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ABSTRACT. Animal (and human) populations contain a finite number of indi-
viduals with social and geographical relationships which evolve over time, at
least in part dependent upon the actions of members of the population. These
actions are often not random, but chosen strategically. In this paper we in-
troduce a game-theoretical model of a population where the individuals have
an optimal level of social engagement, and form or break social relationships
strategically to obtain the correct level. This builds on previous work where in-
dividuals tried to optimise their number of connections by forming or breaking
random links; the difference being that here we introduce a truly game-theoretic
version where they can choose which specific links to form/break. This is more
realistic and makes a significant difference to the model, one consequence of
which is that the analysis is much more complicated. We prove some general
results and then consider a single example in depth.

1. Introduction.

1.1. Modelling populations. When modelling biological populations, inevitably
many simplifications are made. Until recently, most evolutionary models (e.g. [19,
20, 21, 29, 30, 25, 26]) have considered an infinite well-mixed population where all
individuals interact. Whilst the assumption of infinite size can often be reasonable,
there are also important differences between finite and infinite populations, and
important work on finite populations includes the classical mathematical genetic
models of [16] and [52], as well as the evolutionary game model of [48].

Real populations are also not homogeneous, containing a population structure,
and this has been incorporated in various ways. Models incorporating such structure
include genetic models based upon a number of sub-populations [53, 27, 33, 10], and
more general models of evolution on a graph originating with [28] and discussed in
Section 1.2. Here we consider a model introduced in [6] in which “evolution” takes
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place on the class of graphs with a fixed number of vertices, the set of edges changing
according to choices made by the vertices. Details are given in Section 1.3.

1.2. Background literature. A simple graph G = (V, E) is a set of vertices and
a set of unordered pairs E C V «V with (i,7) ¢ E. Vertices are considered indistin-
guishable if they have no special type over and above properties resulting from the
graph itself, e.g. degree. When considering some evolutionary process for graphs
where vertices represent individuals and the edges are links there are several levels
of complexity, depending on whether the vertices are distinguishable, whether the
edges are fixed, whether the numbers of vertices and or edges changes. There can
be various dependencies between the vertices and edges.

It is often desired to generate a random sample of members of some class of
graphs. For example, one would like to generate elements of the set of r-regular-
graphs on n nodes. Here the vertices are indistinguishable and the number of
vertices fixed. Discussion of this can be found in [4]. In [3] the graph at some time ¢
grew by the addition of vertices and edges. New vertices were added one at a time,
the one added at time t + 1 was linked to some “c” of those at time ¢, these latter
vertices being chosen with probabilities proportional to the degrees of the vertices
at time ¢. This gives rise to a power law distribution of degrees, see [5] for rigourous
derivations.

A third possibility is that the graph grows by some reproductive process. Graph
theory has introduced a number of products which form a new graph from two
earlier ones. For example, the tensor product of graphs G(V, E) and H(W, F) is the
graph M = (V « W, G) where ((v1,wl), (v2,w2)) € G, if, and only if, (v1,0v2) € E
and (wl,w2) € F. Another approach is that of [44, 45, 46]. In their model each
vertex at time ¢ produces an “offspring”, current edges are retained and then edges
are formed between the vertices at ¢ and those at time ¢t + 1 according to some rule.
This process grows indefinitely, and the authors track various properties such as
chromatic number and diameter through time.

In contrast to the models above, the vertices may possess a type, which may
change during time. In many of these latter models there are two types in the
population (resident and mutant), and the state of the population, the set of mutant
individuals, say, evolves according to an evolutionary dynamics. As per Moran’s [33]
model individuals are selected, according to some fitness dependent on type, and
they replace one of their neighbours chosen at random. The most important feature
of such populations is the fixation probability, the probability that a randomly
placed mutant will eventually replace the resident population [2, 9].

We note that for real populations both of these features change, and there has
been much research considering the way in which the interactions of the individuals
at the vertices affect not only their type but also the structure of the network, see
for example [47]. The growth and structure of the graph can be dictated by an
evolutionary game, and in particular by the prior interactions of individuals, as in
[36, 37]. Here links are formed or broken at rates which depend upon the types of the
individuals, and the authors consider an evolving population where evolutionary dy-
namics happen on a slower timescale than the linking dynamics. Alternatively [43]
considered various dynamic models of network formation assuming reinforcement
learning. A model where it is not past interactions but reputation that influences
structure is given by [17], and one where prosperity influences the structure is given
n [12]. A good review of work in this area up to 2010 is given in [39], while a more
recent but less specific review is in [1]. An example of more recent work is [40]



GAMES ON DYNAMICALLY EVOLVING NETWORKS I 287

who discussed such co-evolutionary models examining the prisoner’s dilemma and
the snowdrift game, together with the Birth-Death process. As stated in [1], while
the details of the above models vary, a common theme to many is that cooperative
behaviour is easier to achieve when cooperators can group themselves together and
exclude defectors effectively.

In this paper, following on from [6], we consider networks of individuals repre-
sented, as in evolutionary graph theory, by a simple graph. The population itself will
not evolve, i.e. its composition does not change since there is no birth or death of
individuals, but the connections between individuals will change according to their
preferences and strategic decisions. The emphasis of our paper is the evolution of
the structure itself, and although there may be many types of individuals (a type
being its targeted number of neighbours) our process is thus not co-evolutionary, as
the types do not change. Our process could be considered as a detailed examina-
tion of a snapshot in evolutionary time of a more complicated version of the type
of model from [36, 37], and it would be possible to embed our model into such an
evolutionary scenario.

The kind of networks that we consider arise naturally in many contexts includ-
ing in biology, economics and sociology, and this is the subject of a lot of recent
research interest. Example networks are companies which trade with each other in
economics, individuals who are friends in sociology or the owners of neighbouring
territories or food webs ([15]) in biology. In social animals there are dominance and
mutualist interactions and, for example, primate social structures can be complex
and influence key behaviours such as the level of cooperation ([49, 50]).

Populations can also change in important ways over short periods of time. A
population of animals may contain individuals with different degress of desire to
interact with others. This phenomenon is called “sociability” and has been in-
vestigated in various species. Examples of such differences include (non-human)
primates [11], bottlenose dolphins [51], [13] and sheep, where different individuals
differ in how close they want to be to other flock members [42].

In these examples there are temporary links between individuals. The probability
of a link existing between a pair of individuals will in reality often be affected by
the relatedness of those individuals, by their genders, by dominance relationships or
by spatial factors. In the bottlenose dolphin case the links are reciprocal, whereas
in others they might be initiated, or broken, by the action of one individual only.
Similarly the absence of a connection may benefit one but not the other (for example
a female and a poor quality male). An important related area of research is that
concerning biological markets and partner choice [34, 35].

In this paper we do not model such complex behaviours, but simply the network
of interactions. Individuals (vertices) in our networks are distinguishable only by
the number of links they would like to form with others. Each individual will want
to make changes which improve its number of links, but since all links involve two
individuals, the actions of others can make an individual’s situation worse. The key
difference with previous work [6] is that individuals will not just choose a random
action which improves their situation in the short term, but will strategically choose
which individuals are best to link to/ break from. As we shall see, this makes the
situation much more complex.

1.3. A dynamic network population model. In [6] we considered a popula-
tion of individuals represented by the set V = {1,2,...,n} and the simple graph
G = (V,X) where X = (2;;)i£j=1,..n described the links/edges between pairs
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of individuals with x;; = 1 if there is a link and z;; = 0 otherwise. In partic-
ular we considered a random process in discrete time on the evolving edge set
Xt = (2ijt)i,j=1,..n, where the subscript ¢ indicates that this is the edge set at
time ¢t. Throughout the paper we shall use the same terminology, but we shall
often drop the subscript ¢ when we describe features of the process that are not
time-dependent and this causes no ambiguity. In [7] we investigated the possible
paths and end states of the process. We describe the process below.

At any given time ¢ individual ¢ had a number of edges e; ; to other individuals,
and the vector ey = (1,4, €2y, ..., en,1) was referred to as the sequence eg.

At each time point an individual was chosen and allowed to add or remove an
edge. Each vertex had an acceptable range [m;, M;] of edges to other vertices, where
0<m; <M; <n—1. In much of the work m; = M; = t;, with t; denoted as the
unique target of 4, and this is the situation in the current paper.

If ¢ was selected with e; < m; (such a vertex is referred to as a Joiner) then it
formed a new edge, connecting to one of the other vertices it was not connected
to at random. If e; > M; (a Breaker) then it broke one of its edges at random.
Otherwise, it neither created nor broke an edge (a Neutral vertex).

At successive time points, a vertex was chosen at random, with ¢ being selected
with probability p; > 0, and an edge (potentially) changed following the above,
yielding a homogeneous Markov chain.

The transitions at time ¢ depended upon ¢ only through the state, i.e. the process
was homogeneous, and were defined as follows:

1) For any x* which differs from x in a single entry, where z;; = 0, zj; = 1 for some
VR

. 1 ) 1 . e .
pzn—l—eq, +p] n—l—e; € < My, €5 < m;

1
Pin—i—e, ei <My, ej = m;
P(XtJrl :X*|Xt :X) = n 11 €i ¢ vy J
Pin=i=e; e; = mj, ej < m;
0 €; zmi,ej ij.

2) For any x* which differs by x in a single entry, where z;; = 1,z}; = 0 for some
0],
Pz% +pj;j e; > M;,e; > M;
1

L ei > M;,e; < M,
pj?j €; §Mi,ej >Mj
0 €; SMZ‘,GJ‘ §MJ

3) Similarly for any other x*, differing from x in two or more entries,
P(Xt+1 = X*|Xt = X) =0.

The probability of the sequence being unchanged is simply 1 minus the sum of the
above probabilities.

2. An overview.

2.1. A brief synopsis of previous papers [6] and [7]. In [7] we studied graph
theoretic aspects. We give a brief outline here in order to inform the current work.
We introduced the notions of the deviation of a graph from a given target and the
score of a sequence.
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Definition 2.1. The deviation of individual /vertex 7 is denoted as €; ; = max[(m; —
eit), (eit — M;),0], and the deviation of the above graph Xy is defined as the sum
of the vertex deviations, Ty =Y., , €.

Definition 2.2. There is clearly a minimum value of the deviation for any given
collection of the ranges [m;, M;], and this is termed the score.

For unique targets with m; = M; = t;, if the score is 0 the sequence is called
graphic and there is a lot of work on such sequences, see e.g. [22],[18],[23],[32],[41].

