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Birds arrive sequentially at their breeding ground where the nest sites vary in value (measured
by reproductive success). Each bird may choose a vacant site or challenge an occupier for its
site. In the latter case, the occupier is presumed to be the more-likely winner; the loser incurs
a cost and must go to a vacant site. In a previous paper (Broom et al., 1997, J. theor. Biol. 189,
257}272), we considered the optimal strategy. However, that optimal strategy was complex
and perhaps could not be realized in real bird populations, making possibly costly demands
both perceptually and at the coding level. With this in mind we introduce certain restricted
classes of strategy, and consider how populations might evolve. Computer simulations of
various populations have been performed to model the competition amongst several strategies
in the presence of recurrent mutations. Certain combinations of strategies persisted and
corresponded approximately to the ESSs found in Broom et al. (1997).
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1. Introduction

1.1. GAME THEORY

Game theory has featured strongly in modelling
the natural world, particularly in the area of
animal con#icts. It has provided explanations for
apparently paradoxical situations, for example,
the practice of heavily armed animals engaging
only in ritualistic contests (Maynard Smith, 1982)
and the tendency of (especially male) animals to
develop extremely costly signals to acquire mates
(Grafen, 1990a, b). The concept of an evolu-
tionarily stable strategy (ESS), introduced
in Maynard Smith & Price (1973), has been
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especially useful, and has been central to a large
body of literature; some important examples in-
clude Bishop & Cannings (1976), Cressman (1992),
Haigh (1975), Hofbauer & Sigmund (1988, 1998)
and Maynard Smith (1982). Most of this work has
concentrated on games between only two players.
This is understandable for two reasons.

(i) Many natural con#icts involve only two
players and thus the theory of pairwise games is
widely applicable.

(ii) The mathematics involved in pairwise
games is simpler than that for multi-player
games, and thus it is easier to obtain results both
in theory and in practical application.

Game theory has its roots in economics origin-
ating with Von Neumann & Morgenstern (1994)
( 2000 Academic Press
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[see also Axelrod & Hamilton (1981) and
Binmore (1992)] and multi-player games have
always been central to its theory. See Luce
& Rai!a (1957) for a general discussion (includ-
ing a description of its application to voting
schemes). However, there has so far been little
work in the area of multi-player game theory
applied to biological situations [examples in-
clude Broom et al. (1997b), Cannings & Whit-
taker (1994) and Haigh & Cannings (1989)]. But
there are many biological situations which can-
not be modelled by pairwise games. This is either
because more than two individuals compete
simultaneously or alternatively pairwise games
occur within a structure which e!ectively makes
them multi-player, e.g. dominance hierarchies in
social animals (Barnard & Burk, 1979) or, as in
the current paper, birds nesting at a colonial
breeding site (Broom et al., 1996, 1997a). Even in
classical examples such as the competition of
males for mates, the pairwise contests involved
are likely to be dependent. Thus, it is important
to consider multi-player models (both theoret-
ically and practically) to extend the already im-
pressive contribution of game theory to the study
of biology.

1.2. A SEQUENTIAL-ARRIVALS MODEL OF

TERRITORY ACQUISITION

In many species birds nest together in very
large areas with many hundreds or even thou-
sands of sites. An example is kittiwakes along the
ledges of a cli!. At the beginning of the nesting
season, birds (or more properly breeding pairs of
birds) have to "nd a nest site. The potential sites
will be of varying value (as measured by the
expected number of surviving o!spring), depend-
ing upon various factors such as access by pred-
ators, amount of shelter, etc. In the model of
Broom et al. (1997a) the birds are supposed to
arrive at their breeding ground one at a time,
their position in the sequence of arrivals is ran-
domly determined and they cannot in#uence this
position, e.g. by postponing their actions at the
breeding ground. For a consideration of this
problem where birds can a!ect their arrival time,
see Kokko (1999). On arrival, a bird may either
occupy a vacant site or challenge for one which is
already occupied. A loser in a "ght resulting from
such a challenge must move to an unoccupied site
and at the same time incurs a cost. From the
species point of view, the best strategy is just to
"ll up the sites in an orderly fashion without any
con#ict, since this maximizes the total payo! to
the group. However, selection operates at the
individual level, and thus behaviour which is
bene"cial to the individual (even at the expense of
its group-mates) will become prevalent in the
population. Thus, the behaviour which evolves
should be approximately the same as that which
would occur if the birds were thinking rationally
and sel"shly about their options.

