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a b s t r a c t

Kleptoparasitism, the stealing of food items from other animals, is a common behaviour observed across

a huge variety of species, and has been subjected to significant modelling effort. Most such modelling

has been deterministic, effectively assuming an infinite population, although recently some important

stochastic models have been developed. In particular the model of Yates and Broom (Stochastic models

of kleptoparasitism. J. Theor. Biol. 248 (2007), 480–489) introduced a stochastic version following the

original model of Ruxton and Moody (The ideal free distribution with kleptoparasitism. J. Theor. Biol.

186 (1997), 449–458), and whilst they generated results of interest, they did not solve the model

explicitly. In this paper, building on methods used already by van der Meer and Smallegange (A

stochastic version of the Beddington-DeAngelis functional response: Modelling interference for a finite

number of predators. J. Animal Ecol. 78 (2009) 134–142) we give an exact solution to the distribution of

the population over the states for the Yates and Broom model and investigate the effects of some key

biological parameters, especially for small populations where stochastic models can be expected to

differ most from their deterministic equivalents.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The stealing of food by one animal from another, kleptopar-
asitism, is common in nature, occurring over a wide variety of
taxa. Recent examples of this behaviour have been observed in
large carnivorous mammals (Carbone et al., 2005), seabirds (Dies
and Dies, 2005), scavenging bird guilds (Bertran and Margalida,
2004), insects (Reader, 2003), fish (Hamilton and Dill, 2003),
lizards (Cooper and Perez-Mellado, 2003), snails (Iyengar, 2002)
and spiders (Agnarsson, 2002; Kerr, 2005; Vollrath, 1979; Watson,
1993). Iyengar (2008) provides an excellent review on kleptopar-
asitism.

When considering kleptoparasitism we must ask, why would
an individual evolve this behaviour? From an evolutionary stand-
point the answer to this is quite logical: in order for a behaviour to
evolve in a population through natural selection, the individuals
who follow this behaviour must experience greater reproductive
success (higher fitness) compared to others in the population, and
this trait must be passed on to their future offspring. Since not all
species that seem capable of kleptoparasitism show it, and since
there is strong variation between and within species in the extent

to which this tactic is used, there is a need for a predictive
theoretical basis to explain this variation. Hence there has been a
considerable body of theory aimed at predicting the evolutionarily
stable use of kleptoparasitism in different ecological circumstances.
The majority of kleptoparasitic behaviour is facultative, in that the
individual or species exhibiting the behaviour have alternative
methods of obtaining the desired item. There are some general
conditions that predict when kleptoparasitism should evolve
including: the item must be obtainable, the item must be of use
to the kleptoparasite, the host and the kleptoparasite’s habitat
must overlap in some manner and the net gain through
kleptoparasitism is higher than when the individual gains the item
independently (Iyengar, 2008).

Kleptoparasitism has been the subject of significant modelling
since the mid-90s, early examples being Holmgren (1995) and
Stillman et al. (1997). A mechanistic model was developed in
Ruxton and Moody (1997) where individuals moved between a
number of states including searching for a food item, handling a
food item, winning a contest over a food item and losing a contest
over a food item, the fight over a food item resulting when a
searcher found a handler.

The model of Ruxton and Moody (1997) was refined by Broom
and Ruxton (1998) by modifying the structure of the states of the
population and introducing strategic choice for the individuals (to
steal or not to steal), looking at when stealing was evolutionarily
stable. The model of Broom and Ruxton (1998) provides the
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foundation for the majority of subsequent papers, such as Broom
et al. (2008), Broom et al. (2004), Broom and Ruxton (2003),
Broom and Rychtář (2007), Luther and Broom (2004), Ruxton and
Broom (1999). The related behaviour of interference, where
individuals slow consumption of food by neighbours due to their
proximity, without actually stealing items has been modelled in
a similar way (Beddington, 1975; DeAngelis et al., 1975; Ruxton
et al., 1992; Smallegange and Van der Meer, 2009; Van der Meer
and Ens, 1997). Note that although the kleptoparasitism models
and interference models are different, the simple mechanistic
kleptoparasitism model of Ruxton and Moody (1997) has no
strategic element unlike later models, and the equations that
result are a special case of those that come from the interference
model of Smallegange and Van der Meer (2009).

