, when they are Neutral. When
chosen, they will pick a random individual that they are not
connected to and form a link to that individual. Bs want to be
linked to as few individuals as possible, and will be a Breaker
unless they have no links, when they will be Neutral. When
chosen, they will break one of their links at random. If a J is
chosen which is connected to every other individual, or a B which
is connected to no individuals, then there is no change in the
population.

Examples of systems which include two such types of indivi-
duals, one that likes high connectivity and the other low con-
nectivity, may include the following situations. The interactions of
parasites and their victims, where such interactions benefit para-
sites and harm (but do not kill) the victims. Thus parasites are Js
who want to form as many links as possible, and victims are Bs
who want to avoid all such links. Alternatively an animal popula-
tion in the breeding season may contain males with territories
which include females, and those without. Those without terri-
tories want to maximise their interactions with the territories in
the hope of gaining a mating opportunity, territory owners want to
expel those males. A non-biological case may be advertisers on the
web and the recipients of adverts, the advertisers trying to
maximise their links and the recipients to minimise them.

3.1. Dynamics within the minimal deviation set

We have assumed that pi40 so that every individual has some
positive probability of selection; thus after sufficient time every J
will be connected to every other, and no pair of Bs will be
connected, so that the only links that can form or be removed
are those between a J and a B, and the problem reduces to
considering a bipartite graph, where the score is always n1n2,
since e.g. if there are no edges each of the n1 Js would have a
deficit of n2.

The problem thus reduces to a Markov chain where all pairs of
Js are linked, no pair of Bs are linked, and so the states can be
represented by an n1 � n2 matrix A¼ ðaijÞ where aij ¼ 1 if Ji is
connected to Bj, and aij ¼ 0 otherwise. We see an example of the
states and transitions of such a Markov chain in Fig. 2 later. Further
let ti be the number of 0s in row i of A, and sj be the number of 1s
in column j. Clearly

∑
n1

i ¼ 1
ti þ ∑

n2

j ¼ 1
sj ¼ n1n2:

Let us denote the total number of 1s, the number of links, as
l¼∑n2

j ¼ 1sj.
We shall denote the set of Js by SJ and the set of Bs by SB. Clearly

jSJ j ¼ n1, jSBj ¼ n2 and SJ∪SB ¼ f1;2;…;ng.
Using Section 2.2 we see the following. If A has aij ¼ 1 for a

given pair (i,j) and An is identical to A except that aij ¼ 0, then the
transition probability from A to An is pj=sj (clearly sj≥1 here as
aij ¼ 1).

Similarly, if A has aij ¼ 0 for a given pair (i,j) and An is identical
to A except that aij ¼ 1, then the transition probability from A to An

is pi=ti (and again ti≥1 here as aij ¼ 0).

Any transitions between matrices with more than one differ-
ence have zero probability.

There will be no change of state only when (a) a J individual i is
picked which is already joined to all Bs so that the ith row of A
contains only 1s, or (b) a B individual i is picked which has no
edges so the ith column of A contains only 0s.

3.2. The stationary distribution

As stated above, since the process is reversible within JðaÞ and
KðaÞ, it satisfies the detailed balance conditions. This gives us an
easy way to find conditions for the unique stationary distribution
of the All or Nothing system.

Theorem 2. For the All or Nothing system, the stationary distribu-
tion on JðaÞ is given by

PðAÞ ¼ ∏jðsj!Þ∏iðti!Þ
ðn2!Þn1

∏i∈SJ p
ðn2−tiÞ
i

∏j∈SBp
sj
j

 !
Pð0Þ:

Proof. We can use the detailed balance equations to find the
relationship between the probabilities of being in states that differ
by one entry. If A has aij ¼ 1 for a given pair (i,j) and An is identical
to A except that aij ¼ 0, then we obtain

PðAÞpj
sj

¼ PðAnÞpi
ðti þ 1Þ⇒PðAÞ ¼ PðAnÞpisj

pjðti þ 1Þ :