In Broom et al. (1997a), we considered what
was the &&optimal behaviour'' for a population of
birds in the sense that each individual adopted
what was optimal for them given the situation
they faced, and assuming that all subsequent arri-
vals would also behave optimally. It was assumed
in that paper that the occupier of a site was the
more likely winner of a contest. A recursive argu-
ment was employed to derive both general results
regarding this optimal behaviour and also to
solve certain particular cases (i.e. values of the
costs, rewards, and probability) to illustrate some
of the features of those solutions. It was shown
that for a reasonable set of nest sites (e.g. linear
payo!s) the birds which arrive "rst tend to do
better than those which arrive later. Initially, the
birds do well to occupy empty sites until the
quality of these become too poor, after which
they risk contesting the better sites. An interest-
ing and important result is the existence of a thre-
shold value. Birds which arrive before a certain
time do not challenge and birds which arrive after
it do. The very last birds contest the top sites,
previous ones challenge on sites further from
the best. There can be a &&second wave'' or &&third
wave'', etc. of challenges when birds further from
the end will start to contest the top sites. The
model describes an interesting pattern of behav-
iour of the population as a whole.

We assume that the information used to
choose a nesting strategy is coded for genetically.
There is evidence that this is true for related
behaviour in the type of migratory birds that
we are considering, especially the direction of
migration (e.g. Berthold et al., 1992). Thus, we do
not envisage a bird making complex decisions,
but simply responding to pre-programmed cues
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telling it how to behave. Successful strategies,
however, will resemble those which would be
chosen by a rational individual. The solution
found in Broom et al. (1997a) was a unique opti-
mal strategy for every bird in every situation but
it required a precise knowledge of the values of all
the sites. The solution is extremely complex, re-
quiring a very large look-up table exactly specify-
ing what to do in each possible situation for each
possible set of site values. Thus, the genetic sys-
tem may not be capable of coding for this.
Also the site values will vary from year to year (as
will the number of sites), so that the &&best'' strat-
egy for one year may not be the best one in
subsequent years. In any case, this may be an
expensive process; simpler information storage
requires less brain capacity, and so the cost of
simpler storage systems to the bird is likely to be
less than more complex ones.

We see that there are several reasons to think
that birds will be programmed with a strategy
which resembles how a rational player would
behave, but without the level of complexity of
Broom et al. (1997a). It should be noted, however,
some species are capable of making complex de-
cisions, rather than simply being genetically pre-
programmed, see Clayton & Dickinson (1999) for
an example. Thus, they may be able to evaluate
a good strategy conditional upon their environ-
ment, which, if not up to the complexity level of
Broom et al. (1997a), may be more complex than
the type of strategy that we envisage in this paper.

We consider here certain restricted classes of
strategies which might be reasonable for a popu-
lation of birds, and "nd the best strategies within
each class. The type of strategies chosen are those
that resemble the optimal strategy in certain key
features, whilst keeping the amount of informa-
tion stored to a minimum. There are a number of
sites of decreasing value, and a bird may either
challenge upon an occupied site or occupy a va-
cant site. If there are good sites still available it
does not make sense to challenge for a slightly
better site and risk receiving an injury, so a bird
should just occupy one of the free sites. However,
if the remaining sites are poor compared to some
occupied ones then it will be worth the risk to
"ght and try to obtain a good site.