The vast majority of kleptoparasitism models are currently
deterministic, based upon a system of ordinary differential
equations (ODEs), and thus effectively assume a very large
population size. However, as the recorded incidences of klepto-
parasitism increase and include previously unknown taxa such as
crabs, sea stars (Morissette and Himmelman, 2000) and molluscs
(Iyengar, 2004), it is often the case that real populations exhibit-
ing kleptoparasitism have relatively small and limited mobile
populations and it is thus important to model kleptoparasitism in

a different way. A stochastic version of the state-based mechan-
istic models, in particular the modified Ruxton and Moody model
from Broom and Ruxton (1998), was first developed in Yates and
Broom (2007) and further investigated in Crowe et al. (2009)
(a stochastic version of the interference models was developed in
Van der Meer and Smallegange (2009)). Yates and Broom (2007)
introduced a new model, and some approximation methods, but
the authors did not get an explicit solution for the probability of
the population occupying any particular state, and they focused
on situations for medium population sizes, where their approx-
imations were valid. Crowe et al. (2009) investigated this model
for smaller populations and found situations where the stochastic
model gave significantly different results to the deterministic
equivalent (in Yates and Broom (2007) stochastic results generally
matched the deterministic results well). In this paper we use an
analytical approach to obtain an explicit solution to the Yates and
Broom (2007) model using the idea of detailed balance, that was
applied by Van der Meer and Smallegange (2009) to find solutions
for the similar (and richer) interference system. Van der Meer and
Smallegange (2009) used detailed balance to demonstrate a
general method for finding solutions to their system, and proved
that their solutions were correct for small populations. The main
novelty of the current paper is the formal approach and proof of

Fig. 1. The continuous time Markov chain model for a population of n individuals. The possible transitions from one state to another are shown by an arrow from the

original state to the new state, accompanied by the transition rate. For all non-boundary states there are four possible transitions to and from the state. The exact shape of

the scheme on the right end depends on the parity of the population size; both possible ends are shown.
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the general solutions in an explicit functional form for any
population size.

2. Dynamics in finite populations

We assume the standard food model as introduced in Broom
and Ruxton (1998). Each of the n animals can be in one of the
following states:

� searching for a food item or a handler,
� handling the food item,
� fighting over the food item with another animal.

Once a food item is found (which happens with an average
speed nf f where f is the food density), the animal starts to handle
it, i.e. preparing to eat it. The handling time is exponentially
distributed, with mean Th. Once the item is properly handled, the
item is eaten instantly and the animal returns to searching. If a
searcher encounters a handler (which happens at the rate nhb,
where b is the number of handlers), these two animals engage in a
fight over the food item. The fight time is exponentially
distributed with mean Tc . At the end of the fight, one animal
emerges as a winner and starts handling the item, the other
animal becoming a searcher.

We are interested in how much time an average animal spends
handling, since this has been shown to be proportional to the
uptake rate, Broom and Ruxton (1998).

We model the dynamics as a continuous time Markov chain.
The state of the population is described by the number of
individuals in each of the behaviour types SaHbFn�ðaþbÞ, where a is
the number of searchers and b is the number of handlers and since
there are n animals in total, the number of animals engaged in the
fight is given by n�(a+b). Thus the state SaHbFn�ðaþbÞ can be
written more succinctly by the pair (a,b), and we use this reduced
form throughout, except for in the diagramatic representations in
Figs. 1 and 2. We denote the probability that the dynamics is in
the state (a,b) by Pa;b. Only states with 0ra; b; ðaþbÞrn, and
n�(a+b) even are admissible states of the dynamics. The scheme
of the dynamics with all of the transition rates is given in Fig. 1.