Following any sequence from 0 the matrix with all zeros to A, we
obtain

PðAÞ ¼ ∏j∈SB ðsj!Þ
∏j∈SBp

sj
j

∏i∈SJ p
n2−ti
i

∏i∈SJ n2!=ti!
Pð0Þ:

which rearranges to the stated result. □

We shall now suppose that all Js are equally likely to be
selected, and the probability that some J is selected is p, so that
pi ¼ p=n1 for all Js. Similarly, all Bs are equally likely to be selected,
and so the probability that some B is selected is q¼ 1−p, with
qi ¼ ð1−pÞ=n2 for Bs, where we denote the selection probability of a
B as qi instead of pi for convenience. Thus if we are equally likely to
select a J or a B, then p¼0.5 and if each individual is equally
likely to be selected so that pi ¼ qi ¼ 1=n¼ 1=ðn1 þ n2Þ, then
p¼ n1=ðn1 þ n2Þ.

As before, if A has aij ¼ 1 for a given pair (i,j) and An is identical
to A except that aij ¼ 0, then the transition probability from A to An

is q=sjn2. If A has aij ¼ 0 for a given pair (i,j) and An is identical to A
except that aij ¼ 1, then the transition probability from A to An is
p=tin1.

Theorem 3. The stationary distribution on JðaÞ for the equal prob-
ability pi ¼ p=n1; qi ¼ q=n2 All or Nothing system is given by

PðAÞ ¼ ∏jðsj!Þ∏iðti!Þ
ðn2!Þn1

pn2

qn1

� �l

Pð0Þ: ð1Þ

Proof. Using the detailed balance equations again to find the
relationship between the probabilities of being in states that differ
by one entry, for A which has aij ¼ 1 for a given pair (i,j) and An

being identical to A except that aij ¼ 0, we obtain

PðAÞ ¼ PðAnÞpn2sj
qn1ðti þ 1Þ :

Following any sequence from 0 to A in the same way as in
Theorem 2, we obtain the stated result. □
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By summing the above terms we can find Pð0Þ to obtain the
precise distribution over the states. A problem is that there are
2n1n2 states and so this number quickly becomes ungovernable.

3.3. The total number of edges and a problem of counting

We may be interested in the long term distribution of L, the
number of 1s, rather than specific states. Considering the matrix
with all 1s (so n1n2 in total), means that

PðL¼ n1n2Þ ¼
ðn1!Þn2

ðn2Þ!n1

pn2

qn1

� �n1n2

PðL¼ 0Þ:

Note that finding the probability that L takes a particular value
is still difficult in general to evaluate, as there are ðn1n2

l Þ ways to
have l 1s, and many different associated probabilities to add. A
potential approach would be to consider the possible values of sj
and ti. For any given set of sjs and tis, we need to

(1) find whether it is attainable (is there any matrix that gives
this set?)

(2) if it is attainable, how many matrices will give it. A lower
bound is obtained as follows.

Let ks(m) be the number of sj values that equal m, and kt(m) be
the number of ti values that equal m. Permuting rows and columns
gives at least

n1!

ktð0Þ!ktð1Þ!…ktðn2Þ!
n2!

ksð0Þ!ksð1Þ!…ksðn1Þ!
:

(3) How many attainable combinations are there?
If we can answer (1) and (2), does this solve our problem for

intermediate values of n1 and n2, or is the remaining number of
combinations from (3) still too big?

3.4. Particular values of the J selection probability p

For a steady state distribution, the overall probability of
increase in L must be balanced by the probability of a decrease
in L. Since all Js are equally likely to be selected, the probability of
an increase is simply the probability that a J is selected multiplied
by the probability that the J is not already linked to all Bs, i.e. the
row associated with it does not contain all 1s (we shall denote this
probability by PR). Similarly the probability that a decrease occurs
is the probability that a B is selected multiplied by the probability
that its associated column does not contain all 0s (we shall denote
this probability by PC). Thus for a steady state we need

pE½PR� ¼ qE½PC �:
We shall consider three special cases. Each of the three cases is
considered for n1 ¼ 3; n2 ¼ 2 in Table 2.

