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a b s t r a c t

Given a sequence of n nonnegative integers how can we find the graphs which achieve the
minimal deviation from that sequence? This extends the classical problem regarding what
sequences are ‘‘graphic’’, that is, can be the degrees of a simple graph, to issues regarding
arbitrary sequences. In this context, we investigate properties of the ‘‘minimal graphs’’. We
shall demonstrate how a variation on the Havel–Hakimi algorithm can supply the value
of the minimal possible deviation, and how consideration of the Ruch–Gutman condition
and the Ferrer diagram can yield the complete set of graphs achieving this minimum.
An application of this analysis is to a population of individuals represented by vertices,
interactions between pairs by edges and in which each individual has a preferred range
for their number of links to other individuals. Individuals adjust their links according to
their preferred range and the graph evolves towards some set of graphs which achieve the
minimal possible deviation. This Markov chain is defined but detailed analysis is omitted.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For n ∈ N (N being the set of nonnegative integers), we consider the set Sn of n-element sequences u = (u1, u2, . . . , un)
where (n − 1) ≥ u1 ≥ u2 . . . ui ≥ ui+1 . . . un ≥ 0. There is a considerable body of work [2–6] addressing the question of
which elements of Sn are graphic, that is for which u ∈ Sn does there exist a simple graph whose vertices have precisely
the degrees (number of neighbours) ui; there may exist more than one. We shall denote the set of graphic sequences by Hn.
However, there is, to our knowledge, nothing addressing the question of ‘‘how far from graphic’’ a member of Sn is.

Suppose we have a set of n individuals labelled {1, 2, . . . , n}, and that associated with vertex i is a pair of integers
0 ≤ mi ≤ Mi ≤ (n − 1). We investigate whether there are simple graphs on these n vertices with degrees ui such that
mi ≤ ui ≤ Mi, and more generally what graphs are closest to achieving these inequalities in a sense defined below. This
investigation is facilitated by introducing a process on the possible graphs which we index with t , and refer to t as time.
Thus suppose at time t there exists a graph with n vertices, Xt. We denote a state of the system by the n × n adjacency
matrix X = (xij) (thus xii = 0, xij = 1 if there is an edge (i, j) and is 0 otherwise). We write Xt = x when Xt is a graph
with adjacency matrix x. The sequence associated with the graph x is u, where the ith element of u, ui, is the degree of the
ith vertex of x. If mi ≤ ui ≤ Mi we say that vertex i is Neutral, in which case no action is taken, if ui < mi we say vertex i
is a Joiner and then, if possible, we select a vertex j to which it is not currently linked and add the edge (i, j) to it, while if
ui > Mi then i is said to be a Breaker and then, if possible, we select a vertex j to which i is currently linked and remove the
edge (i, j). We refer to this new graph as Xt+1. We refer to this step as a transition and the new graph is potentially nearer

∗ Corresponding author.
E-mail addresses:Mark.Broom@city.ac.uk (M. Broom), c.cannings@sheffield.ac.uk (C. Cannings).

http://dx.doi.org/10.1016/j.disc.2014.12.011
0012-365X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.12.011
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.12.011&domain=pdf
mailto:Mark.Broom@city.ac.uk
mailto:c.cannings@sheffield.ac.uk
http://dx.doi.org/10.1016/j.disc.2014.12.011


702 M. Broom, C. Cannings / Discrete Mathematics 338 (2015) 701–711

to achieving the set of inequalities on the degrees. Here we restrict ourselves (in the main) to the case where mi = Mi for
all i, refer to the sequence a = (a1, a2, . . . , an) ∈ Sn where ai = mi = Mi as the target, and to ai as i’s target.

1.1. Definitions

Definition 1. For two sequences u and v in Sn the Distance z(u, v) = Σn
i=1|ui − vi|, i.e. z is the distance generated by the L1

norm.

Recall that Hn ⊂ Sn is the set of graphic sequences. Now suppose that we consider target a ∈ Sn. We are interested in
the distances between a and the graphic sequences, Hn. We introduce the notion of a score of a sequence.

Definition 2. The Score of a is s(a) = minu∈Hnz(a,u).

Thus s : Sn → {0, 1, . . . , kn}, where kn = ⌈n/2⌉⌊n/2⌋ which occurs for the cases where we have ⌈n/2⌉ or ⌊n/2⌋ targets
n − 1 and the remainder 0. We prove that the transitions for a particular target a lead to a subset of the possible sequences
with minimal distance from the target. We refer to this as the minimal set of a defined as follows.

Definition 3. TheMinimal Set of a is J(a) = {u ∈ Hn | z(u, a) = s(a)}.

Although we are focusing on the situation where we have mi = Mi for every vertex, we relax this condition for the
moment as Theorems 1 and 2 are valid in the more general case. For this purpose we introduce the term deviation to take
the place of our distance/score in the restricted case.

Definition 4. If the degree of vertex i is ei, thenwe define theDeviation ϵi of that vertex by ϵi = max[(mi −ei), (ei −Mi), 0].

Definition 5. The deviation of the graph Xt is defined as Υt = Σn
i=1ϵi.

We refer to a vertex as a Neutral, a Joiner or a Breaker, according as ϵi is 0,mi − ei or ei − Mi.
For a target a, it is clear that the deviation of a graph x is the same as the distance of its associated sequence u from the

target, and so the minimum deviation from the target over all graphs is simply the score.

1.2. Paper structure

Webegin in Section 2 by introducing a populationmodel inwhich the vertices are individuals and the targets correspond
to the numbers of links which individuals would wish to maintain. This model has been discussed in detail in [1]. We then
introduce the Transition Graph, which links graphs under the transitions defined for a given target. Using this concept we
prove that the system, for a given target, possesses a set of graphs which have minimal deviation from the target (in a well
defined sense).

This section is central to understanding the underlying population aspects that constitute the applications of our model,
but is not necessary for any readers only interested in the graph-theoretical aspects, who can skip it and move straight to
the sections that follow, starting with Section 3.