We consider three types of strategy: Type 1,
Type 2 and Type 3. In Type 1, the birds pick the
best free site until a critical number have been
occupied, after which they challenge for one of
the top sites, each with equal probability. Thus,
the &&threshold'' result is maintained. Recall that
this result depends upon the assumption that the
occupier of a site is more likely to win a contest
than the challenger. This assumption will apply
throughout this paper without further comment.
We show that there is no pure ESS within this
class. Type 2 is an extension of this idea; the
probability that a bird challenges for a given site
is now not constant over the top sites. There is
also no pure ESS within this second class. How-
ever, there is a pure strategy, the pivotal strategy,
which resists opponents with a single mutation
(in a sense to be de"ned later). Each strategy of
Type 2 is equivalent to a combination of strat-
egies of Type 1. It is observed that for the pivotal
strategy, the early occupiers of the top sites do
worse than the occupiers of some lower sites, thus
a further re"nement is introduced (Type 3 strat-
egies) where early birds do not occupy the top
sites. The properties of this third type of strategy
are investigated. An advantage of this type of
strategy to that of Broom et al. (1997a) is that it is
robust to environmental changes. Thus, in a #uc-
tuating environment where optimality decisions
are di$cult, a relatively simple strategy such as
this might be best. For a general treatment of
optimality decisions in #uctuating environments,
see McNamara et al. (1995).

Section 2 describes the sequential-arrivals
model and the simple strategies that we consider.
In Section 3, the existence of the pivotal strategy
in the limiting case when the number of sites is
in"nite is proved, and the form of the pivotal
strategy is found for the case where the intrinsic
values of the sites are linearly dependent upon the
site number. In Section 4, we describe computer
simulations of populations playing strategies re-
stricted to the chosen types and examine how the
populations behave. Section 5 is a discussion of
our results.

2. A Sequential-Arrivals Model

2.1. THE MODEL

Suppose that a set of n birds B
1
,2, B

n
arrive

sequentially at n nest sites S
1
,2, S

n
. The value of
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the site S
i
is <

i
(*0) for the bird occupying that

site at the end of the process, i.e. when all birds
are settled on a site, where <

i
*<

j
if i(j. If there

are more sites than birds we can ignore the worst
sites, if there are more birds than sites we can
create phantom sites with zero value.

When a bird arrives it may choose to go to any
vacant site or to challenge the occupier of any
occupied site. A challenge is a contest of the
following form:

The challenger wins with probability
p)0.5, otherwise the occupier wins. The win-
ner becomes the occupier of the contested site,
the loser pays a cost C, (receives a payo! of
!C(0) and must retreat to an unoccupied site
of its choice.

Thus, a bird may not make any challenge after its
initial one, and must remain at the site it has
occupied (although it may be removed by the
challenges of other birds). If the bird was allowed
to challenge again then it would be in the same
position as the previous new arrival had been,
and would thus make the same decision, resulting
in an in"nite number of challenges (and costs) for
each bird, so that it would not be sensible for any
TABL

Model parameter

Parameter De"nition

n The total number of birds arriving at the bree
B
j

The j-th bird to arrive at the breeding ground
S
i

The i-th most valuable nest site at the breedin
<
i

The value of site S
i

p The probability that the challenging bird wins
C The cost incurred by the loser of a contest
I The lowest value site considered &&good'' by a
J The lowest value site considered &&medium'' by
p
i

The probability of a Type 2 bird challenging o
X The lowest value site considered &&good'' in the
> The lowest value site considered &&medium'' in
B
t

The bird to arrive at time t in the asymptotic
S
x

The nest site with proportion x less valuable i
;

x
The value of site S

x
f (x) The density of challenges by Type 2 birds on

su$ciently good
X* A di!erent value of &&X'' chosen by a mutant b
>* A di!erent value of &&>'' chosen by a mutant b
=

x, t
The expected payo! to the occupier of S

x
at t

/(z) The expected payo! to B
1~z

h (x) p> f (x)
g (x) A di!erent value of &&h(x)'' chosen by a mutan
P
t
(x) The probability that the occupier of S

x
at t st
bird to challenge. When a bird loses a contest in
this model it receives an injury, which may pre-
vent it from making any more challenges. It is
possible to make this model more complicated
(e.g. variable values of p and C depending upon
which site the contest takes place, more than one
challenge per bird); however, the present model
seems to have the most important feature (choose
a free site or "ght) and is amenable to analysis.

The contest "nishes after the arrival of the "nal
bird. The payo! to a bird is the value of the site it
occupies at the end of the contest minus any
penalties it has received for losing challenges.

In this paper, a variety of parameters are
used in a number of contexts. Table 1 gives a list
of all the parameters used, together with their
meaning.