There will be a set of sequences, and a corresponding set of graphs, which achieve
the score. In [7] these were termed J(min) and K(min) respectively, and it was
proved that there is always a path of allowable moves enabling the process to reach
a member of the minimal set, K(min). Since the process could never increase the
deviation of the graph, once J(min)/K (min) is reached, that set cannot be left.
It was proved that for non-graphic sequences K (min) was connected, so that the
process always converged to a unique closed set of states. Note that this is not true
for graphic sequences, where |J(min)| = 1 but K(min) will often have more than
one element (e.g. for (1, 1, 1, 1) we have |K(min) = 3|), since once the mimimal
set is reached there will be no transitions, so no pair of elements of K (min) are
connected. Finally in [7] we demonstrated how to find the score of any sequence
using a modified Havel-Hakami algorithm [18],[23], and how to find all members of
K(min) (and hence J(min)) using the methodology of Ruch-Gutman [41].

In [6] we considered the Markov chain itself. We considered the Markov chain
over K (min), since all states not in this set will be transient following the above.
We showed that the process was reversible and so in detailed balance, which thus
yielded a unique stationary distribution over K(min). We then demonstrated a
method to find this stationary distribution.

We considered some specific classes of sequence, in particular arithmetic se-
quences and all or nothing sequences, and in particular gave a form for the sta-
tionary distribution of the latter for an arbitrary number of vertices. We revisit the
former in the current paper.

2.2. Current and future work. The current paper considers detailed aspects of
the structure of K (min). In [7] we proved certain restrictions to exist on the its
elements, e.g. that for any such graph we know that all Joiners (that is vertices
have degree less than their target) must be joined. Here we extend such analysis to
consider the possible sequences of Joiners, Breakers (vertices with degrees greater
than their target), and Neutrals (the remaining vertices) through time. Vertices
fall into four classes; those which are always neutral, those which are never Joiners,
those never Breakers, and those which can be either Joiners or Breakers. We specify
rules regarding the possible sequences of class memberships of the vertices as we
move through the monotone decreasing of targets.

We then consider a model, which in contrast to those of [6] and [7] considers the
possibility that the individual at a vertex may choose between the available possi-
bilities according to some aspect of the future costs at that vertex. We have chosen
to consider the case where an individual is capable of calculating the stationary
distribution which will result from various changes. We discuss various criteria for
switching including some where an increase in costs is possible. For systems where
the calculation of the stationary distribution is not reasonable we introduce two
threshold models, basing their decision on a recent sequence of states.
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In Section 5 we counsider a specific example (target {4,3,2,1,0}) calculating for
each of the 64 strategy combinations over the minimal set, the payoff for each
possible switch. We consider cases where a switch can only occur if there is a cost
lower than the current one, cases where switches are possible when the cost is no
bigger, and cases where there is a cost incurred in switching. We identify multiple
pure Nash equilibria.

We consider two models which do not require the evaluation of the station-
ary distribution, rather being based on estimates from recently visited states, and
thresholds for switching. These show different behaviour to the full model.

A number of questions have been left open here. We have discussed in detail but
not resolved the question of what can occur under “non-strict” moves, i.e. those
which allow individuals not to make their deviation as small as possible at every
opportunity.

In this paper we have thus focused on two main issues; the structure of the
minimal set K (min), which we expect most processes to converge to, and the intro-
duction of strategic movement. The latter in particular is complicated and hard to
deal with in generality, and so we have restricted ourselves to considering one ex-
ample in detail, and demonstrating the important concepts to consider in any more
extensive analysis. From this paper we see this complexity, but also that strategic
choices lead to clearly different results than the simply random process from [6].

We shall discuss in a subsequent paper [8] certain classes of targets, especially
those with score 1. These are the closest sequences to graphical sequences, and
yield certain simplifications that will make them more amenabe to analysis. This
will also involve the consideration of cases with mixed Nash equilibria.

3. A strategic model. In the model from Section 1.3 each individual has a target
number of links, specified by the vector t. The graph updates through a two stage
process, where a random individual is selected to update its links, and if it is below
(above) its target number of links, it picks a random link to form (break). There is
no strategic element to this process, which evolves as a Markov chain.

However, it may be that it is advantageous to form/break some links rather
than others. For example it would be better to form a link that is less likely to
be immediately re-broken, either because the change made is for mutual benefit or
because the individual linked to would be likely to break another link when given
the choice (through its own preference, or if it has many links that it can break).

3.1. Strategies. The population state is denoted by the edge set X as before. In
each state any individual can be selected to change one of their edges. They have n
distinct (pure) choices, to change their edge to any of the other n — 1 individuals,
or to make no change. We shall denote the probability that individual ¢ chooses to
change edge x;;, conditional on ¢ being selected to make the change, by w;;, with
u;; denoting the probability that no change is made. We have the following pure
strategies: individual ¢ chooses to change edge x;; is denoted by wu;; = 1, and ¢
making no change is denoted by u;; = 1. Thus we can write all selected changes in
the form of a matrix U, with U having row sums equal to 1.

The strategy matrix U depends upon the state X, and so the full set of strategies
of the population is denoted by Ux (similarly its elements by wu;;(x)), where the
strategy of individual 7 is represented by the set of ith rows of this collection of
matrices. For any x* which differs from x in a single entry, where z;; = 0,z}; = 1
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— * 3 N o
or z;; = 1,zj; = 0 for a given 1, j,

Uij(X) T Ujix) (1)
n

In [6] the only changes made were to reduce the deviation of the individual where
possible, and to not make any change if this was not possible (even if some changes
allowed the deviation to stay the same). We shall call any move which decreases
this deviation an improving move, any one that increases it as a worsening move
and a move which does not change the individual’s deviation is termed a neutral
move. In the current paper we assume a unique target t and so every actual change
either increases or decreases the deviation of the selected individual. Thus the only
neutral move is making no change. We shall denote as the strict system the case
where an individual must make an improving move if at least one exists and cannot
make a worsening move, i.e. if only neutral and worsening moves exist, it must
make a neutral move.

Individuals which are rational but could only see the immediate consequences of
any changes would follow the strict system, and it seems logical that real systems
would often follows these rules. One consequence of following the strict system
is that the score cannot increase. Thus for the strict system, u;; = 0 whenever
x5 = 0,e; > t; or x;; = 1,e; < t;, as this change would involve a worsening move.
The simple “strategies” used in [6] are consistent with the strict system, for example
If we allow non-strict moves, our analysis can be significantly complicated, as we
see later in Section 3.

P(Xt+1 = X*|Xt = x) =

3.2. Payoffs. Individuals want to minimise their deviation, and we shall denote
their payoff as the negative of their expected long term deviation. In particular, if a
process with individuals following strategies Ux has a unique stationary distribution
over X, denoted by 7(X), then the payoff to individual i is

Ri(Ux) = - Y &(X)r(X), (2)

X

where €;(X) is the deviation of ¢ in state X.

3.3. Stability and strategy switches. Individuals can try to improve their pay-
offs by changing their strategy. We consider two types of strategic changes;

Local changes - individual i changes the ith row of Ux for a single state X only;
Global changes - individual ¢ changes the ith row of Ux for any number of states
simultaneously.

Making such global changes might be advantageous, since any individual change
would potentially affect a number of the probabilities of occupying particular states/
taking particular paths, which then may alter the best choices elsewhere. This would
depend upon a significant ability to calculate, and so it may be reasonable to assume
that it is not possible for individuals to make such global changes. An individual
with limited cognitive powers might, for example, only use strict moves and local
changes.

Only changes by a single individual at a time are allowed. We shall say that an
individual i plays optimally if under all allowable changes Ux — UL (including
no change) it chooses a strategy which achieves max; R; (UL ). A strategy set is a
Nash equilibrium under local or global changes if, under all allowable changes by
i:Ux — UIX

|
—

R;(U) > R;(UY i=1,...,n. (3)
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In this section we briefly consider the process not restricted to the mimimal set
K (min), strict moves or neither.

3.4. The strict system on the non-minimal set. For non-strict moves, and al-
lowing individuals to play sub-optimally (where optimal play is as described above),
clearly the process does not possess the nice properties from [6] and [7]. The process
does not necessarily converge to the minimum set, or have a unique stationary dis-
tribution. If individuals are allowed to remain on the same deviation when there is
an opportunity to improve, then the strategy of all individuals making no changes
in any circumstances will clearly not lead to the minimum set, for example.

Clearly for any non-graphic sequence the target can never be achieved, and so
there is always at least one individual that is not achieving their target. Given that
the targets are all between 0 and n — 1 (inclusive), any Joiner (Breaker) must have
at least one available edge to form (break). For strict moves then the population
can never settle in a single state and eventually either a reduction in score or a
continuing sequence of moves on a given score will be reached. In [6] all allowable
improving moves happened with some non-zero probability, some of which reduced
the score, so that the population always eventually reached the minimum set. This
is not the case here. The following example shows that even with strict (but not
necessarily optimal) play the minimal set may not be reached.

Example 1. Consider the case where vertices A and C have target 1, B and D
have target 0. Suppose currently neither of A and B is linked to either of C and
D. When A has no links, the strict system means that it must form a link when
selected. Suppose that it always links to B. Similarly, assume that C always links
to D when its score is 0. B and D will simply break the link that they have (unless
they have more than one which can never occur following the above) and so the
system will simply consist of two pairs A and B, C and D, repeatedly breaking and
forming links, with a score of 2. The minimal set consists of the single graph with
the single link A to C, which will never be reached.

However, we are principally interested in what happens when optimal play is
employed by individuals, and so we shall restrict ourselves to finding Nash equilibria
of our system. Note that we have not shown whether it is possible to have Nash
equilibria that are not in the minimal set. This is a difficult open problem; we
conjecture that it is possible to have such equilibria, but that it requires a sufficiently
large number of individuals with a sequence of high score.

3.5. The non-strict system. Considering Example 1 above, we shall now show
that it is possible for non-strict moves to be optimal under certain circumstances.

Example 1 Cont. Consider again the case where vertices A and C have target 1,
B and D have target 0. Assume that B,C,D always play strictly (i.e. reduce their
deviation when they can, and do nothing when they are on target) and that B will
always split from A as its first choice move, D will always split from C as its first
choice, and C will always link to D as its first choice, similarly to before. Then if
A always links to B as its first choice, we obtain the situation where all follow legal
strict moves but the unique minimal graph is never reached and the payoff for each
is 1/2.

Suppose that A is faced with the situation where it is connected to B, but C
and D are split. What if it chooses to link to C? This is a non-strict move as it
is currently achieving target. However, if it does this, if C and D are picked next,
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they will do nothing (we assumed they always behave strictly, and they are now on
target). Either A (assuming it plays as previously described except in the original
case) or B will split A-B, which will lead straight to achieving the target for all (in
an expected time of 2 moves). Thus here is an example where non-strict play is
optimal.

Note an alternative in the initial situation would be to wait until B breaks from
A and then link to C as the next opportunity, but this would mean a sub-optimal
decision was made at the original decision; also it would take at least twice as long
to reach the minimal graph (A would have to be picked with mean time 4, and
only then would the final target have been achieved if C has not linked to D in the
meantime).