Section 3 considers the structure of minimal graphs with respect to a specific target. Any such minimal graph has each
vertex classified as a Joiner, a Breaker or Neutral. Our fundamental result is Theorem 4, which demonstrates that for a given
sequence the minimal graphs are characterized by the absence of certain patterns of presence and absence of edges. From
this we can deduce certain local patterns and demonstrate a partition of the vertices in minimal graphs, as shown in Theo-
rem 7. These ideas may help identify and enumerate the possible sets of minimal graphs.

Section 4 demonstrates a method for finding the minimal score for a given sequence. We address the question of finding
the minimal score for a given target, and do this through a variant of the classical Havel–Hakimi algorithm [2,4], see Theo-
rem 8. We finally address the issue of identifying all the minimal graphs for a given target using the Ferrer diagram [7], and
exploiting the Ruch–Gutman [6] conditions, in Section 5.We prove that the set of Ferrer diagrams corresponding tominimal
graphs for a given target is connected under valid transitions (Theorem 13), and moreover that the set of minimal graphs is
connected (Theorem 14) except possibly when the score is zero.

2. Sequences, transitions and a Markov process

2.1. Markov Chain model

We introduce here a population model; there are n individuals, represented by the vertices of a graph, where individual
i wishes to link to between mi and Mi others. Supposing at time t that the graph is Xt, and that individual i is selected with
probability pi. A transition is then made, as described earlier, where the edge to add or subtract is selected at random with
equal probabilities. The process Xt is a homogeneous Markov chain with the following transition probabilities:
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(1) For any graph x∗, with sequence u, which differs from x in a single entry, where xij = 0, x∗

ij = 1 for some i, j,

P(Xt+1 = x∗
| Xt = x) =



pi
1

n − 1 − ui
+ pj

1
n − 1 − uj

ui < mi, uj < mj

pi
1

n − 1 − ui
ui < mi, uj ≥ mj

pj
1

n − 1 − uj
ui ≥ mi, uj < mj

0 ui ≥ mi, uj ≥ mj.

(2) For any x∗ which differs by x in a single entry, where xij = 1, x∗

ij = 0 for some i, j,

P(Xt+1 = x∗
| Xt = x) =



pi
1
ui

+ pj
1
uj

ui > Mi, uj > Mj

pi
1
ui

ui > Mi, uj ≤ Mj

pj
1
uj

ui ≤ Mi, uj > Mj

0 ui ≤ Mi, uj ≤ Mj.

(3) For any x∗, differing from x in two or more entries, P(Xt+1 = x∗
| Xt = x) = 0.

(4) For x∗
= x, the probability is 1 minus the sum of the above probabilities.

This model has been discussed by [1] and further work is in progress.

2.2. The deviation

Theorem 1. For any set of ranges [mi,Mi] Υt is non-increasing, under the possible transitions, with t.

Proof. Consider the transition from time t to time t + 1. When a vertex i is selected then if it is Neutral no change happens
so Υ (Gt+1) = Υ (Gt). If it is a Joiner then its deviation is decreased by 1 (since an edge is added), and if that edge is joined to
vertex j then the deviation of that vertex changes by−1, 0 or+1 according as (a) uj < mj so j is a Joiner, (b)mj ≤ uj ≤ Mj−1
so j is a Neutral or (c) uj = Mj so j is a Neutral, or Mj < uj so j is a Breaker. Thus Υ (Gt+1) − Υ (Gt) is respectively −2, −1 or
0. A similar argument applies if we pick a Breaker. �

Corollary 1.1. When mi = Mi all i then Υ (Gt+1) − Υ (Gt) is −2 or 0.

Proof. Case (b) from the proof of Theorem 1 is then impossible. �

Corollary 1.2. If there is a path of transitions from a graph state x to another with a lower deviation, then x is a transient state,
and so P(Xt = x) → 0.

The state space can be partitioned into a set of transient states, and some number of connected closed sets S1, S2, . . . , Sk,
the absorbing sets.

In Section 2.3we define the transition graph. This is a directed graph and the sets S1, S2, . . . , Sk are the strongly connected
subsets of that graph.

Corollary 1.3. Each graph within a closed set has the same deviation.

The states within each set communicate (i.e. any such state can be reached from any other) since the set is connected, so
by Theorem 1 the states within any set have the same deviation, denoted by Υ (Si). Since there are only a finite set of sets
there is a minimum value. Our next theorem establishes that each set achieves this minimal deviation, which we denote by
dm.

Theorem 2. The deviation of any graph in any of the absorbing sets is dm.

Proof. Suppose G1 and G2 have Υ (G1) > Υ (G2).
We define δij = 0 if G1 and G2 both have the edge (i, j), or neither of them do, and else define δij = 1. We then define

∆ = Σi,jδij. We attempt to decrease ∆ by making a valid transition from G1.
Consider a Joiner, i say, in G1. Supposewe can add an edge (i, j) to G1 which is present in G2, then∆will decrease.Wewill

be unable to do this only if all (i, j) not in G1 are also absent from G2, which implies that i is a Joiner in G2 with a deviation
at least as large as in G1.

In a similar manner we consider a Breaker, i say, in G1. If we can remove an edge (i, j) from G1 which is absent from G2
then ∆ will decrease. We will be unable to do this only if all (i, j) in G1 are also present from G2, which implies that i is a
Breaker in G2 also with a deviation at least as large as in G1.
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Thus we can reduce ∆ unless every i has a deviation at least as large in G2 as in G1, which contradicts the assumption
that Υ (G2) < Υ (G1). Repeating the process eventually the score will be reduced to that of G2, and picking G2 such that
Υ (G2) = dm yields the result. �

2.3. The transition graph

A graph of interest is that describing the possible transitions between graphs Xt induced by a specific target a. In order to
do thiswe need to expand the setHn, which has non-increasing elements, to encompass all permutations of these orderings;
call this set H∗

n. Now given a target a, we define an equivalence relation ∼ on H∗
n. We write P(u) for the action of the

permutation operator P on u. Suppose Y is the set of permutations which leave a unchanged, then for u ∈ H∗
n and v ∈ H∗

n,
u ∼ v if and only if for all P ∈ Y, u = P(v). We then choose a set of representatives HĎ

n, that is one element from each
equivalence class, which will correspond to the vertices of our transition graph.