The probability distributions follows the following set of
Kolmogorov equations:

d

dt
Pa;b ¼�Pa;b

b

Th
þabnhþanf f þ

n�ðaþbÞ

2Tc

� �

þPaþ1;b�1ðaþ1Þnf f þPa�1;b�1
nþ2�ðaþbÞ

2Tc

þPa�1;bþ1
bþ1

Th
þPaþ1;bþ1ðaþ1Þðbþ1Þnh ð2:1Þ

with the boundary conditions given by

Pa;b ¼ 0;

whenever a;b;n�ðaþbÞ=2f0;1; . . . ;ng, and n�(a+b) not even.
The above system (2.1) is a system of linear differential

equations; in an equilibrium, the time derivatives are 0 and we
get the following system of linear equations.

0¼�Pa;b
b

Th
þabnhþanf f þ

n�ðaþbÞ

2Tc

� �
þPaþ1;b�1ðaþ1Þnf f

þPa�1;b�1
nþ2�ðaþbÞ

2Tc

þPa�1;bþ1
bþ1

Th
þPaþ1;bþ1ðaþ1Þðbþ1Þnh ð2:2Þ

with the same boundary conditions as above. That it is sufficient
to consider such an equilibrium was shown for the corresponding
deterministic case in Luther and Broom (2004). The system (2.2) is
too large to deal with explicitly (it has approximately n2/4
equations since the dynamics is described by the triangular shape
that is exactly one half of a square with side n=

ffiffiffi
2
p

). However, it
can be solved with the help of the detailed balance conditions (see
Van der Meer and Smallegange (2009) for a similar application).

The Markov chain system is said to be in detailed balance, if for
any two pairs of states S1,S2,

PS1
v12 ¼ PS2

v21; ð2:3Þ

where vij is the transition rate from the state Si to the state Sj.

Theorem 1. In the equilibrium, the Markov chain described by (2.1)
is in detailed balance. Moreover, the solution of (2.2) is unique and

the probability distributions are given by

Pa;b ¼

n!

a!b!
n�ðaþbÞ

2

� �
!

� ðnf f � ThÞ
ðnþb�aÞ=2

� ðnh � TcÞ
ðn�b�aÞ=2

Pn
B ¼ 0

Pbðn�BÞ=2c
C ¼ 0

n!

ðn�B�2CÞ!B!C!
� ðnf f � ThÞ

BþC
� ðnh � TcÞ

C

ð2:4Þ

We note that though the form of Pa,b is succinct, it does not
reduce to well-known distributions and is still a little awkward to
work with. In particular the distribution of the number of fighting
pairs is the complicating factor. Conditional on the number of
such pairs, the distribution of the remaining individuals (those
searching or handling) is simple however, with the number of
searchers distributed binomially with parameters the number of
non-fighting individuals and 1=ð1þnf fThÞ.

Proof of the Theorem. We note that a distribution is a stationary
distribution of our Markov process if it is a solution of the system
(2.2). To show that the solution of (2.2) is unique, we will

Fig. 2. Transitions from a focal state of the discrete Markov chain. The possible transitions to and from the focal state SaHbFn-ðaþbÞ (alternatively labelled (a,b)) are shown by

the appropriate arrows, accompanied by the transition probabilities.
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construct a new, discrete time, irreducible and aperiodic Markov
process and show that a distribution is a stationary distribution
of this new Markov process if it is a solution of the system
equivalent to (2.2). Since any irreducible and aperiodic Markov
process has a unique stationary distribution, the system (2.2) has
a unique solution and thus the original continuous time Markov
process has also a unique stationary distribution.

We will now construct the discrete-time Markov process as
follows. The states are the same as the original continuous time
Markov process in Fig. 1 and if vða;b;a0 ;b0 Þ is the transition rate from
state (a,b) to state ða0;b0Þa ða; bÞ of the continuous-time Markov
chain, then the transition probability from state (a,b) to state
(a
0