4. The strict system on the mimimal set. In the above we have defined the
minimal set K (min) which achieves the score of the sequence, and hence a min-
imal mean payoff for individuals in our population, and the strict process, where
individuals try to reduce their own short term deviation as much as possible. It
seems reasonable that (despite the discussion in Sections 3.4 and 3.5) in many, likely
most, circumstances, the long-term behaviour will reduce to strict moves, restricted
to K (min).

We now consider processes restricted to the strict system acting on K(min). We
define the matrix A = (ay;) as the matrix of transtions on the elements of K(min),
such that ag; is the probability of moving from the minimum graph state Xj to X,
ie.

A = P(Xt+1 = .Z’l|Xt = l‘k), (4)

using equation (1). Thus given a choice of strategies Ux that lead to K (min) there
is a unique matrix A. We can (and will) consider alternative strategy combinations
Ux, leading to different matrices A.

This will, in general, greatly reduce the number of transitions that need to be
made. For example, if n = 5, X has 29 elements, each yielding a potentially
different 5 x 5 matrix, giving 25600 transition parameters to consider. In Example
3 K (min) contains 8 elements and so at most 64 potential transitions, all but 28 of
which have zero probability.

We know from Theorem 5 from [7] that K (min) contains at least one element
with no Joiners, and at least one element with no Breakers. Thus no vertex is
always a Breaker, and no vertex is always a Joiner. K(min) is connected (unless
the target sequence is graphic, when all vertices are neutral), and so no vertex is
sometimes a Joiner and sometimes a Breaker but never Neutral. Thus every vertex
is Neutral for some elements of K (min), and we have the following:

For the set K (min) associated with any target sequence, we can divide the indi-
viduals (vertices) into four classes:

a) Those which are sometimes a Joiner and sometimes a Breaker (and also neces-
sarily a Neutral) for some elements of K (min); these individuals constitute the set
SA7

b) those which are Joiners (or Neutrals) for some elements but never Breakers; the
set Sy,

¢) those which are Breakers (or Neutrals) for some elements but never Joiners; the
set Spg,

d) those which are always Neutral; the set Sy.
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Clearly, since any graphical sequence has deviation zero, it will only have indi-
viduals of type d). For non-graphical sequences, since K(min) contains elements
with Joiners and elements with Breakers, it must contain either individuals of type
a) (and possibly some of type b) and/or c) as well), or if there are no type a)’s there
must be individuals of types b) and c).

Lemma 4.1. We cannot have individuals of type a) and individuals of type d) for
the same sequence.

Proof. Suppose that we have an individual of type d). It is always Neutral, so its
set of links do not change. It cannot be joined to any Breaker, as breaking that
link would leave the graph in K (min), but change the vertex to a Joiner. Similarly
it cannot be split from any Joiner, as forming that link would leave the graph in
K (min), but change the vertex to a Breaker. Any vertex of type a) will be a Joiner
at some times and so joined to the original vertex, but a Breaker at other times,

and so split from it. Thus there can be no such vertex. O
Lemma 4.2. Suppose we have a target t = {t1,ta,...,t,} on a set of vertices
1,2...,n where Sy = {t1,ta,... tu}, SN = {tus1,-.-,tu}, and Sp = {ty41,...,tn}.
(i) We shall now introduce an extra vertex. For any set {wy11, Wyt2, ..., Wy} sSuch
that w; € {0,1}, t = {t1 4+ 1ta+ 1, ... by + L tug1 + Wast, bugo + Wasa, - oo by +
Way byt 1y byt 2y e oy by U+ Z;?):u_H w; } will have precisely the same transition graph
ast = {t1,ta,...,t,}, in the sense that if two states are joined in the original graph

then the augmented states will be joined in the transition graph of the augmented
target, where the new vertex will be in class d).

(i) We shall now “remove” vertex w+ 1. For any set {wyi2,Wyts,..., Wy} Such
that w; € {0,1}, t" = {t1 = L,ta — L.ty — Lituss — Wug2, tuts — Ways, .- by —
Wy, tyt1, tota, - - -, tn} will have precisely the same transition matriz as t.

Proof. (i) Consider a graph with the original target ¢t. Add a new vertex and link
it to all elements in S, split it from all elements in Sp, and link it to any given
element i of Sy if and only if w; = 1. The new vertex will be a Neutral, and every
individual will have the same deviation (and in the same direction) as the original
graph. For the given choices of the w;’s, there is a 1-1 correspondence between the
set of original graphs and the set of transformed graphs; the only difference is the
presence of the new vertex. But this vertex is split from all vertices that can ever
be Breakers and joined to all that can be Joiners, and so its deviation will never
change, i.e. it is an element of Sy.
(ii) Similarly, let us remove an element of Sy. As stated in the proof of Lemma
4.1, this vertex must be split from all vertices that can be Breakers, i.e. Sp, and
joined to all elements that can be Joiners, i.e. S;. This means that removing this
vertex will take one from the links of all elements of S; and none from all elements
of Sp. It will take a link away from an element of Sy if there exists one, and so
this will determine the values of w; for ¢ € S which keeps the deviations the same
(note that an element of Sy has the same links to all other elements of Sy for all
elements of K (min), so we have the same set of w;s for all graphs). Thus again we
have a one-to-one correspondence between the two minimal sets. O
Thus from Lemma 4.2, if we have individuals of types b), c¢) and d) then we can
effectively add or remove as many elements of type d) as possible without changing
the minimal set at all. This leads us to the following result.
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Theorem 4.3. Suppose we have a targett = {t1,ta, ..., t,} where Sy = {t1,..., 4},
S = {tit1,.--,tn} and so Sy = ¢. Now suppose we have a graph G = {V,E}

where V- ={Vn41,Unt2, - Untm}, and the degree of v; € G is d;. Then by Lemma
4.2 the target t = {t1 + m,ty +m, ... .t + mytig1, tipos oo tny dogt + L dpyo +
l,...,dptm + 1} has precisely the same transition matriz as t.

Thus for any target t" of the same type as t i.e. only elements in S; and Sp,
there is a set of targets whose transition graphs are isomorphic to the transition
graph of t.

Example 2. If t = {3,2,1,0}, so ! = (n—2) = 2 then for m = 0 we have {3,2,1,0},
for m = 1, {4,3,2,1,0}, for m = 2, {5,4,2,2,1,0} and {5,4,3,3,1,0}, and for
m =3 ,{6,5,2,2,2,1,0}, {6,5,3,3,2,1,0}, {6,5,4,3,3,1,0} and {6,5,4,4,4,1,0}.
Note that the Breakers have been moved to the end of the target to give a non-
decreasing sequence. The target {4,3,2,1,0} is treated in some detail later.

Theorem 4.4. Suppose we have a target t = {ti,ta2,...,t,} on a set of ver-
tices 1,2...,n where S; = {t1,ta,...ty} is such that vertex i € Sy is in class
b), SN = {tut1,..-,tu} then t; € Sy is in class d) and Sp = {tyt1,---,tn}
then t; € Sp is in class ¢). Further for some m, suppose we have a graph G
with graphic sequence{dy,ds, ... ,dy}. Now fix the links between pairs of elements,
one from the original sequence and one from G, so that they satisfy the follow-
ing: every element of G is connected to every element of Sy, every element of G
is not connected to any element of Sp. Elements of G and Sy can be connected
or not in any combination, where vertexr i in Sy has w; edges into G and ver-
tex 1 in G has x; edges into Sy, so that 0 < w; < m, 0 < z; < v—u and
Z;}:uﬂ w; = Z;"Zl xj. Then t = {ti1 + myta+m,... .ty +m tys1 + Wut1, tuto +
Weg 2y« s by F Way by 15 byt 2y v ooy by dy + 21 + Uydo + 2o + Uy .oy Ay + Ty, + u} will
have precisely the same transition graph as t = {t1,ta,...,t,}, with the additional
m vertices from G being in class d).

Proof. Similarly to part (i) of Lemma 4.2, all vertices in G are split from all
vertices that can ever be Breakers and joined to all that can be Joiners, and so their
deviations will never change, so they become elements of Sy for the new target.
All original vertices have the same deviation, so there is again a 1-1 correspondece
between graphs from the original and new sequences, for the given set of links
between the elements of the original sequence and G. But these links can never
change within K (min), and thus we have the same minimal set. O

In Theorem 4.4 we compare two sequences, where any directed edge (or its ab-
sence) in the transition graph for the original case is present or absent in the new
one, and in the new case a wider set of (non-strict) strategies are available to other
states not existing in the first. If an individual is restricted to moving among the
states that existed in the first case, with the links to the new vertices as described,
the new states have not altered the game, so that any strategies that satisfies any
given equilibrium/ stability conditions in the first case would also satisfy them in
the second. Further any move which involves the new individuals will increase the
score; thus disallowing all such moves, there is no difference between the two cases.
Thus as long as the population starts in this irreducible set and only strict moves
are allowed, the solutions are equivalent.

In [7] the conjugate vector v = (v;) of t was defined by v; = #{j : ¢; > i} (where
# means “the number of”). We write f; = > (¢, +1—v,) and e; = max;<[0, f;],
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so that the terms e; are the non-negative record values of the sequence f = (f;),
and then d; = e; — e;—1 (with ey = 0).

Definition 4.5. The deficit of the sequence t was defined as the summation Zj‘ d;,
where A = #{i : t; > i} is the Durfee number.

From Definition 4.5, we can see that there is a close connection between the
deficit and the sequence f = (f;) for j = 1,..., A, which we shall refer to as the
deficit profile.

Definition 4.6. We say that the deficit profile has its peak at p if f, > 0, f, =
maxi<j<x fj and if g < A then f,, > f,41. If there is no such value p, then we say
that the deficit profile has no peak.

Clearly, the deficit is 0 if and only if there is no peak in the profile. Otherwise
the deficit takes value f,. We show below that the deficit for a target is either equal
to the score defined earlier, and thus to the HH-score obtained using the modified
Havel-Hakami algorithm, or to that score minus 1. The following example makes it
clear that all combinations of odd or even deficit and odd or even score (with the
score the deficit or the deficit plus one) are possible. See [7] for a discussion of some
issues regarding odd and even deficits.

Example 3. We can find examples of all four possibilities, with deficit odd or even,
and score equal to the deficit or the deficit plus 1, as follows:

(6,6,3,3,3,0,0) has deficit 4 and score 5;

(6,6,3,2,2,2,0) has deficit 3 and score 3;

(7,6,3,3,3,0,0,0) has deficit 5 and score 6;

(7,6,3,2,2,2,0,0) has deficit 4 and score 4.

Lemma 4.7. The score is equal to the deficit (the deficit plus 1) if and only if
S ti = 200 min(v;, t; + 1) is even (odd), where i < X is the peak as in
Definition 4.6.