Suppose that u and v in Hn are such that for specific i and jwe have ui = vi + 1, uj = vj + 1 and uk = vk otherwise. Now
under the model for transitions described earlier a transition is possible from u to v if ui < ai or uj < aj, and from v to u if
vi > ai or vj > aj. We define the transition graph Tn = {HĎ

n(a), Fn(a)} where Fn(a) is the set of possible transitions defined
above; these edges are directed.

Given a, associated with each vertex u in Tn(a) is the distance d(u, a). The transitions are of two types, those where the
degrees of both the vertices which are affected move towards their target, so the score drops by 2, and ones where one
moves towards and one away from its target when the score does not change. If, and only if, the transition is of the second
type then there is also a transition in the reverse direction. Moreover, as we proved above in Theorem 2, it is always possible
to move from a state to one with a lower score if such exists, though this may involve multiple steps. The system therefore
will ultimately reach one of the graphic sequences u for which d(u, a) is minimal. If that score is zero, which only occurs
when the target is itself graphic, then no further moves are possible. If the score is other than zero then the state can move
around within J(a), and we prove that the graph induced by the vertices J(a) within Tn(a) is connected. This is not to assert
that the set of corresponding graphs can all communicate; for example if a = (2, 2, 2, 2) so that J(a) has a single element
(2, 2, 2, 2) then nomovement is possible, but there are three graphs corresponding to this degree sequence between which
there is no communication.

The transition diagram can be obtained for given n and some specific target in the following way. We construct the set
of possible permutationally distinct graphic sequences for that n and that partition. Then we join in the graph Tn(a) those
sequences which differ by +1 in two positions, or by −1 in two positions. Note that this is always possible for any target,
since clearly the target must differ from one of the sequences in the positions which are changed, and so there will be the
possibility of incrementing or decrementing the position appropriately. Finally we can add the directions appropriate for
the specific target by calculating the deviations, arrows going on every edge in the direction of non-increasing score.

3. The Breaker–Joiner structure of minimal graphs

This section addresses the question of the structure of minimal graphs. It is clear that every graph is the minimal graph
for some non-empty set of targets since trivially it is a minimal graph whose target matches its degree sequence. It is also
clear that it is a minimal graph for any target at distance 1, and also for any target at distance 2 provided that target is not
itself graphic. A more general question is to characterize in some way the set of possible targets for which a given graph is
a minimal graph.

We now introduce a fundamental entity which allows us to identify properties of minimal graphs. Essentially this is a
sequence of vertices which allow us to make sequences of transitions in a graph, where all but the last keep the score un-
changed and the final one improves the score. These transitions may not occur consecutively through time, but each time
that a reduction in the score occurs we can trace back the set of transitions which led to that reduction. We encapsulate the
possibilities in the following definitions.

Definition 6. An Alternating Edge Sequence (AES) for a graph Gwith edge set E is a sequence {v1, v2, . . . , vr}where vi ≠ vj
for all 1 ≤ i < j ≤ r with the possible exception v1 = vr , and
(a) (vi, vi+1) ∈ E for i odd and (vi, vi+1) ∈ E for i even or
(b) (vi, vi+1) ∈ E for i odd and (vi, vi+1) ∈ E for i even.

Definition 7. An Improvable Alternating Edge Sequence (IAES) for a graph G with respect to a given target is an AES
{v1, v2, . . . , vr}, defined by the following conditions (here J is the set of Joiners in G, N the set of Neutrals, and B the set
of Breakers),
(1) if 1 < i < r then vi ∈ N,
(2) if (v1, v2) ∈ E then v1 ∈ B, else v1 ∈ J,
(3) if (vr−1, vr) ∈ E then vn ∈ B, else vn ∈ J.
In the case where v1 = vr we require that r is even and that the deviation of v1 ≥ 2.

Theorem 3. If r > 2 and {w1, w2, . . . , wi−1, wi, wi+1 . . . , wr−1, wr} is an IAES then exactly one of {w1, w2, . . . , wi−1, z} and
{z, wi+1, . . . , wr−1, wr} is an IAES where z is a Joiner with the same edge relationship to wi−1 and wi+1 as wi. Similarly if z is a
Breaker.
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Proof. The proof relies on the fact that if an IAES has ends of common type, i.e. both Joiners or both Breakers, then the
number of terms is even, and if the ends are of distinct types then it is odd.

If w1 and wr are both Joiners, or both Breakers, then r is even, and hence one of (r − i + 1) and i is odd and one even.
Hence whether z is a Joiner or a Breaker, there will be an IAES in one direction from z, but not in the other. Note that if
w1 = wr so that the IAES is of type (3) in Definition 7, the result still holds.

If w1 and wr are different, i.e. one a Joiner and one a Breaker, then r is odd, and hence both of (r − i + 1) and i are even,
or both odd. Hence whether z is a Joiner or a Breaker, there will be an IAES in one direction from z, but not in the other. �

If a is graphic then there can exist no IAES’s since every vertex isNeutral. For non-graphic sequenceswehave the following
fundamental theorem.

Theorem 4. A graph G is minimal with respect to some non-graphic target a if, and only if, there are no IAES’s.

Proof. (1) G is minimal implies that there are no IAES’s.
Suppose G is minimal with respect to a and there exists an IAES. If r = 2 then we have an immediate improvement since v1
and v2 are both Breakers, or both Joiners. For r > 2 in each of the cases above we can make a valid transition using v1 and
v2 with no change in the score, and following the transition the sequence {v2, v3, . . . , vr} will be an IAES in the new graph.
We make transitions until we are left with only vr−1 and vr , and these vertices will be of the same type. Note that in the
case where v1 = vr the first vertex retains its type during the first transition since its score initially was ≥2. Thus the final
transition will decrease the score by 2, which contradicts the fact that G is minimal. Thus there can have been no IAES’s.

(2) There are no IAES’s implies that G is minimal.
Suppose there is a target a, and a graph Gwhich is non-minimal with respect to a. Suppose there are no IAES’s.

Consider any transition, which clearly can make no change to the score since there are no Breaker–Breaker edges, or
Joiner–Joiner non-edges. We prove that there will be no IAES subsequent to any change. Suppose without loss of generality
that we delete an edge between vertex v1, a Breaker, and vertex v2 (adding an edge between a vertex v1, a Joiner, and a
vertex v2 will have reciprocal consequences in the arguments below). Then v2 must be a Joiner after the change.