,b
0

) in the discrete-time Markov process is given by

fða;b;a0 ;b0 Þ ¼ vða;b;a0 ;b0 Þt; ða0; b0Þaða; bÞ ð2:5Þ

fða;b;a;bÞ ¼ 1�
X

ða0 ;b0 Þa ða;bÞ

vða;b;a0 ;b0 Þt; ð2:6Þ

where t40 is a parameter small enough so that fða;b;a;bÞ40 for all
states (a,b). Details of a general state and transition probabilities
of the new discrete time Markov process are shown in Fig. 2. It is
clear that the constructed Markov process is irreducible and
aperiodic, and thus it has a unique stationary distribution
p¼ ðpa;bÞ. The stationary distribution p¼ ðpa;bÞ solves

pa;b ¼
X
ða0 ;b0 Þ

pa0 ;b0fða0 ;b0 ;a;bÞ

¼ pa;b 1�
X

ða0 ;b0 Þa ða;bÞ

vða;b;a0 ;b0 Þt

0
@

1
Aþ X

ða0 ;b0 Þa ða;bÞ

pa0 ;b0vða0 ;b0;a;bÞt: ð2:7Þ

Subtracting pa;b from both sides of (2.7) and then dividing by t
shows that (2.7) is equivalent to (2.2). Consequently, (2.2) has a
unique solution (and Pa;b ¼ pa;b).

Now, we will proceed to the solution of the system (2.2).
Knowing that the solution is unique, it is enough to use any
method and assumption to find a solution; in particular, we can
assume the Markov process is in detailed balance. As we will see
this assumption leads us to a solution (satisfying the detailed
balance condition); and since the solution is unique, the Markov
process indeed is in detailed balance.

Let us group the states by the number of handlers. This
corresponds to partitioning the states into the diagonals going
from top left to bottom right down in Fig. 1.

Letting c be the number of fighting pairs, so that a+b+2c=n, we
first consider states (n�2c,0) for c¼ 0; . . . ; bn=2c. One can go to
(n�2,0) from (n,0) via (n�1,1) and using the detailed balance
condition we get

Pn�2;0 ¼ nnf f � ðn�1Þnh � Tc � Th � Pn;0: ð2:8Þ

Similarly, one can go from (n�2,0) to (n�4,0) via (n�3,1) and
using the detailed balance conditions one gets

Pn�4;0 ¼ ðn�2Þnf f � ðn�3Þnh �
Tc

2
� Th � Pn�2;0 ð2:9Þ

¼
nðn�1Þðn�2Þðn�3Þ

2
ðnf fThÞ

2
ðnhTcÞ

2
� Pn;0: ð2:10Þ

Repeating the above argument yields, for c¼ 0; . . . ; bn=2c,

Pn�2c;0 ¼
n!

ðn�2cÞ!c!
ðnf fThÞ

c
ðnhTcÞ

cPn;0; ð2:11Þ

and

Pn�2c;b ¼
ðn�bÞ!

ðn�b�2cÞ!c!
ðnf fThÞ

c
ðnhTcÞ

cPn�b;b; ð2:12Þ

for b=0,yn, c¼ 0; . . . ; bðn�bÞ=2c.

It remains to express Pn�b;b, for b=1,y,n in terms of Pn;0.
Working in the left part of the dynamics diagram (Fig. 1), using
the detailed balance conditions, we get

Pn�b;b ¼
n!

ðn�bÞ!b!
ðnf fThÞ

bPn;0: ð2:13Þ

Putting (2.12) and (2.13) together yields

Pn�b�2c;b ¼
n!

ðn�b�2cÞ!c!b!
ðnf fThÞ

cþb
ðnhTcÞ

cPn;0; ð2:14Þ

and thus

Pa;b ¼
n!

a!b!
n�ðaþbÞ

2

� �
!

ðnf fThÞ
ðnþb�aÞ=2

ðnhTcÞ
ðn�b�aÞ=2Pn;0: ð2:15Þ

Since

X
B

X
C

PN�B�2C;B ¼ 1 ð2:16Þ

one gets

Pn;0 ¼
1Pn

B ¼ 0

Pbðn�BÞ=2c
C ¼ 0

n!

ðn�b�2CÞ!B!C!
ðnf fThÞ

BþC
ðnhTcÞ

C
ð2:17Þ

Finally, (2.17) and (2.14) together yield (2.4) as required. This
ends the proof of the Theorem.

3. Uptake rate

Since the uptake rate is proportional to the fraction of handlers
in the population, we are interested in the behaviour of the
function

f ðnÞ ¼
1

n

Xn

b ¼ 0

b �
X

a

Pa;b

¼

Pn
b ¼ 0 b �

Pbðn�bÞ=2c
c ¼ 0

n!