Proof. After the first p targets are removed using the modified HH process, the
remaining target sum is Z:‘L:M-H ti + p? — >4 min(v;, t; + 1), yielding a graphic
sequence (alternatively, a sequence with score 1) amongst the remaining vertices if
this sum is even (odd). Thus the score is equal to the deficit (deficit plus 1) if and

only if this sum is even (odd). O

Theorem 4.8. Suppose that we have a target t, with conjugate v and Durfee num-
ber X, so that the peak is at jp < X\ wheret, +1—v, >0, or p = X\ where tyx > try1,
then vertices 1,...,u are in class b).

Proof. Here the deficit is > ", ¢, +pu — >.'"_, v, so that the score takes this value
or this value plus 1. Consider a vertex x < p.

(i) Suppose that z is a Breaker (linked to y > ¢, individuals) in the first p vertices.
Let us remove this vertex and its links, and consider the remaining graph. We note
that the order of the vertices up to the original u + 1 is unchanged, due to the
definition of the peak (¢, > v, —1 > v,41 —1 > t,41) if g < X; or if p = A since
then t5 > tx,1. Thus this will have the new deficit fo#x trtpu—Y 0 (v, —1)+2,
where z is the number of links removed from vertices u+1,...,n. Note we must also
add the value y —t, > 0 to this, which is the penalty for vertex z missing its target.
We note that the amount that the graph misses the target will be equal to this sum
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or one more. Adding this we obtain D31, . + (y —tz) +p— D v Fputz >
Deficit +2(y — t.), since z > y — u, which is at least 2 greater than the deficit for
the original sequence, and so greater than the score for the original sequence. This
is a contradiction, since we see that such a graph cannot achieve the score. Hence
no vertex 1,...,u can be a Breaker, so it cannot be in sets a) or c).

(ii) To be in set b), a vertex must be a Joiner in some graphs that achieve the score.
Firstly we note that if in any graph achieving the score u can be a Joiner, it is
simple to find a graph where x < © can be a Joiner, given that its target is at least
as challenging.

Now consider vertex p that is a Joiner for some graph, where it is connected to
all of the other top p individuals and z of the others (this will yield a deviation
at least as low as any alternative); note that we need none of these z edges to
have target 0. Removing this vertex and its links as before yields the new deficit

‘T’“;ll((tr— 1)4+1—(v,—1)) to which we can add ¢, — u+1—2z which is the penalty for
1 missing its target. Thus the deficit of this graph is Zf;ll (tr+1—v)+(ty—p+1)—=
which is the same as the original deficit if and only if v, = u + 2z, i.e. v, <t, + 1.

We note that the number of removed edges is 4 — 1 + z. In the original sequence
there were p vertices with target at least p (and so at least 1) including vertex u
that we removed, thus we can certainly find the z non-zero targets we require.

We have shown that through this process we obtain the original deficit, but this
might not be the same as the score.

Applying the modified HH-algorithm, removing a single vertex out of order does
not affect the resulting score obtained. There is always a minimal graph which has
any given vertex as a neutral, and the score will be achieved by linking it to the
vertices with the biggest target; doing this is equivalent to removing the vertex out
of order following the modified HH process. Thus the added term ¢, — p+1 — 2
above, which is the difference between the two deficits, can also be seen to be the
difference between the two corresponding scores. Hence we have our result. O

Now consider the sequence s, with conjugate w, defined by s; =n —1 —t,41_;.
We shall refer to s as the dual sequence of t. This corresponds to the target number
of breaks (as opposed to links) of the vertices in reverse order, i.e. in the order of
increasing target of links and so decreasing target of breaks. It is easy to see that
the score of s is the same as the score of t, and that for any given graph for t,
considering the graph with the complementary set of links has precisely the reverse
Breaker-Joiner structure for s. We will also define the reverse peak when counting
the number of target breaks in the reverse direction.

Corollary to Theorem 4.8. Suppose that we have a target t, with conjugate v,
so that s, with conjugate w, defines the reverse sequence of breaks. If the reverse
peak is at 1 where sy + 1 —wy > 0, then verticesn+ 1 —1,...,n are in class c).

Theorem 4.9. Suppose that we have a target t, with conjugate v and Durfee num-
ber A\, with the following properties:

(i)t +1—v.<(>)0 forr < Ri(R; <1 <)) for some Ry < \;

(i) tx + 1 — vy > 0;

(iii) 0 (b + 1 —v,) > 0;

(i) v, —trp1 < (2) 0 forr > Ro(A+ 1 <r < Ry) for some Ry > A+ 1;

(’U) Ux > tagl-

Then vertices 1,...,X are in class b) and vertices A+ 1,...,n are in class c), and
thus there are no vertices of class a) or d).
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Proof. From (i) and (iii) the peak is at the Durfee number A, and so with the
addition of (ii) and (v) (these imply that ¢y > ty41) the conditions of Theorem 4.8
are satisfied, and all vertices 1,..., A are in class b).

We have that w, =n—v,_,,andso s, +1—w, =n—1—-t,41_,+1—n+v,_, =
Un—r — tn-i—l—r-

From the above (iv) and (v) are the equivalent to (i) and (ii) in the reverse
direction, and then imply that the reverse peak is at vertex n — A (counting from
the back), and so vertices A+ 1,...,n are in class c). O

Example 4. The following examples yield a 3-3 split between class b) and c) from
the above: (5,4,3,2,1,0); (4,4,3,2,1,1); 4,4,3,2,1,0).

Theorem 4.10. Denoting the Durfee number from the front (back) as A (¥ =
n—+1—\*), either these vertices are neighbours with \* = A+ 1 or there is a single
gap, with \* = X+ 2.

Proof. There are two cases to consider:

(i) tx > Ataxr1 < A= wp_x =n — A, ie. the Durfee number is A and the Durfee
number from the back is ©» = n — A so there is no gap.

(i) tx > Atay1 = A = wp—x < n — A, so the Durfee number from the back is less
that n — A.

a1 =A== Sp_x=n—A—1= w,_x_1 > n— A so that the Durfee number “from
the back” is greater than or equal to n — A — 1, so it must be n — A — 1. Thus there
is a gap of 1. O

Theorem 4.11. For any target sequence, consider a pair if vertices © and j. Then
if t; > t; then either:

i and j are in the same set;

1€ 8y andjESA;

1€S4 and j € Sp;

1€ Sy and j € Syy

i€ SN andj € SB,‘

1€Sy;andj e Sp.

Proof. For any pair of vertices, there are 16 orderings. There are nine orderings
above, so we need to exclude the other seven.

Firstly from Lemma 4.1, we know we cannot have classes a) and d) for the same
sequence, so that removes two orderings.

Consider such a pair of elements. Suppose that for a graph in K (min) that i is
a Breaker and j is a Neutral. Clearly ¢ has (at least) ¢; — t; + 1 more links than j.
Pick a vertex linked to ¢ and not to j, and link it to ¢ and break it from j. This
maintains the total deviation. Repeat the process, until i is a Neutral. Clearly then
j is a Breaker. Thus for a graph in the minimal set with order BN, there is also
one with order NB.

By analogous argument if we have ordering NJ, there will be an alternative graph
with JN, and if we have BJ, there will be an alternative graph JB. This argument
leads to the following cases.

Suppose a vertex is in class a). Then it can be B, N or J, so that any vertex with
higher target is sometimes a J, i.e. is in class a) or b).

Thus class ¢) followed by class a) is not possible.

Similarly any vertex with a lower target is sometimes a B, i.e. is in class a) or
¢). Thus class a) followed by class b) is not possible.
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B OTHE TRANSITION GRAPH FOR TARGET {4,3,2,1,0b

7 5 6 8
| o % ] O
JOINER ~ DOUBLEJOINER  NEUTRAL BREAKER DOUBLE BREAKER

FIGURE 1. 1A: Possible sequences of set membership. 1B:
Schematic of the transition graph for the minimal graphs for target
43210. For each graph, the top symbol represents the vertex with
target 2, which is always a neutral vertex. The vertices with targets
0,1,3,4 are represented by the symbols in the bottom left, bottom
right, middle right and middle left positions, respectively. Each
graph contains a specific set of links between the symbols, and the
corresponding breaker or joiner status is given by the appropriate
symbol. Possible transitions are shown by the arrows between the
graphs.

Suppose a vertex is in class d). It is thus always N, so from the above cannot have
a B above, or a J below. Thus class ¢) followed by class d), and class d) followed
by class b) is not possible.

Suppose a vertex is in class b). It is sometimes a J, so any vertex higher is also
sometimes a J, and so is not in class c¢). Thus class ¢) followed by class b) is not
possible. O

Theorem 4.11 implies restrictions on the possible sequences of set membership
as we move through the target sequences from higher to lower value. Figure 1A
shows the sequences which are not ruled out by Theorem 4.11. We can start at any
vertex and proceed along the arrows. The number of possible paths of length n is
(n + 1)2, yielding an upper bound for the number of distinct set sequences. The
actual number of such sequences realised for n = 1 — 5 (obtained by computing the
possibilities) is {1,2,5,10,17}. Certain sequences are easy to exclude, for example
we cannot have only b’s and d’s, or ¢’s and d’s. For n = 4 we find additionally that
sequences bbba, bbaa, bbac, baac, bace, aacc, acce do not occur. Finally, we note that
the number of ordered targets is 2,—1C,,. Table 1 gives the set membership of the
vertices for the cases n = 3 and n = 4; the results for dual targets (as previously
defined, if target t = (¢1,%2,...,ty,) then its dual is t* where ¢} = ((n—1) —¢;)) can
be deduced straightforwardly. The number of states for K (min) is also given.
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Target Sets Min. | Number
score | of states

222 ddd 0
221 bbec
220 bbec
211 ddd
210 bdc
111 aaa
3333(dddd

3332 | bbbec
3331|bbbec
3330|bbbec
3322|dddd
3321 | bbdc
3320 | bbdc
3311 | bbcec
3310 bbcc
3300 bbcc
3222 | baaa
3221(dddd
3220 |bddc
3211 | bbcc
3210 bbcc
3111(dddd
2222(1dddd
2221 | aaaa
2211(dddd 0
TABLE 1. The set membership of vertices for targets with n = 3
and n = 4, and number of graphs in the minimal set. The omitted
sequences are all duals of those included.
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As stated before, a sequence with a score of 0 is graphic, and yields an end state
where all individuals have payoff of zero. The next simplest case is a score of 1,
where at every state of the minimum set there is a unique individual which has not
achieved its target, and so has an incentive to change. This is one of the situations
that we investigate in a subsequent paper. We note here that we have not considered
mixed equilibria in the current paper at all, as this would require consideration of
a new example and significantly lengthen the paper. That such equilibria exist will
be demonstrated in the subsequent paper [8].

5. An illustrative game: The arithmetic case. In [6] we considered the fol-
lowing illustrative example, which is a member of the class of games that we termed
“arithmetic” sequences, where t;, =i —1 i=1,...,n.