Following the change there are various candidates to be IAES’s; clearly only those which involve v1, v2 or both. We es-
tablish that the existence of an IAES after any switch implies that there was an IAES before the switch, a contradiction.

We know v2 is a Joiner after the switch so must be at the end of any IAES of which it is a part. We first consider the three
possibilities in which v2 is part of a new IAES.

(i) Consider any sequence {v2, w1, . . . , wr}, where wr ≠ v2 and v1 does not occur. If this is an IAES then it would have
originally have been one if v2 had originally been a Joiner, while if v2 had been Neutral then {v1, v2, w1, . . . , wr}was already
an IAES.

(ii) Consider any sequence {v2, w1, . . . , wr , v2}, where r is even, which does not contain v1, so after the switch v2 is a
Joiner with score≥2. If before the switch v2 had a score≥2 then {v2, w1, . . . , wr , v2}was already an IAES. In the case where
the score of v2 was previously 1 then {v2, w1, . . . , wr , v2, v1} was already an IAES.

(iii) Consider a sequence including both v1 and v2. We need to consider the two possibilities for the state of v1 after the
switch.

(a) Suppose v1 is Neutral after the switch, then the candidate to be an IAES is of the form {v2, . . . , v1, . . . , wr}, and thus
by Theorem 3 either {v2, . . . , v1} or {v1, . . . , wr} was already an IAES.

(b) Suppose v1 is still a Breaker, then the IAES must be {v2, . . . , v1}, and the number of terms must be odd. If v2 was
originally a Joiner then {v2, . . . , v1} was already an IAES, whereas if it were neutral then {v1, v2, . . . , v1} was already an
IAES since we know that v1 had a score of at least 2 before the switch since it remained a Breaker.

(iv) Consider any IAES which does not include v2, and hence must include v1. If this is {v1, . . . , wr} then v1 is still a
Breaker and so the same sequence was an IAES before the change. The same argument applies for {v1, . . . , wr , v1}. If this
is {w1, . . . , v1, . . . , wr} then this requires that v1 changed to Neutral, so either {w1, . . . , v1} or {v1, . . . , wr} was an IAES
originally, by Theorem 3.

Thus no change can create a graph with an IAES, so no graph can be reached for which the score can be reduced and thus
by the argument of Section 2.2, the graph is minimal. �

The above necessary and sufficient condition provides us with a variety of local conditions, which are illuminating re-
garding the structure of a minimal graph. We list some of these. In each case an IAES is key but is not made explicit.

Corollary 4.1. For any minimal graph the following properties hold.
(1) No two Breakers are joined.
(2) Every pair of Joiners are joined.
(3) If a Neutral is joined to a Breaker then that Neutral is joined to every Joiner ⇔ if a Neutral is not joined to some Joiner then
that Neutral is not joined to any Breaker.
(4) Suppose that a Neutral N is joined to some breaker B, and some other Neutral N∗ is joined to some other Breaker B∗ then N
and N∗ are joined.
(5) Suppose that some Neutral N is not joined to some Joiner, and another Neutral N∗ is not joined to some other Joiner J∗ then
N is not joined to N∗.
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Theorem 5. For any target a theminimal set J(a) contains at least onemember with no Joiners, and at least one with no Breakers.

Proof. Consider some target a. If a is graphic then the set of minimal sequences consists of a alone, and this will have no
Breakers and no Joiners so the theorem holds in this case.

Now suppose a is not graphic. We now prove that there exists a minimal graph which has only Breakers and/or Neutrals
with respect to a. Choose any minimal graph with at least one Joiner. If this is not possible then, since the set of minimal
graphs cannot be empty, there is a minimal graph with no Joiners. For the case where there exists such a minimal graph
we successively add edges to the Joiners. This will be possible provided there is a Joiner which is not joined to every other
vertex. This is always the case since a Joiner joined to every other vertex would imply a degree, for that Joiner, of n − 1
which is the maximal possible degree and hence contradicts the fact that the vertex is a Joiner. We can thus proceed until
all Joiners have been removed.

The argument to establish that there is a minimal graph with no Breakers proceeds in a similar manner removing edges
from Breakers and observing that a vertex with degree 0 cannot be a Breaker. �

Theorem 6. For a minimal graph the degree of a Joiner is greater than or equal to that of a Breaker.

Proof. Consider the set consisting of all the Joiners and all of the Neutrals which are linked to a Breaker; these latter are
linked to every Joiner. Denote this set by H and |H| = k. Now we know from (2) and (3) of Corollary 4.1 that each Joiner is
linked to every other element of H. Thus the degree of every Joiner is at least k − 1; it may be larger since it may be linked
to Breakers and to other Neutrals which are not themselves linked to any Breaker. Now each Breaker is linked only to some
subset of H, by Corollary 4.1, so its degree is less than or equal to k. If it is equal to k then it is linked to every Joiner which
therefore themselves have degree at least k, the k − 1 links within H and the link to the Breaker, otherwise the Breaker’s
degree is at most k − 1. �

Corollary 6.1. With respect to the ordered target the Joiners precede the Breakers for any minimal graph.

Proof. Since the degree of any Joiner is at least as large as that of any Breaker, and the target of a Joiner is greater than the
degree, and that of a Breaker is less, the target of a Joiner must strictly exceed that of any Breaker. �

It is intuitively reasonable that those vertices (individuals) with higher targets will fall short while those with lower
targets will exceed them.

From the above we have the following structure for a Minimal Graph.

Theorem 7. For a minimal graph with respect to a specific target the vertices can be partitioned into five subsets (some of which
may be empty):-

V1 — a complete subgraph which contains the set of Joiners,
V2—an independent subset which contains the set of Breakers,
V3 — a subset of Neutrals each of which has at least one link to a Breaker and each is linked to all the Joiners,
V4 — a subset of Neutrals which are not linked to every Joiner and each is not linked to any Breaker,
V5 — a subset of Neutrals each of which has no links to any Breakers and is linked to every Joiner.