ðn�b�2cÞ!b!c!
ðnf fThÞ

bþ c
ðnhTcÞ

c

n �
Pn

b ¼ 0

Pbðn�bÞ=2c
c ¼ 0

n!

ðn�b�2cÞ!b!c!
ðnf fThÞ

bþ c
ðnhTcÞ

c
ð3:1Þ

The function f(n) measures the uptake rate in the population of
n animals. Notice that the function depends on the following
3 factors only:

� the size of the population,
� the product ðnf fThÞ,
� the product ðnhTcÞ.

The second factor corresponds to up-down movement in the
diagram in Fig. 1 (searching for food and eating), the third factor
corresponds to left right movement on the diagram (looking for a
handling and fighting).

Note that by fixing nh and allowing the population size to vary
the interactions between individuals will always increase with n

and inevitably ever more fights will result. Hence, if we are
interested in the dependence of the uptake rate on the population
size, it is better to consider the parameter mh ¼ nh=n instead of nh,
as in Yates and Broom (2007), and the density-adjusted uptake

M. Broom et al. / Journal of Theoretical Biology 264 (2010) 266–272 269
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rate function

~f ðnÞ ¼

Pn
b ¼ 0 b �

Pbðn�bÞ=2c
c ¼ 0

n!

ðn�b�2cÞ!b!c!
ðnf fThÞ

bþ c nh

n
Tc

� �c

n �
Pn

b ¼ 0

Pbðn�bÞ=2c
c ¼ 0

n!

ðn�b�2cÞ!b!c!
ðnf fThÞ

bþ c nh

n
Tc

� �c ð3:2Þ

By fixing mhn¼ nh we keep the overall rate of finding handlers for
any searching individual as effectively constant no matter the
population size.

For each value of nh there is initial variation in ~f ðnÞ for small
values of n, followed by convergence to a constant density-
adjusted uptake rate hr, where

hr ¼
�ð1þnf fThÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þnf fThÞ

2
þ8Tcnhnf fTh

q
2nhTc

ð3:3Þ

as n increases. The formula (3.3) could be derived from (3.2) by
using Stirling’s formula, noting that in the limit, the probability
Pa;b is maximised when b/n=hr and that b/n converges in
probability to hr, so that the population handling ratio is very
close to this maximising value almost always. The constant hr

from (3.3) is a classical uptake rate in fighting populations and it
has appeared in all of the previous deterministic models such as
Broom and Ruxton (1998), Broom et al. (2008) and others.

When nh is small, i.e. nh � 0, then the population stays only in
the left part of the diagram in Fig. 1. Hence, Pa;ba0 only if
0ra¼ n�brn. Consequently, by (2.13),

Pn�b;b ¼

n!

ðn�bÞ!b!
ðnf fThÞ

b

Pn
b ¼ 0

n!

ðn�bÞ!b!
ðnf fThÞ

b
¼

n!

ðn�bÞ!b!
ðnf fThÞ

b

ð1þnf fThÞ
n : ð3:4Þ

It follows that

f ðnÞ � ~f ðnÞ �
1

n

Xn

b ¼ 0

b � Pn�b;b ð3:5Þ

¼
1

nð1þnf fThÞ
n

Xn

b ¼ 0

b
n!

ðn�bÞ!b!
ðnf fThÞ

b
ð3:6Þ

¼
nf fTh

ð1þnf fThÞ
: ð3:7Þ

The above is actually an uptake rate for the population with no
fights originating from the classical work of Holling (1959).

Notice in Fig. 3 that with increasing value of nh, the density-
adjusted uptake rate ~f ðnÞ becomes ever more sensitive to the
population size being odd or even. When nh is relatively small,
then there is little sensitivity, and ~f converges quickly to hr,

Fig. 3. Uptake rates for kleptoparasitic populations. (a) nh ¼ 0:1, (b) nh ¼ 1, (c) nh ¼ 10, (d) nh ¼ 100, (e) nh ¼ 1000, (f) nh ¼ 10 000. Other parameter values are

nf f ¼ 1; Th ¼ 1; Tc ¼ 1.