Example 5. the target {4,3,2,1,0}. The score for this target sequence is 2,
yielding K (min) with eight elements. These are graphs, but we write them below
in the form of their corresponding sequences, distinguishing between the two graphs
that have the same sequence. We label them G; to Gg in the following order 43221,
33220, 33211(1), 23210, 43212, 33211(2), 42211 and 32210 the state 33211(1) being
the graph where the vertex with target 4 is joined to the vertex with target 0 (and
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thus the 3 is joined to the 1) while 33211(2) has the 4 joined to the 1 and the 3
joined to the 0. For the rest of this section, for simplicity we will simply denote
the vertex with target i as ¢; (we note that the order from previous sections is thus
effectively reversed here).

Note that using Lemma 4.2, we can see that the target 3210 has the same set of
solutions, by removing ¢, and its edges from our original sequence. The score is, of
course, again 2. If we order the eight possible minimal graphs 3221, 2220, 2211(1),
1210, 3212, 2211(2), 3111, 2110, then the solutions are precisely the same as for the
43210 case. The transitions for target 43210 are shown in Figure 1B.

More generally for the arithmetic case with target sequence tom, tom—1,- - -, tm+1,
tmstm—1,--.,t2,t1,to we have that the subgraph of the m 4 1 vertices of greatest
degree is complete, and the subgraph of the m+1 vertices of lowest degree is empty.
Thus we can replace the original target by two sequences with targets m,m —
1,...,2,1,0 and m — 1,m — 2,...2,1,0 respectively, and restrict the acceptable
graphs to bipartite graphs with the two sets corresponding to the m of greatest
degree and the m of lowest degree in the original sequence. The central node, that
is the original t,, with subsequent target 0, can be ignored. The score is m.

Now at any point in time the system will be in some minimal graph. A vertex is
picked at random with equal probabilities (i.e. 1/5), and that vertex might initiate
a switch to another minimal graph, as per Figure 1B. For example suppose the
current minimal graph is G;. Then if vertex t4,t3 or ty is picked no change can
occur since they are currently at their target value, on the other hand if vertex ¢ is
picked it must break its link with ¢4 and so the minimal graph changes to G2, while
if vertex t; is picked it has a choice of breaking with ¢4, and thus the graph becomes
(3, or breaking with ¢3 when the graph becomes G7. An individual’s strategy thus
needs to specify which of these to choose. We specify the transition probabilities for
G; as 3/5 to remain as 1, 1/5 to switch to 2 and r1 /5 the probability of choosing
ty, and s1/5 the probability of choosing t5 where r + 1 = 1.

There are six graphs where there are two different moves which stay within
K(min). For G; we take probabilities r; and s; when a choice is possible, that
is when ¢ = 1,2,4,5,7,8. We have chosen the numbering of the minimal graphs
so that G; is obtained from Gg_; by reversing the latter and subtracting element
by element from 44444. This imposes a structure on the transition matrix A, for
example it is sometimes block triangular. The transition matrix A under the choice
model is such that

3 1 7 0 0 0 s 0
1 3 0 7 0 0 0 s9
1 0 3 1 0 0 0 0
0 T4 84 4 0 0 0 0
S¥A=1 0 0 0 0 4 s 15 0
O 0 0 0 1 3 0 1
s 00 0 rm 0 3 1
0 S8 0 0 0 rs 1 3

Note that had we chosen to work with the target 3210 the above matrix would
have been modified by subtracting 1 from each diagonal element, and changing the
scaling factor from 5 to 4, this affecting only the speed of convergence of the system,
which would be quicker.

We consider only the case where each r; is either 0 or 1, i.e. pure strategies.
Thus we have 64 possible transition matrices over the elements of K(min). In
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order to code the matrices we take the following function f from the state number
to a power of two (note that there are no choices to be made in states 3 and 6);
f()y =1, f(2) =2, f(4) =4, f(5) =8, f(7) = 16 and f(8) = 32. Then if the
matrix A = (a;;) has s; =1 fori € S C {1,2,4,5,7,8} and s; = 0 otherwise, we
take index X;cqf(7) for that matrix. There are symmetries which we can exploit.
Thus if we have A = (a;;) for some S and T = {i[(9 —¢) € S} this gives matrix
B = (b;,;) where b; j = ap—_in—; and so the dominant eigenvector of B is the reverse

to be confused with the previously defined dual sequence), and the index of B as
the dual of that of A. Of course A is the dual of B, as is A’s index the dual of
B’s. There are 8 matrices where A = B, those with indices 0, 12, 18, 30, 33, 45,
51 and 63. Further discussion of the matrices and their eigenvectors is given in the
Appendix.

We label the matrices Ag, Ay, ..., Agz with connections as above. We suppose
that when the current set of strategies is specified by A; then the system will
have converged to its stationary distribution, which requires that strategic changes
that lead to a change of matrix are infrequent in comparison to moves between
graphs. The eigenvectors of the 64 matrices are given in Table 2 (see the Appendix).
Matrices Ag, A4, Ag, A2 have two unit eigenvalues, and thus have a two dimensional
space for the dominant eigenvectors. We denote the extreme eigenvectors of Ag by
Vil = (0£,0,0,0,0) where 0 = (2,3,1,4) (see Table 2) and V& = (0,0,0,0,0%)
where 0% = (4,1,3,2). Similarly we have 8& = 0%, 4% = 0f 8% = 12F = (4,3, 1,2)
and 41 = 12F = (2,1,3,4), and so V& = V&, ViIE = VE Vi = Vi and VI = V.
The matrices with indices 8, 16,24, 32,40,48,56 have eigenvector VOL, (note this
is the set with sums of 0,8,16,32) while indices which are sums of 0,1,2,4 have
eigenvector V{*, those with 8 plus sums of 0, 1,2, 4 have eigenvector Vg, and those
with 4 plus sums of 0, 8, 16, 32 have eigenvector V. The cases where the indices are
18,30, 33,45,51,63 (where A = B) have reversed eigenvectors, and when we have
A # B the eigenvectors are the reverse of each other. Note that instead of A; we
simply write ¢ in much of what follows.

5.1. Payoffs and strategy switching. Given a stationary distribution = = (71,
Ta,...,Ts), we calculate the cost ¢; (which is minus the payoff) for each vertex t;;
co = 0 since vertex to is always neutral, and otherwise we have

co = T +73+ 275+ T+ 77, C1 = T1+T2, €3 = T7+Tg, ¢4 = T2+ T3+ 2T+ 76+ Ts.

These costs are shown in Table 4 (see the Appendix). Note that, with the
exception of matrices 51, 55, 59 and 63, where all the costs are 0.5, the cost for one
of vertices ty and t4 is always greater than 0.5, while the cost for vertices t; and t3
is always less than 0.5. The total cost is equal to 2, the score.

We consider the optimal strategies for the vertices. Suppose that the matrix has
some current index from 0 — 63, the system currently has some particular graph
from G — Gg and a vertex from tg — t4 is chosen at random. We consider its
current payoff vis-a-vis those it would obtain by making an allowable switch to a
different strategy. Suppose tg is chosen then in graphs Gs, G4, Gg the vertex is at
its target, while in graphs G1, G3, Gg, G7 the vertex has a single link which it must
break. Accordingly no change will occur in the value of M. Vertex ty only has a
choice when graph G5 occurs, so can switch from s5 = 1 to s5 = 0 or vice versa, i.e.
decrease the index of the current matrix by 8, or increase by 8, and then compare
the current cost with that in the new matrix (at its new stationary distribution). In
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a similar manner vertex t4 will only have a choice if the current graph is G4 when
it can alter s4 so change state index by 4. For vertex 1 the situation is somewhat
different. There are two graphs where ¢; has a choice, G; and G5, which can cause
changes in the matrix index by 1 or 2 respectively. We may restrict the possible
change to a single one, i.e. 1 or 2 (corresponding to local changes as defined in
Section 3.3) or we may permit double changes in the index (corresponding to global
changes). Similarly vertex ¢t3 may change the index by 16 or 32, or both. Thus for
example if in matrix 5, for ¢ty we can move to matrix 13, for vertex t; we can move
to indices 4, 7 or if a double move permitted to 6, for vertex t3 to 21, 37 or with a
double move to 53 and for vertex t4 to index 1. The possible choices and outcomes
for matrix 5 are shown in Table 3 (see the Appendix).

We need to note that the possible invasions of states whose stationary distribution
does not cover the whole space is restricted in some cases. For example suppose
that the current matrix is 5. Then the possible neighbours (i.e. potential invaders)
have indices 4,7,1,13,21,37 (the binary neighbours of 5 under a single change).
The first three of these have the same stationary distribution as 5, the fourth has
a different stationary distribution but with the same support, while the final two
have stationary distributions with support the whole set. With a two-dimensional
space for the dominant eigenvector we need to consider both extremes and then
deduce the result for the whole space. For example if the state is 0 and the system
is at the extreme 0¥ then switching to matrix indices 8, 16 or 32 will not change
the stationary distribution. Switching to matrix 1 or 2 will cause a switch to a
stationary distribution over the whole space. A switch to matrix 4 will cause a
change but with the same restricted space, i.e. possibly to 4%. In general for V%
there are 3 potential switches which leave the stationary distribution unchanged,
one which changes the distribution but not the coverage, and two which would
change to a distribution over the whole space.

Whether a switch is made depends on the payoff to the vertex involved under
the current matrix and that under the matrix resulting from a switch. We examine
four scenarios, comprising either (1) switch only if the expected payoff increases or
(2) switch if the expected payoff does not decrease, in combination with either (a)
do not allow double switches or (b) allow double switches. The case where only
an improvement allows a change might reflect that a cost is involved in the switch,
albeit a small one. We refer to the four possibilities as la, 1b, 2a and 2b. We
obtain radically different results, though we concentrate primarily on la. Later we
consider the case where there is cost involved in switching.

As an example we suppose the current matrix index is 5. Table 3 gives the
payoffs for the various vertices for matrix 5 and its various neighbours. The payoffs
underlined are the ones that need to be compared, and those flanked with *’s are
those payoffs which initiate a change under the various rules.

5.2. Results. Table 5 gives the results of calculations and specify which states are
invaded by which alternatives under the four possible rules la, 1b, 2a, 2b. Care needs
to be used in interpreting the results for matrices with indices 0,4, 8,12. In general
when we are at matrix 0 the stationary distribution can be any p0* + (1 — p)0F
where p € [0,1]. The distribution 0% is invaded by 1 or 2, while 0% is not as there
is equality of the payoffs so in general for any p # 0 there will be invasion by both
1 and 2. A similar argument implies that 3 will invade provided pu # 0, while 16, 32
and 48 will invade provided p # 1. These arguments apply in all four cases, and in
a similar way for the indices 4, 8 and 12. The remaining possible invasions by 4 and
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8 are somewhat different. For case la there will be no invasion whereas in case 2a
pOL +(1— )0 will be replaced by pdl +(1—p)4f and p8L +(1—pu)8%, respectively.
Exceptional cases where for some state the eigenvector is at the extreme of its two
dimensional space are singular, i.e. only when p is 0 or 1. In general we will not
reach these odd states and so they can be omitted.