Proof. This follows directly from Corollary 4.1.
Fig. 1 illustrates the partitioning for the target {8886632211}. �

4. Finding the minimal deviation

In order to find the minimal deviation dm we could examine all possible graphs for given n and evaluate their deviations.
However, there are more efficient methods which give the deviation for any specified target (i.e. where for all i,mi = Mi).

We shall give two simple methods of deriving the minimal deviation. The first is based on the algorithm of Havel [4] and
Hakimi [2] which allows one to check whether a given sequence is graphic, and also generates an example of such a graph.
The second method exploits the ideas of Hässelbarth and Ruch–Gutman.

4.1. The Havel–Hakimi algorithm

Given a sequence one applies an algorithm introduced by Havel [4] and Hakimi [2], which either produces a simple graph
with the desired degree sequence, or fails in which case the sequence is not graphic.

The Havel–Hakimi algorithm is as follows. Suppose one has a sequence of degrees d = {d1, d2, . . . , dn} where dj ≥

dj+1 ≥ 0 for 1 ≤ j ≤ (n − 1). If d1 > 0 and dd1+1 ≤ 0 then the sequence is not graphic. Assuming d1 > 0, if dd1+1 ≥ 1
then replace the degree sequence by {d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn}; essentially connect the vertex with
highest degree to those others with next highest degrees, then eliminate d1 from the sequence, reorder the new sequence
(if necessary) in decreasing order, and take this as the new sequencewhichwe need to check to see if it is graphic. Apply this
process recursively. If this can be done until one arrives at a sequence consisting entirely of 0’s then the sequence is graphic.
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Fig. 1. A minimal graph for the target 8886632211 separating the Joiners V1, the Breakers V2, Neutrals joined to at least one Breaker and thus all Joiners
V3, and Neutrals not joined to any Breaker V4. The numbering is as in Theorem 7; there is no set V5.

4.2. Reordered Havel–Hakimi algorithm

We introduce a new algorithm which is a slight modification of the Havel–Hakimi algorithm which has an easier appli-
cation in subsequent proofs. In the Havel–Hakimi algorithm one reduces the elements in positions 2 through d1 + 1 by one,
and then reorders to obtain a decreasing sequence. Reordering is required if there is a substring of the original sequence, s,
of more than one equal elements which begins at, or before, the d1 + 1’st element and extends beyond it. Here we avoid the
reordering step in the above case by instead subtracting ones from the elements at the end of this string s.

Formally, suppose one has a sequence of degrees d = {d1, d2, . . . , dn} where dj ≥ dj+1 for 1 ≤ j ≤ (n − 1). If dd1+1 ≤ 0
then the sequence is not graphic. Assuming d1 > 0, if dd1+1 ≥ 1 specify e and f such that dd1−e+1 > dd1−e+2 = dd1−e+3 · · · =

dd1+1 = dd1+2 = · · · = dd1+f+1 > dd1+f+2. Note that e ≥ 1 is the number of terms with value dd1+1 which would be
decremented in theHavel–Hakimi algorithm and f ≥ 0 is the number of such values beyond the dd1+1 term. Now replace the
degree sequence by {d2−1, d3−1, . . . , dd1−e+1−1, dd1−e+2, dd1−e+3 . . . dd1−e+1+f , dd1−e+2+f −1, dd1−e+3+f −1 . . . dd1+1+f −

1, dd1+2+f , . . . , dn}.
It is clear that the above algorithm provides necessary and sufficient conditions for a graphic sequence in the same way

as the Havel–Hakimi algorithm (although it does not necessarily produce the same graph).

4.3. Variant of Havel–Hakimi and reordered Havel–Hakimi algorithm

We now introduce a variant which delivers the minimal deviation of the sequence. If we have non-increasing sequence
{d1, d2, . . . , dn} at some stage, then suppose k = mini{di = 0}, if k < d1 +1, then add 1 to the elements di for k ≤ i ≤ d1 +1
(note that this necessarily preserves the ordering), and proceed with the H–H or reordered H–H algorithm. The algorithm
will not fail at any stage, and will generate a sequence of sets of vertices to which 1’s have been added.
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Definition 8. The Havel–Hakimi Score is the total number of 1’s added during the variant algorithm.

For a sequence uwe will denote the Havel–Hakimi Score by sHH(u).
We shall prove below that the H–H score is the score of the sequence.
We should note also that the sets of 1 which are added during the algorithm allow us to define a sequence of modified

sequences, the final one of which is graphic. Suppose that if at some stage of the algorithm we need to add 1’s to a number
of vertices for i ∈ T then we define a vector t = (t1, t2, . . . , tn) where ti = 1 for i ∈ T and 0 otherwise. If T = φ then we
have a vector of 0’s. Note that the 1’s are added to consecutive elements of the sequences during the algorithm, and that it
will never subsequently affect vertices to which 1’s need to be added, as these are always 0 at the end of the sequence, and
will still be 0’s after the removal of the leading term. Suppose that wr is the sum of the vectors t used in the first r steps of
the algorithm, andmr is the sum of the elements ofwr. Then d + wr has deviation dm − mr .

Theorem 8. The HH-score equals the score of the sequence; i.e. the modified algorithm produces a minimal graph.

Proof. Consider the set Sn of nonnegative integer sequences of length n. For u, v ∈ Sn recall z(u, v) = Σi|ui − vi|.
Consider one of the algorithms above. For u ∈ Sn this will produce a unique value, defining the function sHH(u). Now

if for some v z(u, v) = 1 then the vectors u and v are identical in every entry except one, where their elements differ by
1. Suppose w.l.o.g. that vk = uk + 1. Applying the algorithm either (i) k = 1 and subsequently the vectors are identical
except at index 1 + vk where they differ by 1, (ii) k > 1, vk < vk−1 and subsequently the vectors are identical except at
index k where they differ by 1, (iii) k > 1, vk = vk−1 and subsequently the vectors are identical except at precisely one
index between 2 and k. Thus the difference of 1 is preserved. This process is repeated until a zero term has a 1 added in one
sequence and not the other (sometimes there will be an identical number of zeros with one added in each sequence) after
which the sequences will be identical, but with one more 1 added to one than the other. Thus |sHH(u) − sHH(v)| = 1.