M. Broom et al. / Journal of Theoretical Biology 264 (2010) 266–272270
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but for large values the odd numbers converges down to the
equilibrium level and the even numbers converge up to that level,
but convergence is slow and happens at quite large values of n,
with the size adjusted uptake rate of all odd populations higher
than all even ones.

When nh gets really large (and n is relatively small), there is a
significant dependence of ~f on the parity of the population size.
This is caused by the fact that, for large nh, the dynamics is pushed
towards the right hand side of the scheme of the dynamics and as
demonstrated in Fig. 1 the exact shape of the right side depends
on the parity of the population size.

Clearly, when n is even and nh is large, the population is almost
always in the state (0,0), i.e. all animals are fighting. This means
that the uptake rate is approximately 0, and is thus not a realistic
description of any real population if this occurs over a long period.
When n is odd and nh large, the population is either in (1,0) or in
(0,1), i.e. n �1 animals are engaged in fights and the remaining
one is either searching or handling. Using the detailed balance
condition we get

P0;1 ¼ nf f � Th � P0;1 ð3:8Þ

and since P0;1þP1;0 ¼ 1 we get

f ðnÞ � ~f ðnÞ �

nf fTh

nð1þnf fThÞ
; n is odd;

0 otherwise:

8><
>: ð3:9Þ

This could be derived directly from (3.1) and (3.2) since the
maximal degree of nh at the top of the fraction is a¼ bðn�1Þ=2c
(achieved for b=1), while the maximal degree of nh at the bottom
of the fraction is a¼ bn=2c, achieved for b=0 (and possibly for b=1
as well—if n is odd).

4. Discussion

There is now a significant literature modelling kleptoparasitic
interactions; these models have been adapted to a number of
different scenarios, and have become more sophisticated allow-
ing for more complex behaviour. Most of this work has been
deterministic, assuming the large population case, rather than
stochastic and able to deal with small populations, which occur
frequently in situations where kleptoparasitism occurs. Such
stochastic models were introduced for the first time in Yates and
Broom (2007), adapting the original fundamental model (the
refinement of Ruxton and Moody (1997) from Broom and Ruxton
(1998)) and then followed up in Crowe et al. (2009). Also, Van der
Meer and Smallegange (2009) analysed and experimentally tested
a richer stochastic model of an interference system in shore crabs.

Various approximations were considered in Yates and Broom
(2007) and small populations in Crowe et al. (2009). In this paper,
we have analysed the model of Yates and Broom (2007) and found
a complete analytical solution to the probability distribution of
the population over its possible states for all population sizes, and
so both small and large populations can be considered exactly.
Stochastic effects are more pronounced for small populations, but
we see from Fig. 3 that these effects can persist to quite large
population sizes under certain conditions. An interesting feature
is the distinction between odd and even sized populations,
especially when these population sizes are small. Another
interesting result is that, conditional on knowing the number of
fighting pairs, the remaining individuals are split between the two
categories of handler and searcher according to a Binomial
distribution.

The creation and refinement of stochastic models will help us
examine and predict the outcome of interactions between
competitors. Following the results in this paper, it would be of

interest to develop similar methodologies to apply to the more
advanced later deterministic kleptoparasitic models, in particular
allowing a game-theoretic element in the small population
stochastic case for the first time. Strategies may depend signifi-
cantly on what knowledge the individuals have about the rest of
the population (e.g. if most others are fighting, this reduces the
risk of being kleptoparasitised yourself). As we stated earlier in
the paper, we are now becoming aware of more sedentary klepto-
parasitic species that may concentrate their behaviour in a limited
area and with the same individuals on multiple occasions. For
example, kangaroo rats kleptoparasitise unguarded seed caches
(Daly et al., 1992) so knowing what behaviour the burrow owner
is engaged in may influence when an individual decides to klepto-
parasitize. In sea otters, territorial adult males are more likely to
successfully steal food from females and pups (Riedman and
Estes, 1988) so knowing the sex and age distribution of the
population may help determine when this behaviour is exhibited.
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