2.2. SIMPLE STRATEGIES

In Broom et al. (1997a), the birds played
rationally conditional upon the positions of all
the birds which had arrived before them and
upon the assumption that all subsequent birds
would also behave rationally. As indicated in
the Introduction, the strategies which result are
E 1
s and de,nitions

ding ground

g ground

a contest

simple strategy player
a simple strategy player
n S

i
if the available free sites are not su$ciently good

asymptotic case
the asymptotic case
case
n the asymptotic case

S
x

in the asymptotic case if the available free sites are not

ird
ird

ime t

t bird
ill holds it at time 1
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very complicated and here we consider three,
relatively simple, types of strategy.

Type 1 divides sites into three categories; good
sites (1,2, I), medium sites (I#1,2, J) and
poor sites (J#1,2, n). A bird will occupy the
best free site if a good or medium site is available.
However, if only poor sites are free it will chal-
lenge for a good site chosen at random with each
site having an equal probability of being chosen
(if it just chose the best site then it would prob-
ably be challenged several times by other birds
also playing this strategy, and so may well lose
the site). If the bird loses a contest, whether as
challenger or challenged, it occupies the best free
site. Thus, a strategy is described by an integer
pair (I, J).

Type 2 is a re"nement upon Type 1. In Type 1
all the players challenge the top sites with an
equal probability. However, it may be more sen-
sible to allocate a higher probability to the best of
these sites (or vice versa!), so we introduce a prob-
ability vector p so that p

i
is the probability that

a bird will challenge upon site i (1)i)I).
A strategy is de"ned by a vector and a pair of
integers (p; I; J). Note that given the values of the
(p

i
), I is determined; it is simply the largest i for

which p
i
'0.

Type 3 is a di!erent re"nement of Type 1. For
late birds, the only free sites are the poor ones
and so they challenge for the top sites. Thus, the
early occupiers of these very good sites face the
prospect of being evicted from these sites, having
to go to a poor site and receiving an injury in the
process. A Type 3 strategy attempts to take this
e!ect into account by allowing the early birds
to ignore the best I sites. Later birds occupy or
challenge a site from the top I.

More formally the three types of strategy are
de"ned as follows:

¹ype 1: If S
i
is free for some i)J then go to

the best free site, otherwise challenge upon S
k

(1)k)I) with probability 1/I. If a contest is
lost, go to the best free site. A strategy is de"ned
by the pair (I, J).

¹ype 2: If S
i
is free for some i)J then go to

the best free site, otherwise challenge upon S
k

(1)k)I) with probability p
k
. If a contest is

lost, go to the best free site. Setting p"(p
i
)

(i"1,2, I) a strategy is de"ned by (p; I, J).
¹ype 3: If S
i
is free, for some i3[I#1, J], go

to the best free site within [I#1, J], otherwise
go to S

k
(1)k)I) with probability 1/I. If S

k
is

occupied then of course a challenge occurs. If
a contest is lost, go to the best free site. Strategies
of this type are de"ned by the pair (I, J).

3. Asymptotic Results

As has been remarked in the Introduction,
many species of birds nest together in very large
groups of hundreds or even thousands of sites
and so it is of interest to consider the behaviour
of populations where n is large. We investigate
the properties of strategy types (1) and (2) as
n tends to in"nity. Let X"(n!I)/n,>"(n!J)/n
and in general x"(n!i)/n, so that in the limit of
large n the sites have indices which are continuous
over (0, 1]. De"ne ;

x
as the reward for occupying

site S
x
at the end of the contest. We shall assume

that;
x
is a continuous and monotone increasing

function on (0, 1] (x is decreasing with site num-
ber and so increasing with site value).

De"ne f (x) (X)x(1) by the requirement
that f (x) dx is the probability that a (challenging)
bird challenges on a site in the interval x to
x#dx. Strategies are thus of the form ( f ; X; >).
As well as modelling large populations, the
asymptotic results given below give an indication
of how populations with smaller numbers of
birds and sites may behave (see Section 4.2 for
a comparison when the number of sites is ten).