It follows that for all u, v ∈ Sn, z(u, v) ≥ |sHH(u) − sHH(v)|
since if we have u, v ∈ Sn with z(u, v) = k
there is a path u = z1, z2, . . . , zk−1, v = zk where z(zi, zi+1) = 1, and

z(u, v) =
k−1
Σ
i=1

z(zi, zi+1) =
k−1
Σ
i=1

|sHH(zi) − sHH(zi+1)| ≥ |
k−1
Σ
i=1

(sHH(zi) − sHH(zi+1))|

with equality iff all (sHH(zi)−sHH(zi+1)) = 1 or all (sHH(zi)−sHH(zi+1)) = −1. Now any graphic sequencew has sHH(w) = 0,
so z(w,u) ≥ sHH(u) and since d(HH(u),u) = sHH(u) we have HH(u) as a minimal graphic sequence for u. �

5. Hässelbarth and Ruch–Gutman

In this sectionwe demonstrate how the graphs of theminimal set are related to certain Ferrer diagrams. Given a sequence
u ∈ Sn then its conjugate v is defined by vi = #{j : uj ≥ i} (where ‘‘#’’ means ‘‘the number of’’) for i = 1, . . . , u1. Note that
this is a bijection. Thus, following the example in [5], if u = (4, 3, 3, 2, 2, 2) then v = (6, 6, 3, 1). These quantities relate to
the Ferrer diagram (see for example [7]), the lengths of the rows are equal to the ui’s, the conjugate v lists the lengths of the
columns, while f(u) = #{i : xi ≥ i} is the length of the diagonal, which is referred to as the Durfee Number, since the largest
square within the Ferrer diagram is called a Durfee Square.

Suppose we have some u, and hence f(u) = λ say, and v. Now define uλ
= {u1, u2, . . . , uλ} and vλ

= {v1, v2, . . . , vλ}.
This pair {uλ, vλ

} ⇔ u, and are sometimes easier to work with.

Theorem 9 ([6]). Ruch–Gutman Theorem:-if u, with conjugate vector v, is such that Σiui is even, then u is graphic if, and only
if, Σk

i=1ui ≤ Σk
i=1(vi − 1), 1 ≤ k ≤ f(u).

Definition 9. If a and b are n-vectors with elements arranged in decreasing size, then a is said to majorise b [7], which we
write as a ≻ b, if for all 1 ≤ m ≤ nwe have Σm

i=1ai ≥ Σm
i=1bi.

In terms of majorisation we can state the Ruch–Gutman theorem, as the following:-

Theorem 10. Ruch–Gutman Theorem:- A sequence u is graphic if Σiui is even and vλ
≻ uλ

+ 1λ, where 1λ is the unit vector of
length λ.

Definition 10. The Deficit Vector for a target u is a vector d = {d1, d2, . . . , dλ}. Suppose e = {e1, e2, . . . , eλ} where
ei = maxj≤i[0, Σr≤j(ur + 1 − vr)], so the ei are the nonnegative record values. Now define di = ei − ei−1, for i = 1, . . . , λ
where we take e0 = 0.

Definition 11. The Extreme Vectors for a Target u are v + d and its conjugate. We write these as v∗ and u∗ and refer to
them as the extreme v-vector and the extreme u-vector.

Definition 12. The Deficit is the sum Σidi.
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The deficit for a target is necessarily equal to the score defined earlier, and to the HH-score.

Definition 13. For a specific target u, there being n elements, a vector d = {d1, d2, . . . , dλ} is said to be acceptable for u if
v1 + d1 ≤ (n − 1) and the elements of vλ

+ dλ are non-increasing.

Definition 14. The Deficit Set for some target u is the set of vectors {T(u) = {z = {z1, z2, . . . , zλ}, Σλ
i zi = Σλ

i di|z ≻

d ; z acceptable for u}, where d is the deficit vector for u.

The deficit set T(u) identifies the set of Ferrer diagrams for which the corresponding graph has a deviation equal to the
deficit for the specified target, and in which only Breakers are present. Corresponding to each element of T(u) there is an
n-element vector v and its conjugate u. Note that given u and its conjugate v, if the conjugates of u + g and of u + h, are
v + r and v + s, then r ≻ s ⇔ h ≻ g .

5.1. The structure of T(u)

Theorem 11. If for some u we have corresponding deficit set T(u), then if z ∈ T(u) and z∗
∈ T(u), where z ≻ z∗, there exists a

sequence {ζi} with ζi ∈ T(u) for i = 1, 2, . . . , r, where ζ0 = z, ζr = z∗, and ζi+1 − ζi ∈ 1 the set of vectors of length n where
there are n − 2 elements equal to 0, one equal to −1 which occurs earlier than one equal to +1.

Proof. Suppose we have distinct φ ∈ T(u) and φ∗
∈ T(u), where φ ≻ φ∗. We observe first that since φ and φ∗ are distinct

and φ ≻ φ∗ it follows that φi = c for all i and some c is not possible, and that if φi = a, i ≤ j and φi = b, j < i ≤ n, then
a ≥ b + 2.

Define y = mini{(φi > φ∗

i )


(φi > φi+1)}, z = mini{(i > y)


(Σ i
j=1φj = Σ i

j=1φ
∗

j )}, which implies that φz < φ∗
z , and

x = mini{(z ≥ i > y)


(φi = φz)}. We have that y < x, φy−1 ≥ φy > φy+1, φy > φ∗
y , (Σ

j
i=1 φi > Σ

j
i=1 φ∗

i ) ∀y < j < x,
φx−1 > φx ≥ φx+1 and φx < φ∗

x . Note that in the case where y = x − 1 we have that φy ≥ φx + 2. These conditions imply
that f (φ, φ∗) = φ − δy + δx is acceptable and that φ ≻ f (φ, φ∗) ≻ φ∗.

Suppose now we take ζ0 = z and ζi = f (ζi−1, z
∗) for i > 1 then for some r we will obtain ζr = z∗, as required. �

Further it is clear that there is no s ∈ T(u)with ζj−1 ≻ s ≻ ζj. Note also that the sequence defined in the proof is uniquely
defined, though there may be other sequences {χi} with (χi − χi+1) ∈ 1 which run from z to z∗, necessarily with r terms.
The value of r is simply half the distance between ζ and ζ∗ since the distance is reduced by 2 at each step.