For both 1a and 1b it turns out that none of the 4 extreme matrices associated
with indices 0, 4, 8 and 12 can invade any of the matrices outside of that set, and
that each is invadable by other matrices. In each case there are 16 matrices which
are absorbing (i.e. are pure Nash equilibria), (3;48),(7;56),(11; 52),(15; 60),(19; 50),
(23;58),(35;49),45,51, where those written together are the dual pairs. For la there
are 18 states which could reach a PNE in one step, 21 which could reach a PNE in
two steps and 9 which require at least three steps. The corresponding figures for 1b
are 29, 15, and 4.

The first two pairs and 51 have no predecessors, i.e. there are no matrices from
which our process will arrive at them. Additionally states 0, (4;8), 12, (55;59), 63
have no predecessors. For 1b we find essentially the same results, the set of eight
above cannot invade outside their own set, and furthermore for the stable matrices
the double change never allows an invasion.

For cases 1a and 1b the transition matrix has no asymptotic cycles. The indexing
we have introduced would allow for the representation of the matrices on the vertices
of a 6-cube, the edges representing possible transitions. As an example of the
possible flows we have illustrated the possible transitions starting with matrices 4
and 8. None of the transitions when starting from matrix 4/8 involve a switch by
8/4. This allows the flow to be represented on a 5-cube, shown in Figure 2A.

In examining the possible changes which can be made for a given vertex we
introduced the notion of a dual matrix. If the index of some matrix M is, in reversed
as its dual; for example Aoz with binary index (110110) has dual with binary index
(011011) so matrix A3, = Asa, and we write A3, = As4. Further if we have a set of
matrices T' then we denote by T™ the set whose matrices are the duals of those in
T.

Now we have seen earlier that in la vertex ¢y only has a choice to exercise when
the current graph is G5, when a change alters the index by 8. We see from Table 4
for which matrices there is an improving change, and denote this set by Tp 5 (a list
of the matrices in the set is given below). For vertex t4 when in graph G4 a change
alters the index by 4, with an improving change occurring for the set Ty 4 = T7 5.

For vertices t; and t3 the situation is somewhat more complex. For ¢; there are
two graphs where a choice is available, G; and G,. If the graph is G; then vertex
t, will have the option to change the index by 1, while if G5 then a change by 2 is
possible. Thus if #; is chosen when the graph is G; then an improving change of
the index by 1 will be made for the set of matrices denoted by 71 1, 24 matrices in
all. There are 16 pure Nash equilibria (PNEs) where obviously no change would be
made, and there are 24 other matrices where no change should be made. If vertex
t1 is chosen in G5 then again there are 24 matrices where an improving change, by
index 2, should be made to the matrices in set 7} 5. Thus for vertex ¢; improvement
will be made in matrices within the set 77 = T3 1 (71,2 irrespective of the graph.

Finally if vertex t3 is chosen when the graph is G7 then an improving change by
index 16 should be made for matrices in the set 737 = T7 5, and for vertex t3 in
G's improvements can be made, changing the index by 32 in matrices T35 = T7 ;.
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Changes at t3 should be from matrices from the set T3 = 15 irrespective of the
graph. Note that for some matrices the stationary distribution has zero probability
for some graph. For example matrices 19, 23,27, 31, 35,39, 43,47,51, 55,59, 63 have
zero probability for G4 but these occur in pairs with the same payoff so there is not
a change in cases la or 1b.
To s = {25,26,27,29, 30,31}
Ty 4 = {22,30, 38,46, 54,62}
Ty, = {0,4,8,12,16, 18, 20,22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 53, 55, 61, 63}
T2 ={0,4,8,12,16,17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 39, 40, 41, 44, 47, 54, 55, 62, 63}
T37=40,1,2,4,5,6,8,9,10,12,13, 14, 27, 31, 33, 34, 37, 38,42, 46, 57, 59, 61, 63 }
T35 =1{0,1,2,4,5,6,8,9,10,12,13,14,17,18, 21,22, 25, 26, 29, 30, 43, 47, 59, 63}
7y ={0,4,8,12,16, 20, 24, 28, 32, 36, 40, 44, 55,63}
T35 =1{0,1,2,4,5,6,8,9,10,12,13,14, 59, 63}

The cases 2a and 2b are very different; there are no PNE’s, and both transition
matrices over the 64 states are irreducible.

5.3. A switching fee. Suppose that there is a fee associated with switching. Thus
if an individual has current cost z and cost y if it were to make a particular switch,
then supposing there is a fee for switching of z the switch is only made if y + 2z < x.
Thus cases 1a and 1b have 2 = 07, while for 2a and 2b have z = 0. Table 7 (see the
Appendix) gives the thresholds at which the set of PNEs increase. It is assumed
that if a switch is made the new cost will apply for some large number of steps
before a further switch is made. Thus a fee of z should be regarded as applying per
time step. Figure 2B shows the possible flows, analogously to Figure 2A, when a
cost of 0.1 is imposed.

5.4. Towards simpler rules. We have derived the changes which would lead to
long term improvement in the payoffs if the complex computation of the resulting
stationary distribution were possible. In practice an individual at some vertex
might only know its own links which for example would mean that individual t4
would not be able to differentiate graphs Gy, G5 and G7, nor Gs, Gg and Gg. It
might know the links of all the vertices which would allow it to differentiate all
the graph states but again it would not know which matrix state applied. We
discuss only the first of these cases. What information might be available to the
individual? We might reasonably assume that it could keep track of the recent
costs incurred, this providing an approximation to the cost incurred for this matrix.
It might be able to keep track of the graphs through which it had most recently
moved which would provide a proxy for the matrix. For example suppose that
the system is currently in G; and the most recent switches between graphs were
Gs— > Go— > G4— > Go— > (G, then under the assumption that during this
period there were no changes of the s;, we can deduce that sg = 1, 7o = 1 and
r4 = 1 so that the current matrix has 32 included in its binary index expression,
but neither 4 nor 2, i.e. is one of 32,33,40,41,48,49,56,57. As we increase the
length of memory we will reduce the number of possible matrices though of course
a sequence made up of, for example, only 1’s and 2’s would give limited information.
Suppose then that an individual keeps track of the most recent changes from the six
graphs where two different choices can occur, for example does G switch to G or
Gy, i.e. is s1 equal to 0 or 1, does G switch to G4 or Gg etc. When an observation
on the switch of each of graphs Gi,Gs, G4, G5, G7, Gg has been made the matrix
state can be determined. For example if the observed switches are respectively to
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Gr,Gy4,G1,Gg, Gy, Gg then one can infer that the matrix is 25. In a similar manner
provided that over the period during which the information is collected there is
no change of matrix, that matrix can be inferred exactly. If there is a switch of
matrix then that might be immediately detected by an inconsistency in the recorded
switches, and the collection of switches could be restarted. On the other hand it is
possible that a switch of matrix might occur without causing an inconsistency, but
since none of the earlier switches between graphs would be invalidated the individual
can just update the appropriate data. In fact the individual just needs to keep track
of the system until all of the six (potential) changes have been recorded.

Having obtained the matrix exactly then the correct switch, if any, would be
determined from a check list for that vertex which might have evolved through
time, though would require having a list of the 64 appropriate switches. Some
simplification might be used. For example suppose we consider vertex ty;. Then we
see from the 4th and 13th columns of Table 5 (see the Appendix) that a switch
should be made only for the 6 matrices 25,26, 27,29, 30,31. These indices require
16 and 8, not 32, and at least one of 1 and 2. In a similar way for vertex ¢4 there are
only six matrices where a switch should be made 22, 30, 38, 46, 54, 62 the analogues
of those for vertex tg, and the matrices require 2 and 4, not 1, and at least one of
16 and 32. The situation for vertices t; and t3 is inevitably more complex.

5.5. A threshold model. We consider now a simple threshold model for decision-
making by the individuals. Although it is unreasonable to expect the individuals to
be able to compute the cost implications of making a specific change to their plays
they will have a reasonable knowledge of their recent costs. Given that changes
are likely to be infrequent, taking the average cost over the last few steps should
approximate the true reward fairly well. Suppose then that given this good estimate
any individual with a choice changes if this value is above some threshold. For
simplicity suppose that individuals ¢y and t4 use the same threshold hgs while
individuals ¢; and t3 use hi3, a reasonable simplification since ty and ¢4 have the
same distribution of costs, as do t; and t3. Then a matrix will be stable if and only if
mazx(co,cq) < hog and maz(cy,c3) < hyz. For example suppose we take thresholds
hos = 0.76 and t13 = 0.31, then {25, 33,38} are the possible stable matrices reached
under this rule. Table 8 (see the Appendix) should be interpreted in the following
way; for given thresholds everything to the left and below that threshold point is
stable. We note that the entries which have no others below or to the left in the
table are precisely those where ¢y = ¢4 and ¢; = c3. The other pairs of matrices
have reversed costs e.g. ¢y for 22 is equal to ¢4 for 26. If the thresholds lie below
the line joining (1.0,0.0) and (0.5,0.5) then none of the matrices are stable. There
is a switch at every matrix, and the system is irreducible.

The above presupposes that the thresholds are set at some point and are never
changed. However this seems an unreasonable assumption. For example suppose
that the thresholds were hgs = 0.8 and hi3 = 0.2 then the system will ultimately
only be fixed at matrix 45. A change of threshold hgsy to something less than 0.8
will make state 45 unstable, so that now all matrices are unstable.

5.6. A second threshold model. Suppose that each vertex can choose its imme-
diate threshold i.e. h = (hg, h1, hs, hy). Now it is clear that the values h = ¢ where
¢ = (¢, c1,¢3,c4) occurs as in Table 8 correspond to stable sets of matrices. More-
over since cy+c1 +c3+c4 = 2 then the h/2’s corresponding to these critical matrices
lie in the 3-simplex. Now consider the space R* and define for x > (0,0,0,0) the
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FIGURE 2. The transitions starting from matrices 4 and 8 on the
5-cube. The indices of the vertices and of the edges have two num-
bers, corresponding to the matrix reached from matrix 4 and 8
respectively. For example matrices 22 can be reached from matrix
4 by 16 then 2 (see Table 5). From 22 one can reach 18, 23 and 54,
and 22 can be reached from 6, 20 and 30. The possible transitions
from 26 are 18, 23 and 58 and can be reached from 10, 24 and 30.
Stable matrices are highlighted. 2A: cost=0, 2B: cost=0.1.

set S(xT) = {z € R*z > x;,i = 1,4}. Now there are 31 distinct cost sets all
lying on the 3-simplex; we refer to these as critical points. Now for x and y define
z=x~Yy by z; = max(z;,y;) i =0,1,3,4. Then we have the set of critical points
defined by “if x and y are critical points then so is x ~ y.” If S and T are the
sets of critical points corresponding to x and y then S|JT is the set of critical
points corresponding to x ~ y, and the region in which these matrices are stable is
S(x~y)*

For the cases 2a and 2b the system is much more complex. Table 6 (see the
Appendix) gives the possible moves. Note that if in the 1la/1b case, we have from
Table 5 that ¢ is not invaded by some neighbour j, and j is not invaded by ¢, then
the appropriate costs must be equal. Thus in Table 6 we will have that ¢ and j can
invade each other. There are no stable matrices (PNEs) and it is easy to see that
under 2a (and thus under 2b) the system is connected.