Case (i) p¼ n1=ðn1 þ n2Þ, with equal probability for all indivi-
duals to be selected, favours the type with the larger number, since
p4q if and only if n14n2, as might be expected. There is pressure
to move towards all connected (none connected) when n14n2

(n1on2) until the probability of picking a row (column) which
cannot be used is sufficiently large to balance it.

Case (ii) p¼0.5 favours the type with the fewest number of
individuals, since even though B and Js are selected with equal
probability, if there were exactly half of the links formed, there is
less chance of picking one of these which can then not make/

(break) a link for the type with the fewest number of individuals.
Thus the mean proportion of links will be slightly less (more) than
one half if n14n2 (n1on2).

Case (iii) the value of p which gives an equal number of 1s and
0s on average. Provided that n1≠n2, then this value will lie
between the two values of p given above, and we can find p for
special cases computationally.

We note that for n1 ¼ n2, cases (i)–(iii) are the same.

3.5. Equal selection probability for all individuals

We will now consider case (i) above where each individual is
selected with equal probability. We will look at some special cases
where we can evaluate an exact solution, an approximate solution
or at least say something about the form of the solution.

We note that in this case there is a simple duality result. For a
given set of edges for n1 Js and n2 Bs, we can reverse the numbers
of Js and Bs and replace every edge with a non-edge and every
non-edge with an edge, and the probability of obtaining the new
graph is identical to the probability of the original (this also works
for general p if we replace p by 1−p, which automatically occurs in
case (i)). Thus reversing n1 and n2 in the following yields identical
results.

Theorem 4. When n1 ¼ 1, L has a truncated Poisson distribution
(maximum value n2) with parameter 1.

Proof. In this case if there are l columns containing a 1, then the
row is chosen with probability 1=ðn2 þ 1Þ and a column with a
1 entry is chosen with probability l=ðn2 þ 1Þ. Thus we obtain

pk−1
1

n2 þ 1
¼ pk

l
n2 þ 1

⇒pl ¼
pl−1
l

l¼ 1;…;n2:

Thus pl ¼ p0=l! which leads to the required truncated Poisson
distribution. □

Theorem 5. When n2≫n1 the distribution of L is approximately
Poisson (n1Þ.

Proof. In this case there is pressure to reduce the number of links
and we can expect the number to generally be small. For a small
number of links l, if any row is selected it will be able to add a 1, so
that the probability of an increase will be n1=ðn1 þ n2Þ. Assuming
that the small number of 1s are all in different columns (plausible
for large n2), then the probability of a decrease is just l=ðn1 þ n2Þ
and so

pl−1
n1

n1 þ n2
≈pl

l
n1 þ n2

⇒pl≈
n1pl−1

l
l¼ 1;…;n2

This gives us pl≈nl
1p0=l!, which leads to the stated Poisson

distribution. □

For the case n1 ¼ n2, where this number is large, there is some
pressure away from the extremes (the probability of going forward
and back is equal if no rows contain all 1s or columns all 0s, but
when the number of 1s is small or large, moves towards the
middle are increasingly likely). When the number of 1s is approxi-
mately n2

1=2, the probability of increasing and decreasing is exactly
in balance. Thus the distribution of X is approximately uniform in
the region n2

1=2−Ko lon2
1=2þ K for some constant K. In fact

Table 2
The steady state probability distribution over the values of L when n1 ¼ 2; n2 ¼ 3 for three values of p, representing cases (i), (ii) and (iii) respectively.

State 0 1 2 3 4 5 6 Mean

p¼0.4 0.1047 0.2093 0.2442 0.2093 0.1395 0.0698 0.0233 2.372
p¼0.5 0.0330 0.0989 0.1730 0.2225 0.2225 0.1668 0.0834 3.337
p¼0.46517 0.0513 0.1338 0.2037 0.2278 0.1981 0.1292 0.0562 3.000
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calculations and simulations show that K is quite small and this
flat region is thus narrow, and the probabilities tail off quickly. The
case with n1 ¼ n2 ¼ 5 is shown in Table 3 and Fig. 1.

We finally briefly consider two of the simplest cases, starting
with n1 ¼ 2; n2 ¼ 2.