Corollary 11.1. In the notation of Theorem 11 suppose z∗
= u∗, where u∗ is the extreme u-vector, then the above process defines

for each z ∈ T(u) a unique sequence in which each element covers the next, starting from z. There is a corresponding sequence
v + ζi and the conjugates of these ηi say, have ηi+1 ≻ ηi and ηr = u∗, and ηi − ηi+1 ∈ 1.

Example 1. Suppose we have z = {77666433333311} and z∗
= {77654444432222}; note that Σ

j
i=1 zi = Σ

j
i=1 z

∗

i for j = 9
and j = 14. This implies that the earlier iterations deal with the first 9 elements and then later iterations deal with the
final 5. The distance between z and z∗ is 10 so 5 steps are required. The steps define a sequence {77666433333311}− >
{77665443333311}− > {77655444333311}− > {77654444433311}− > {77654444433221}− > {77654444432222}.

5.2. Notation

Rather than write out u = {u1, u2, . . . , un} we shall specify x = {x1, x2, . . . , xm} where the xi’s are the lengths of the
downward runs in the Ferrer diagram progressing from the right to the left, and y = {y1, y2, . . . , ym} where the yi’s are
the lengths of the sideways runs in the Ferrer diagram progressing from the lower to the upper part. Thus for the simple
example above where u = {4, 3, 3, 2, 2, 2} we have x = {1, 2, 3} and y = {2, 1, 1}. Now if we write ν = {ν1, ν2, . . . , νm}

where νi = Σm+1−i
j=1 yj then we write νx

= {ν
x1
1 , ν

x2
2 , . . . , νxm

m }. Thus for the particular u here we can write νx
= {41, 32, 23

},
which by a slight abuse of notation we shall denote as u. Similarly if τ = {τ1, τ2, . . . , τm}where τi = Σm+1−i

j=1 xj we canwrite
the conjugate of u as τy

= {τ
y1
1 , τ

y2
2 , . . . , τ

ym
m }, and so here we write v = {62, 31, 11

}.

Example 2. n = 26, u = {252, 241, 205, 142, 98, 71, 63, 51, 41, 12
} (Note that the sum of the elements of u is even)

and hence v = {261, 243, 231, 221, 191, 182, 105, 86, 34, 21
}. Note that we could have instead used λ = 10, uλ

=

{252, 241, 205, 142
} and vλ

= {261, 243, 231, 221, 191, 182, 101
}. Now we have e = {0, 2, 3, 3, 3, 3, 3, 3, 3, 4} and so the

deficit vector d = {0, 2, 1, 0, 0, 0, 0, 0, 0, 1}.

We now demonstrate how to generate all possible graphs with minimum score, and prove that this set is connected
under the permitted transitions in Theorem 13. Our technique is to increase appropriately the elements of vλ, so that the
Ruch–Gutman criterion is satisfied, and then form the conjugate of this modified vector. This will be a graphic sequence at
distance d from the target, with a set of Breakers, and no Joiners. We can then proceed iteratively, see the algorithm below,
to obtain all possible graphic sequences at minimal distance from the target.



710 M. Broom, C. Cannings / Discrete Mathematics 338 (2015) 701–711

Example 2 continued. vĎ = vλ
+ d = {26, 26, 25, 24, 23, 22, 19, 18, 18, 11} which implies that the modified u becomes

uĎ
= {252, 241, 205, 142, 10∗, 97, 7, 63, 5, 4, 3∗, 2∗

}, where the elements which differ from u have been marked with ‘‘∗’’.
There are thus three Breakers (onewith an excess of two) for this particular graphic sequence vis-a-vis the target. The process
of selecting those elements ofT(u)which are valid increments is not straightforward since itmust be donewhilemaintaining
the restrictions on the vectors; not exceeding n and maintaining the ordering of the elements. Thus for example here we
may not choose d = {4, 0, 0, 0, 0, 0, 0, 0, 0, 0} since then v1 + d1 = 29 which exceeds n nor d = {0, 3, 1, 0, 0, 0, 0, 0, 0, 0}
since we have v2 + d2 = 27 > v1 + d1 = 26 and the second element of vĎ exceeds the first, i.e. violates the required
ordering.

5.3. Odds and evens

Recalling that the sum of the degrees of a graph is necessarily even we need to allow for this in our process. If the deficit
is zero and the sum of the ui is even then the target is a graphic sequence. If the deficit is odd and the sum is even, or if the
deficit is even and the sum odd, then we need to adjust the deficit by one. The current example has even sum for u and even
deficit so no adjustment is necessary.

Example 3. ‘‘Odd’’ total: n = 10, u = {9, 8, 8, 6, 6, 5, 5, 3, 3, 2} the total being odd.

Using the formulae given in Section 5.2 we have u = {91, 82, 62, 52, 32, 21
} so x = {1, 2, 2, 2, 2, 1} and y =

{2, 1, 2, 1, 2, 1} so v = {102, 91, 72, 51, 32, 11
}. Now the deficit vector is {0, 0, 0, 0, 0} and the deficit 0. We need to adjust

both u and v by one. We can change uλ by a suitable reduction to an element of {9, 8, 8, 6, 6}, so the possibilities are
{8, 8, 8, 6, 6}, {9, 8, 7, 6, 6} or {9, 8, 8, 6, 5}, by a suitable increase to {9, 9, 8, 6, 6} or {9, 8, 8, 7, 6}, or by a reduction to
v to {10, 10, 9, 7, 6}, {10, 10, 8, 7, 7} or {10, 9, 9, 7, 7}. Thus there are seven minimal graphs in this case.

5.4. An algorithm based on the Ferrer diagram

The set of graphs with minimal distance from the target can be generated sequentially from the deficit vector.
Having calculated the deficit vector we can generate the set of Ferrer diagrams corresponding to minimal graphs with

no Joiners, as illustrated in the example above. We build up the complete set of Ferrer diagrams for all minimal graphs for
the given target. Each operation corresponds to breaking one of the edges from a current Breaker, that is, using a standard
transition step.