6. Discussion. We consider an ordered set of vertices each with a target number
of links, comprising the target sequence. At any stage a specific vertex will have
an excess of links and so be a Breaker (i.e. wishes to break one of its existing
links), a Joiner with a deficit of links (wishes to add a link), or else a Neutral
(satisfied). In [7] we began analysis of the set of graphs whose vertex degrees are
minimally distant from the target sequence. This set, which we termed the minimal
set, was characterised in terms of the Breaker-Joiner structure of its graphs. We
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introduced a random process describing an updating procedure where vertices are
sequentially selected to update their links, and when selected a vertex tried to
reduce the difference between its number of links and its target, which resulted in
the system finally settling into this minimal set, and proved that the minimal set
was connected under this process. In [6] we investigated this random process, and
found the (unique) stationary distribution for a particular class of target sequences.

Here we have focused in more detail on the vertices during this process and in
particular once the minimal set has been reached. As the system moves around the
minimal set the vertices will (unless always Neutral) change their state. We ad-
dressed questions relating to when a vertex is, for example, at some time a Breaker,
at some time a Joiner and at some time a Neutral; in our terminology belongs to
S4. Looking at the set of vertices we considered what combination of vertices can
jointly occur, and what types of target sequences lead to what combinations. The
focus was the proof of general results.

In our previous work there was no strategic element to link updating, as it simply
followed a random process. Here we have introduced strategies where individuals
choose which vertices to link to or break with, and indeed whether to make such
a link or break at all. We have seen that in such circumstances sometimes the
minimal set is never reached, and sometimes it is sensible to make moves which
in the short term do not reduce the difference between an individual’s target and
number of links as much as possible.

We have considered our strategic process, assuming that we always do try to
minimise the above difference (denoted as the strict system) and that we reach the
minimal set. Here strategies are chosen to reach the stationary distribution of the
Markov updating process, and we see that there may be many stable distributions.
We have considered a particular example target 43210 in detail to demonstrate the
issues.

The analysis of the optimal behaviour for target sequence 43210 involves con-
siderable complexity. It is not our intention to assert that such calculations are in
practice available to the individuals, since they involve calculating the stationary
distributions for the current and potential states, but that some simpler process
might yield essentially equivalent results. We have introduced two such possible
models based on the collection by the individuals of some recent data. We intend
to investigate such possible simpler rules in subsequent work. For both models 1a
and 1b we have multiple pure Nash equilibria (PNEs), sixteen in all. As pointed out
earlier we require the population to settle close to its stationary distribution and
to stay there for some time if individuals are to benefit from their switch, so this
suggest such a situation can only arise in a species which has a reasonable length
of life and interaction.

In Section 4.2 we have specified which combination of population graph and
individual make possible a change. For example in graph 5 the system might change
if vertex 0 is picked. Computations then find in which transition matrices a change
occurs, in this case 25,26,27,29,30,31. Similar analysis is carried out for each
vertex.

Studies of networks in wild populations have a long history. For example [38§]
investigated the formation of groups amongst wild chimpanzees, and the manner
these were affected by age, gender and current reproductive status. Certain classes,
e.g. estrous females, avoided each other, while some classes, e.g. anestrous females,
sought each other’s company. Thus within a group there would be a preference
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for certain interactions, and the avoidance of others. If those preferences were
symmetric, that is, two individuals both wish to associate with each other, or to
avoid each other, then the implied set of targets will give a simple graph (i.e. with
no deviation).

In contrast to the above models with reciprocity our model has no such symmetry
nor such specific pairwise preference. The individuals have preferences which are
intrinsic to themselves and they do not differentiate between who they wish to
join to, except through the costs implied. In human groups it appears that some
individuals seek many contacts and other seek few. Dunbar [14] initiated the study
of the number of relationships which primates could maintain. In humans it has
been suggested ([14], [24]) that an individual will have around 5 close associates,
and around 12 — 15 at a secondary level of attachment, then around 35 in a third
layer and perhaps a total of 150 in all. What seem not to have been investigated
is any intrinsic wish for links amongst humans, though this would seem a priori,
and from common experience, to be evident. It is this kind of model which we have
developed here. Our particular example is in some ways extreme in that we have one
individual who wishes to link to everyone, and one who wished to avoid all links.
The other problem is that the group size is very small, though the complexity
involved is considerable. In a later paper we intend to look at some larger, less
extreme groupings.
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Appendix: The matrices and tables. (A) There are 4 cases where the matrix
is block triangular (i.e. either the top-right or bottom-left 4 x 4 block are all zeroes).

(1) s1 = s2 = 0 then the top-right 4 x 4 block is all zero, and so there is an
eigenvector of 5M of the form (x,*,%,%,0,0,0,0). When r4 = 1 this eigenvector is
(2,3,1,4,0,0,0,0) and this is an eigenvector of all eight such matrices i.e. for the
eight possible values of r5, r7 and rg.

Thus in the case above we have ry = ro = r4y = 1 and we can have S as any
subset of S = {5,7,8} so matrices numbered {0, 8,16,32,40,48,56} all have the
eigenvector (2,3,1,4,0,0,0,0).

(2) s1 = so = 0 and r4 = 0 then there is an eigenvector (2,1, 3,4,0,0,0,0) and so
s4 = 1 which has code 16, and we again have S = {5,7,8}, so matrices numbered
{4,12,20, 28,36, 44,52,60} have eigenvector (2,1,3,4,0,0,0,0).

(3) s7 = sg = 0 then the bottom-left 4 x 4 block is all zero, and so there is
an eigenvector of 5M of the form (0,0,0,0, %,*,*,x). Then we have r; = rg = 1
and we can also have r5 = 1 so that we have S = {1,2,4} and so the matrices
{0,1,2,3,4,5,6,7} all have eigenvector (0,0,0,0,4,1, 3,2).

(4) When s5; = 1 we have matrices numbered {8,9,10,11,12,13,14,15} with
eigenvector (0,0,0,0,4,3,1,2).

Note that the matrices numbered 0, 4, 8 and 12 each occur in two of the above
cases corresponding to the fact that the largest eigenvalue has multiplicity 2. These
matrices are reducible. This is easily seen. If we start in state 1 2, 3 or 4 we reach
the stationary distribution over the first four states; if we start in state 5, 6, 7 or 8
we finish with the stationary distribution over the last four states.

NB. Due to the reversed symmetry mentioned above the eigenvectors occur in
forward and reverse forms i.e. (2,1,3,4,0,0,0,0) is the reverse of (0,0,0,0,4,3,1,2),
while (2,3,1,4,0,0,0,0) is the reverse of (0,0,0,0,4,1,3,2).

NB We have accounted for 28 of the matrices, numbered 0 — 15 or 16 + 4n for
n=0-11.

(B) There are 8 cases where the matrix is reverse symmetric (i.e. m(i,j) =
m(9 — 1,9 — j) Vi&j, in which case if u is an eigenvector then so is ux which is u
with the entries reversed.

Writing r = (r1,79,74,75,77,73), then we have any combination with r1 = rg,
To =T7,T4 =T5.
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(1) r=1(1,1,1,1,1,1) is matrix number 0 dealt with above,

(2) r = (0,1,1,1,1,0) is matrix number 33 with eigenvector (1,2,0,2,2,0,2,1)
which is unique,

(3) » = (1,0,1,1,0,1) is matrix number 18 with eigenvector (4,3,2,2,2,2,3,4)
which is unique,

(4) r=1(1,1,0,0,1,1) is matrix number 12 dealt with above,

(5) » = (0,1,0,0,1,0) is matrix number 45 with eigenvector (1,1,1,2,2,1,1,1)
which is unique,

(6) » = (1,0,0,0,0,1) is matrix number 30 with eigenvector (2,1,2,2,2,2,1,2)
which is unique,

(7) r =(0,0,0,0,0,0) is matrix number 63 and r = (0,0, 1, 1,0,0) is matrix number
51; both have eigenvector (1,1,0,0,0,0,1,1).

This set adds matrices numbered {18, 30, 33,45, 51,63}.

(C) Whenever we find an eigenvector with zeroes in some positions other than 3
and/or 6 we can, by symmetry, find other matrices with the same eigenvector.

From (7) in (B) we have matrices 51 and 63 with 0 in positions 4 and 5 of
the eigenvector. Thus the entries in row 4 and 5 of the matrix do not affect the
eigenvector. Now 51 has » = (0,0,1,1,0,0) and 63 has r = (0,0,0,0,0,0). The
matrices 55 with » = (0,0,1,0,0,0) and 61 with » = (0,0,0,1,0,0) have the same
eigenvector.

(D) Reversibility. If we have a matrix with r = (uy,us,uq, ug, uy,ug) with
eigenvector v then the matrix with r* = (ug, u7,ug, us, ug,u1) has eigenvector v*,
the reverse of v. The pairs (omitting numbers which have already occurred) are
(17/34), (19,23/50,58), (21/42), (22/26), (25/38), (27,31/54,62), (29/46), (30), 33,
(35,39/49,57), (37/41), (39/57), (43,47/53,61), (45), (51,55,59,63), where those
after the “/” have a reversed eigenvector of the corresponding matrix before the
44/77 .