We can summarise any case with exactly two rows by four
numbers: the number of columns with no 1s, the number with a
1 in row 1 only, the number with a 1 in row 2 only, and the
number with a 1 in both rows. Each of these will represent a
number of states in the original form. For the case with two
columns there are 10 different states (7, allowing a swap between
row 1 and row 2). The probabilities for the states are shown in
Table 4. Reducing just to considering L this gives Table 5.

For the case with three columns, n1 ¼ 2; n2 ¼ 3 ,there are 20
different states (13, allowing a swap between row 1 and row 2).
The possible transitions between the states are shown in Fig. 2.
The probabilities for the states are given in Table 6. Reducing to
just considering L this gives the p¼0.4 row from Table 2.

4. Discussion

The modelling of finite populations with structure has become
increasingly common, following Lieberman et al. (2005). In such

models the members of the population are represented by the
vertices of the graph, and the links between them by the graph
edges. Generally evolution happens on the graph, but the graph
itself does not change (see Southwell and Cannings, 2010a, 2010b,
2010c for a model where a population and its graph evolves in a
deterministic way).

In this paper we have considered a population where the
individuals themselves do not change, but links between indivi-
duals change through time as a result of direct actions by the
population members, where each individual has a preferred total
number of links (a single number, or a range of allowable
numbers). Transitions follow a Markov chain on the set of edges
of the graph, where a transition to a new state occurs when an
individual forms or breaks a link to another individual, as it tries to
achieve its preferred number of links. For any given graph there is
an associated sequence which is the collection of the number of
links for each individual. Possible scenarios where this process is
relevant are those of biological partner selection (Noë and
Hammerstein, 1994; Noë, 2001), sociability (Capitanio, 2002;
Connor et al., 1999; Sibbald and Hooper, 2004; Wiszniewski
et al., 2012) and behavioural responses to epidemics (Kiss et al.,
2010; Funk et al., 2009), as we have discussed in the Introduction.

As the population changes over time, it was proved in Broom
and Cannings (submitted for publication) that it gets ever closer to
a connected minimal set of sequences (using a distance measure
called the deviation, where the graph achieves minimal deviation),
and so satisfies the conflicting preferences of the population
members as much as possible. In some cases, all preferences
may be satisfied so that the number of edges in the graph is
within the allowable range for all individuals, and then the process
stops. When all individuals have a unique target, this occurs if the
sequence of preferences is a graphical sequence, and so can be
attained by some graph.

We demonstrated that once the minimal set is reached, the
Markov chain is reversible, and so that the detailed balance
conditions apply. This then provided a method for finding the
stationary distribution for the case where there is a unique target,
both over the specific graphs and potentially the sequence of
scores (but see Section 3.3) within the population.

Table 3
The steady state probability distribution over the values of L in the n1 ¼ n2 ¼ 5 case.

L 0 1 2 3 4 5 6 7 8
Prob 0.0003 0.0013 0.0039 0.0085 0.0154 0.0245 0.0350 0.0463 0.0573
L 9 10 11 12 13 14 15 16 17
Prob 0.0673 0.0753 0.0810 0.0839 0.0839 0.0810 0.0753 0.0673 0.0573
L 18 19 20 21 22 23 24 25
Prob 0.0463 0.0350 0.0245 0.0154 0.0085 0.0039 0.0013 0.0003

Fig. 1. The probability distribution of the total number of links L for the case with
n1 ¼ n2 ¼ 5 (see also Table 3).

Table 4
The steady state probability distribution over the states in the n1 ¼ n2 ¼ 2 case. The
states in row one are defined as (in order) the number of Bs connected to; neither J,
only J1, only J2, both Js. The entries in row 2 are the number of states in the original
notation that are equivalent to the corresponding new form.

State 2000 1100 1010 1001 0200 0110 0101 0020 0011 0002
No. orig. 1 2 2 2 1 2 2 1 2 1
Prob. 2/17 2/17 2/17 2/17 1/34 2/17 2/17 1/34 2/17 2/17

Table 5
The steady state probability distribution over the values of L in the n1 ¼ n2 ¼ 2 case.