3.1. ASYMPTOTIC RESULTS FOR GENERAL PAYOFFS

It is clear that no pure strategy can form an
ESS within the class de"ned by Type 1 (or that
formed by Type 3), except in the situation where
the cost of losing a contest is high so that it is best
for nobody to challenge and X"1, >"0 is an
ESS. Suppose there were such as ESS (X; >)
X(1, >'0 for Type 1. If almost all players
play this strategy, then each arrival after (>, 1]
are "lled is equally likely to challenge upon any
site S

x
; x3(X, 1], and since;

x
';

y
when x'y,

there is a greater expected payo! associated with
challenging upon S

x
than S

y
for any particular

bird. This means that a bird which chooses
a strategy (X*; >) where X*'X, will have
a greater payo! than the original strategy
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(at least when the number of players of strategy
(X*, >) is small), and so can invade. The argu-
ment is the same for Type 3. Note that mixed
ESSs (comprising players of di!erent strategies)
are not excluded by this argument.

This argument does not hold for the "nite site
case in one special case: namely when there is
only a single site which should be challenged
upon, so that the rational strategy de"ned in
Broom et al. (1997a) can be expressed as a Type
1 strategy and so is an ESS of that class.

For example, when n"6, <
1
"60, <

2
"4,

<
3
"3, <

4
"2, <

5
"1, <

6
"0, C"0, p"0.4. In

this case, the "rst bird should go to S
1
, and every

other bird should challenge on S
1
, the loser going

to the best free site. Thus, I"J"1 is an ESS
(there are no &&medium'' sites).

We now consider strategies of Type 2, and
proceed to "nd a strategy which is resistant to
invasion, although it is not an ESS. In the process
we show that there is no pure ESS of Type 2. To
do this we need some de"nitions.

We suppose that, as in the "nite case, birds
arrive in a strict order so that B

r
arrives before B

s
if and only if r(s. Thus, when B

r
arrives, the set

of previous arrivals is MB
s
: s(rN. We shall de"ne

time t as the time of the arrival of B
t
. Note that

our temporal scale need not be a linear function
of real time, but is a strictly increasing function of
it. Times t"0 and 1 will correspond to the arri-
val of the "rst and last birds, respectively.

We de"ne=
x, t

to be the expected payo! to an
occupier of site x at time t, i.e. birds have arrived
up to and including B

t
, and the occupied sites are

S
w
; w3[1!t, 1].
Further we de"ne the expected future payo+

/(z) to a bird arriving at time 1!z as the mean
payo! received by such a bird. For a bird which
arrives at time t, the best free site is S

1~t
. If a bird

does not challenge, its expected future payo! is
the expected payo! to a bird occupying that site,
i.e. /(z)"=

z,1~z
. If it challenges on the site with

value ;
r
, then the expected future payo! is

/(z)"p=
r,1~z

#(1!p)(=
z,1~z

!C).
If all of the population play ( f ; X; >) then

=
x, t

";
x
(x(X, for all t) and=

x,1
";

x
for all x.

Theorem 1. ¹here is a unique strategy ( f ; X; >)
which cannot be invaded by any strategy which is
a single mutation away (i.e. it di+ers in > or f /X
only). ¹his strategy is not an ESS and will be called
the pivotal strategy.

Theorem 1 is proved in Appendix A.
Since the pivotal strategy is the only pure strat-

egy which can resist invasion by a strategy a
single mutation away, it is the only candidate
ESS. Since it is in fact not an ESS, we conclude
there is no pure strategy ESS for Type 2.

Following the argument in the proof of
Theorem 1, the pivotal strategy can be invaded
by a small group of a su$ciently similar strategy.
The advantage of this new strategy is lost if too
many players adopt it. This leads us to conjecture
that there is a stable collection of strategies cen-
tred around the pivotal strategy which form
a mixed ESS. Evidence in support of this claim is
found in the simulations of the next section.

Note that a strategy of Type 2 is a combination
of strategies of Type 1. If we have an in"nite combi-
nation of strategies all with the same > but with
varying X we can construct any decreasing density
function (a pivotal strategy clearly has a decreasing
f (x)duetocondition (A.3) intheproofofTheorem 1).

3.2. ASYMPTOTIC RESULTS FOR LINEAR PAYOFFS

We will now consider a special case where
there is a linear relationship between the number
of the site and its value. This seems a plausible
scenario, for instance, if sites are along a cli! edge
where the worst sites are those inland closest to
terrestrial predators. This case was also con-
sidered in Broom et al. (1997a). We "nd an
expression for the pivotal function.