In these diagrams we differentiate between the points which belong to the target, referred to as target points, and those
which have been added in accordance with the deficit, referred to as deficit points. Any point which has no other point
below it and none to the right of it will be referred to as a corner; again we differentiate between target corners and deficit
corners. At every stage we number the target corners with the number of the row in which it occurs, and the deficit corners
with the number of the column in which it occurs, counting from the bottom left of the diagram. We move to another valid
graph with minimal score by (1) removing a deficit corner with number i ≤ λ and then (2) removing a target corner with
number j with i ≤ j ≤ λ.

We now prove, in Theorem 13, that the set of Ferrer diagrams generated by the above algorithm contains all possible
such diagrams for the specific target, that is, identifies all minimal graphic sequences.

Theorem 12. Given any target u the set of sequences corresponding to the elements of T(u) are connected under valid transitions.

Proof. We established in Theorem 11 that for any target u and z ∈ T(u) if uĎ is the conjugate of v∗
+ z there is a sequence

of elements {η0 = uĎ, η1, . . . , ηr = u∗
} where ηi − ηi+1 ∈ ∆. We prove here that there is a realization of these sequences

by constructing a sequence of graphs.
In the case where every Breaker is linked only to saturated vertices there is only one possible minimal graph with only

Breakers, so there is nothing to prove.
Consider a graph x whose degree sequence is ηi. Suppose that in x there is a vertex k which is a Breaker and such that

there is at least one vertex l, where (k, l) ∈ E, which is not saturated; recall each vertex is either a Breaker or Neutral for
elements of T(u). A valid transition will remove the edge (k, l) where l is Neutral in x. In the resulting graph l is a Joiner and
so a further valid transitionwill join l to some j ≠ kwhich then becomes, or remains, a Breaker. This new graph, y, has degree
sequence ηi+1, differing from ζi by +1 in position j and by −1 in position k. Further the pair of transitions can be applied in
reverse order from y to x. It follows that any pair ηi and ηi+1 are connected in both directions and hence connected to u∗.
Thus all elements of T(u) are connected. �

Theorem 13. The set of Ferrer diagrams for minimal graphs with respect to a target is connected under valid transitions.

Proof. Given any Ferrer diagram of a minimal graph we have a corresponding specification of the Breakers and Joiners. We
can repeatedly join vertices, using the Joiners, until we reach a graph with all Breakers. By Theorem 12 we have that these
are connected, hence all Ferrer diagrams are connected. �
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Theorem 14. The set of minimal graphs is connected, except when the deviation is zero.

Proof. We have proved that the set of Ferrer diagrams is connected under appropriate moves. However, the Ferrer diagram
may correspond to more than one graph. We prove that if we have two distinct graphs with the same degree sequence then
they are connected under the allowable transitions.

Suppose that we have two graphs which have no Joiners and with identical degree sequences. We will refer to these
as the red and the blue graphs. From these we construct a new graph with the same vertex set and consisting precisely of
edges which are present in one of the graphs but not the other, and with edges coloured as per the graph they belonged
to. Now in this new graph each vertex has equal numbers of red and blue edges incident on it. First we consider the set of
vertices which were Neutral in the original graphs. We take any such vertex and construct a path of alternating red and blue
edges continuing until this path is closed by returning to the initial vertex, necessarily along a blue edge. We can repeat this
operation until we have exhausted all the vertices and edges at which stage we have a set of alternatively coloured cycles.

We begin by demonstrating that we canmake transitions to the red graphwhich change all the Neutral vertices tomatch
those in the blue graph.We take a cycle. There are two cases to consider. (1) If this cycle has a vertex i joined to some Breaker
in the red graphwe break that link thusmaking i a Joiner and then proceed around the cycle first joining along the blue edge
creating a Breaker while i becomes Neutral again, then along and removing the next red edge creating a Joiner and leaving
a Neutral behind. This continues until i is reached again at which stage it is a Joiner and is then joined back to the original
Breaker. We have removed all the blue edges of the cycle and created the red edges. (2) If the cycle has no vertex joined to
the Breakers we then proceed as follows. Pick any Breaker and choose one of the Neutrals to which it is linked, break that
link creating a Joiner which is then joined to the cycle in question, now proceed around the cycle and back to the Breaker
through its link.

Repeating the above processes until there are no cycles remaining gives us a new red graph which has exactly the same
subgraph on the Neutrals as the blue graph. The only edges differing now are from Breakers to Neutrals, and again we
consider these as red and blue edges. Any Neutral has an equal number of red and blue edges to the set of Breakers. Choose
a Neutral together with an incident red and blue edge. The Breaker on the red edge can break that edge and then the Joiner
created can join along the blue edge. Repeating this step moves the red graph to the blue graph. �

6. Discussion

In this paper we have initiated the study of, what we have termed, graphic deviations; the distance of the nearest graphic
sequences to some specific target sequence (or sequence set).We have addressed a number of problems but there are clearly
many interesting issueswhichmight be examined. Canwe find the score for certain classes of targets? Canwe say something
about the graph ofminimal graphs for a specific target, its size, diameter? Canwe say something about the longest path from
any graph to a minimal graph?

In the main we have discussed the situation in which each individual (vertex) has an exact target (desired degree). More
generally each individual has a range of acceptable degrees, (mi,Mi) for individual i. While Theorems 1, 2 and 5 apply in this
general context, our later theorems do not. We shall present appropriate generalizations in a later paper.

The originalmotivation for considering this problemwas the idea thatwithin a population individualsmay have different
ideal numbers of links, and that individuals are repeatedly attempting to make or break links to get nearer to their target.
We have proved here that the graph of links will under this scheme steadily approach a member of the set of minimal
graphs, and then remain in that set. In [1] we discuss the Markov Chain which results when we attach a probability to the
selection of the next individual who attempts to change their score. We discuss the limiting distribution for this process,
demonstrating that the process is reversible which allows relative probabilities to be easily computed for the final states. As
opposed to in this paper, where we are interested in whether given paths between states exist, in our Markov Chain model
the probabilities involved (e.g. the probability that an individual is selected, the probability that it forms/ breaks a link) are
important to the outcome of the process. As well as finding general results, we explore special cases such as when each
individual is selected with equal probability, and asymptotic results where the population is large but the vast majority are
Joiners (Breakers).
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