L 0 1 2 3 4
Prob. 2/17 4/17 5/17 4/17 2/17

Fig. 2. The possible transitions between the 13 states for the case
n1 ¼ 2 and n2 ¼ 3. Writing states in terms of the number of links to each individual,
with J individuals listed first, we have the following correspondence: 1¼11 000,
2¼21 100, 3¼31 110, 4¼22 110, 5¼22 200, 6¼41 111, 7¼32 111, 8¼32 210,
9¼42 211, 10¼33 211, 11¼33 220, 12¼43 221, 13¼44 222.
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We considered a specific example, the “All or Nothing” system,
where the population was split into two types, Js which want to
maximise their number of links, and Bs which want to minimise
this number. We found an explicit form for the stationary
distribution for the general All or Nothing system, and also for
some special cases. One problem we encountered was that the
total number of states quickly becomes large, and so in practice it
can still be difficult to explicitly write the distribution of L, the
total number of links (the probability of each graph can be found,
but there are too many that correspond to L to be added
systematically).

We finally considered some special cases of the All or Nothing
system where we could avoid the above problem by considering
approximate results where either the number of Bs was much
smaller than the number of Js, or vice versa, or finding exact
results when both numbers were small.

There are a number of potential future developments. In this
first paper we concentrated on introducing the random process
and some basic results, and then moved to look at the All or
Nothing system. A more systematic investigation of the system in
its most general case still needs to be carried out, and similarly
further investigation of the unique target case in its most general
form is needed.

Secondly, currently individuals break or form links to get closer
to their ideal values, but they make no choice in relation to which
links are formed or broken. It may be that some choices are better
than others (e.g. joining to another who is not averse to the link
may be better than to one who may subsequently break the link,
especially if there is some cost to the act of joining or breaking).
Thus such choices could be introduced. This could become
particularly complicated, however, if individuals had memories
of the previous choices of others, and initially memoryless models
would be easiest to consider.

One way for some links to be preferable to others is if
individuals prefer to be connected to those also linked to their
neighbours, so called “transitivity preferences” e.g. Marvel et al.
(2011). A friend of a friend may thus be more likely to be an
individual's friend too than a random individual is, and in the
extreme limit all connected individuals would form non-
overlapping cliques. We could incorporate this into our model by
having a target function that included not just the number of links
of the individual, but also the links of connected individuals too
(though it would be important to consider what an individual
would reasonably know about the connections of those it is
connected to).

A third possibility is where only some of the possible links are
allowed. Thus, we may imagine a spatially distributed population
and individuals may only be able to form links with their close
neighbours. Thus a similar process to that described in this paper
would occur on a reduced edge set of allowable links. This
may help with the problem of counting that we encountered in
Section 3.3.

Ultimately, it will be of interest to introduce an evolving
population into our model, as in many of the models described
in the Introduction. We can consider games played across the
network so that at any time point an individual plays a game
against all of its neighbours, as in standard evolutionary graph

theory models. Individuals would receive a payoff determined by
(for example) the average of such contests at that timepoint, and
so given the distribution of different states on the graph, we can
evaluate the expected payoff of both Bs and Js in a system
containing n1 Js and n2 Bs. In any situation we can thus compare
the fitnesses of both Js and Bs, with the process evolving so that an
individual is replaced by one of the other type (because either
individuals reproduce or change strategy according to fitness).

As the composition of the population changes, the preferences
of the individuals also change, and so the dynamics of the network
will alter. Thus there would be a co-evolutionary system where
both the occupants of vertices and the edge set of the graph evolve
co-dependently (see Rand et al., 2011; Perc and Szolnoki, 2010 for
work in this area). What is the long term distribution of Js and Bs?
Can there be a number of equilibria? If sophisticated strategies
which base their likelihood of forming/breaking links based upon
previous games with the individuals concerned (e.g. prefer to
connect to cooperators in a Prisoner's Dilemma) are allowed, then
they will likely prevail. There are many ways to make our model
more realistic (and more complicated), and our priority will be to
develop those which allow at least some analysis.
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