(E) Zero Entries. If an eigenvector has a zero in the ¢’th position (for i =
1,2,4,5,7,8) then we can immediately deduce that there is an identical eigenvector
for another matrix since the value of r; and s; for that ¢ do not affect the eigenvector.
Of course one can only use this idea when one has obtained an eigenvector. These
cases are (19,23), (27,31),(35,49),(43,47),(49, 57),(50, 58),(53,61) and (54,62), the
first four having a zero for i = 4 and the latter for ¢ = 5. Additionally there is a set
(51,55,59,63) where there is a zero both for ¢ =4 and ¢ = 5.
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vector codes of matrices
(23140000 | 0 8 16 24 32 40 18 56
(0,0,0,0,4,1,3,2) || O 1 2 3 4 5 6 7
(00004312 [ 8 9 10 11 12 13 4 15
(21,34 ,00,00) || 4 12 20 28 36 44 52 60
(3,3,0,3,1,1,3,2) || 17
(43,22,2234) | 18
(6,3,0,04,4938) 19 23
(6,3,3,6,2,2,6,4) || 21
(6,3,6,6,2,2,3,4) || 22
(1,1,0,1,1,1,1,1) || 25
(4,3,2,2,6,6,3,6) || 26
(2,1,0,04,4,34) || 27 3l
(2,1,1,22.2,2,2) || 29
(21,22,22,1,2) || 30
(1,2,0,2,2,0,2,1) || 33
(2,3.1,1,3,0,3,3) | 34
(1,2,0,0,4,0,4,3) || 35 39
(1,1,1,2,2,0,2,1) || 37
(1,1,1,1,1,0,1,1) || 38
(1,2,0,2,2,1,1,1) || 41
(4,6,2,2,6,3,3,6) || 42
(1,2,004,223) || 43 47
(1,1,1,2,2,1,1,1) | 45
(2,2,22,2,1,1,2) || 46
(3,4,0,4,0,0,2,1) || 49 57
(8,9,4,4,0,0,3,6) || 50 58
(1,1,0,0,0,0,1,1) || 51 55 59 63
(32,2,4,0021) || 53 61
(434,400,1,2) || 54 62

TABLE 2. The stationary distributions over the eight graphs G, —
G for the 64 matrices denoted by 0-63.

index cq c3 c1 Co
5 3 5 0 1.2
4T 1.2 0 3 5
4R 3 5 0 1.2
7 3 5 0 1.2
1 3 5 0 1.2
13 5 3 0 1.2
21 75 *.3125% 28125 .65625
37 7 * 3% 2 8
6 3 5 0 1.2
53 |.929 *.214% 357 5

TABLE 3. Possible moves and outcomes for matrix 5. The first
column gives the possible stationary distribution switched to, the
other columns the corresponding costs for each vertex. The im-
portant cost (underlined) is that to the vertex that can make the
switch. A switch can occur in the three cases highlighted by *s.
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code C4 c3 c1 co code [N c3 1 co
0% | 1.200000 0.000000 0.500000 0.300000 | 30 |0.785714 0.214286 0.214286 0.785714
0% | 0.30000 0.500000 0.000000 1.200000 | 31 | 0.500000 0.388889 0.166667 0.944444
1 0.300000 0.500000 0.000000 1.200000 | 32 | 1.200000 0.000000 0.500000 0.300000
2 | 0.300000 0.500000 0.000000 1.200000 | 33 | 0.700000 0.300000 0.300000 0.700000
3 | 0.300000 0.500000 0.000000 1.200000 | 34 | 0.562500 0.375000 0.312500 0.750000
4% | 1.200000 0.000000 0.300000 0.500000 | 35 | 0.357143 0.500000 0.214286 0.928571
47 1 0.300000 0.500000 0.00000 1.200000 | 36 | 1.200000 0.000000 0.300000 0.500000
5 | 0.300000 0.500000 0.000000 1.200000 | 37 | 0.700000 0.300000 0.200000 0.800000
6 | 0.300000 0.500000 0.000000 1.200000 | 38 |0.714286 0.285714 0.285714 0.714286
7 1 0.300000 0.500000 0.000000 1.200000 | 39 | 0.357143 0.500000 0.214286 0.928571
8L | 1.200000 0.000000 0.500000 0.300000 | 40 | 1.200000 0.000000 0.500000 0.300000
8% | 0.500000 0.300000 0.000000 1.200000 | 41 | 0.800000 0.200000 0.300000 0.700000
9 | 0.500000 0.300000 0.000000 1.200000 | 42 | 0.656250 0.281250 0.312500 0.750000
10 | 0.500000 0.300000 0.000000 1.200000 | 43 | 0.500000 0.357143 0.214286 0.928571
11 | 0.500000 0.300000 0.000000 1.200000 | 44 | 1.200000 0.000000 0.300000 0.500000
125 | 1.200000 0.000000 0.300000 0.500000 | 45 | 0.800000 0.200000 0.200000 0.800000
12% | 0.500000 0.300000 0.000000 1.200000 | 46 | 0.785714 0.214286 0.285714 0.714286
13 | 0.500000 0.300000 0.000000 1.200000 | 47 | 0.500000 0.357143 0.214286 0.928571
14 | 0.500000 0.300000 0.000000 1.200000 | 48 | 1.200000 0.000000 0.500000 0.300000
15 | 0.500000 0.300000 0.000000 1.200000 | 49 |0.928571 0.214286 0.500000 0.357143
16 | 1.200000 0.000000 0.500000 0.300000 | 50 |0.794118 0.264706 0.500000 0.441176
17 | 0.750000 0.312500 0.375000 0.562500 | 51 | 0.500000 0.500000 0.500000 0.500000
18 | 0.681818 0.318182 0.318182 0.681818 | 52 | 1.200000 0.000000 0.300000 0.500000
19 | 0.441176 0.500000 0.264706 0.794118 | 53 | 0.928571 0.214286 0.357143 0.500000
20 | 1.200000 0.000000 0.300000 0.500000 | 54 | 0.944444 0.166667 0.388889 0.500000
21 | 0.750000 0.312500 0.281250 0.656250 | 55 | 0.500000 0.500000 0.500000 0.500000
22 | 0.843750 0.218750 0.281250 0.656250 | 56 | 1.200000 0.000000 0.500000 0.300000
23 | 0.441176 0.500000 0.264706 0.794118 | 57 | 0.928571 0.214286 0.500000 0.357143
24 | 1.200000 0.000000 0.500000 0.300000 | 58 | 0.794118 0.264706 0.500000 0.441176
25 | 0.714286 0.285714 0.285714 0.714286 | 59 | 0.500000 0.500000 0.500000 0.500000
26 | 0.656250 0.281250 0.218750 0.843750 | 60 | 1.200000 0.000000 0.300000 0.500000
27 | 0.500000 0.388889 0.166667 0.944444 | 61 | 0.928571 0.214286 0.357143 0.500000
28 | 1.200000 0.000000 0.300000 0.500000 | 62 | 0.944444 0.166667 0.388889 0.500000
29 | 0.714286 0.285714 0.214286 0.785714 | 63 | 0.500000 0.500000 0.500000 0.500000

TABLE 4. The costs for each of the individuals tg — t4, where the

cost for ¢; is denoted by c;.
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TABLE 5. The optimal moves from matrices 0 to 31 (first nine
columns) and matrices 32-63 (final nine columns) for cases la and
1b (results are identical for the two cases). The first column in-
dicates the starting matrix, the next six the moves from the six
graphs where changes can be made (listed in increasing numerical
order), and the last two columns possible moves for ¢4 and tg when
both changes are allowed. We note that only one change is possible
at each point, and if making no change is optimal, we simply write
the starting matrix index.
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1 2 4 8 16 32| 3 48| 32|33 34 36 40 48 0 |35
0 3 5 9 17 33| 2 49| 33|33 35 37 41 49 33|33
3 0 6 10 18 34| 1 50| 34|35 34 34 42 50 34|33
2 1 7 11 19 35| 0 5135|355 35 39 43 51 3 |35
5 6 0 12 20 36| 7 52 36|37 38 32 44 52 4 |39
4 7 1 13 21 37| 6 53| 37|37 37 33 45 53 37|37
T 4 2 14 22 38| 5 54 38|39 38 34 46 54 38|37
6 5 3 15 23 39| 4 55(39(39 37 35 47 55 7 |39
9 10 12 0 24 40|11 56| 40|41 42 44 32 56 8 |43
8§ 11 13 1 25 41|10 57| 41|41 43 45 33 41 41 |41
11 8 14 2 26 42| 9 58 42|43 42 42 34 58 42|41
10 9 15 3 11 11| 8 11| 43|43 43 47 35 43 11|43
13 14 8 4 28 44|15 60| 44|45 46 40 36 60 12 |47
12 15 9 5 29 45|14 61| 45|45 45 41 37 45 45|45
15 12 10 6 30 46 |13 62| 46 | 47 46 42 38 62 46 | 45
14 13 11 7 15 15|12 15| 47 |47 45 43 39 47 15 |47
17 18 20 24 0 48|19 32 48|49 50 52 56 32 16 | 51
17 19 21 17 17 49|18 33| 49|48 51 53 57 49 49 | 50
19 18 18 18 18 50|18 18| 50 |51 48 50 58 50 50 |49
19 19 23 19 3 51|19 35| 51|50 49 55 59 35 19 |48
21 22 16 28 4 52|23 36| 52|52 52 48 60 36 20|52
21 23 17 21 21 53|22 37| 53|52 53 49 61 53 53|53
23 22 18 22 22 54|21 22| 54|54 52 50 62 54 54|53
23 23 19 23 7 55|23 39| 55|54 53 51 63 39 23|52
25 26 28 16 8 56|27 40| 56|57 58 60 48 40 24|59
25 27 29 17 25 57|26 41| 57|56 59 61 49 41 57| 58
27 26 26 18 26 58 |26 42| 58 |59 56 58 50 58 58 | 57
27 27 31 19 11 27|27 43| 59|58 57 63 51 43 27| 56
29 30 24 20 12 60|31 44 60|60 60 56 52 44 28|60
29 31 25 21 29 61|30 45| 61|60 61 57 53 45 61 |61
31 30 26 22 30 62|29 46| 62|62 60 58 54 62 62|61
31 31 27 23 15 31|31 47 63|62 61 59 55 47 31|60

16
33
18
19
20
37
22
23
24
41
26
43
28
45
30

49
50

53
54

57
58
11
12
61
62
15

TABLE 6. The optimal moves from matrices 0 to 31 (first nine
columns) and matrices 32-63 (final nine columns) for cases 2a and
2b (results are identical for the two cases). The first column in-
dicates the starting matrix, the next six the moves from the six
graphs where changes can be made (listed in increasing numerical
order), and the last two columns possible moves for ¢4 and tg when
two changes are allowed.
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Fee New PNEs

R3) 0 4 8 * K

3 12 * * * *
28125 | 6 24 * ¥k
2 1 5 32 40 *
181818 | 2 16 * * o0k
161932 | 22 26 * ¥ oK
151786 | 25 38 * ¥
150326 | 27 31 54 62 *
142857 | 55 59 63 Kook
129464 | 29 30 46 *oK
110294 | 17 34 * ¥ oK
1 9 13 36 44 *
008214 | 21 42 * oK
085714 | 14 28 33 37 41
057143 | 43 47 53 61 *
.053467 | 18 * * * 0K
.01875 | 10 20 * * K
.014286 | 39 57 * ¥ oK
0 3 7 11 15 *

19 23 35 45 *

48 49 50 51 *

52 56 58 60 *

TABLE 7. The possible PNEs for model la for various costs of
changing. For zero cost the PNEs are those in the bottom row. As
the cost increases there are critical points when additional matrices
become PNEs, until at the highest threshold of 0.5, all 63 matrices
are PNEs.
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