We de"ne the function h (x) by

h(x)"p> f (x).

Theorem 2. =hen p'C/(C#1) and ;
x
"x, the

strategy de,ned by ¹heorem 1 satis,es the follow-
ing equations:

x#C#

>
h (x)

"

h (x)
1!e~h(x) AX!

>
2
#C#

>
h (x)B ,

(1)

P
1

X
CA

x#C
> B h (x)e~h(x)!1#e~h(x)D dx"C, (2)

P
1

X

h (x) dx"p>. (3)



TABLE 2
¹he values of X and> for the pivotal strategy (for the asymptotic case with linear

payo+s ;
x
"x) for various values of C and p

C p"0.1 p"0.2 p"0.3 p"0.4 p"0.5

0.1 0.944, 0.030 0.783, 0.284 0.720, 0.345 0.673, 0.379 0.636, 0.398
0.2 1, 0 0.913, 0.034 0.767, 0.190 0.699, 0.260 0.652, 0.296
0.3 1, 0 1, 0 0.854, 0.061 0.747, 0.153 0.678, 0.214
0.4 1, 0 1, 0 0.950, 0.006 0.797, 0.085 0.713, 0.147
0.5 1, 0 1, 0 1, 0 0.863, 0.034 0.747, 0.101
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Theorem 2 is proved in Appendix B. If p)C/
(C#1) then X"1 and >"0, i.e. no challenges
take place.

For given C and p, we can arbitrarily choose
the values of X and > and thus solve eqn (1) for
h(x). Equations (2) and (3) now provide two con-
ditions from which X and > may be found.
In general, there is only one initial pair (X, >);
0(>)X)1 which generates identical values;
these are the true values of X and >. A curious
feature of the numerical solutions is that h(x) is
always well-approximated by a linear function
(Table 2).

4. Simple Strategy Simulations

In this section, we consider populations of
strategies either from Type 1 or Type 3. In each
case, <

i
"n!i#1. There were two di!erent

types of simulations:

(a) a single large area with many (1000) sites,
(b) many small areas, each with a few sites

(1000 areas of 10 sites each).

4.1. A DISCUSSION OF SIMULATION (a)

C was chosen to be either 100 or 150, p to be
0.3 and each bird starts with a base capital (re-
serves) of 100. Initially, the population is made up
of 100 players of each of ten di!erent strategies
(chosen randomly). These players are then or-
dered randomly and arrive at the area in that
order, playing their strategy, until all players
have arrived. The payo!s for the sites occupied
and the costs accrued (making a negative contri-
bution) are then added together for all the birds
playing a given strategy, to give a total payo!
for each strategy. The number of birds playing
a strategy in the next round is proportional to
that strategy's total payo! from the previous
round (to the nearest whole number, and so that
the total stays close to 1000). The process is
repeated for successive rounds. If the mean payo!
of birds playing a particular strategy is greater
than the mean payo! of the population as
a whole then the numbers playing that strategy
will increase. If any of these payo!s becomes
negative (or less than 0.5) then that strategy is
eliminated and a new strategy is introduced at
random with ten players; the overall number is
adjusted to make the total 1000.

(i) To choose a random strategy of Type 1 or
Type 3, we need to obtain a pair of integers I and
J between 1 and 1000 inclusive, with I(J. To do
this, two uniform random variables were chosen
from (0, 1), multiplied by 1000, the integer part
taken and increased by 1, then the larger of these
was J and the smaller I. The possible number of
strategies in this case is very large, of the order of
106. A new strategy appeared roughly once in
every two generations, so that many generations
are required to be reasonably certain that a par-
ticular strategy has entered the population at
some point in time. It is, of course, not guaran-
teed that it will remain in the population even if it
has occurred, because the level of introduction is
low and its representatives may be assigned un-
favourable positions in the queue. Hence, the
population is unlikely to settle down quickly and
indeed it was found that the mixture in the popu-
lation continually changed.

(ii) To reduce the number of strategies, I and
J were restricted so that they could only take
values which were multiples of 100. This is per-
haps more realistic than the previous example.
Real birds would not count exactly how many
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other birds had arrived or know the exact quality
of each site, but might be able to distinguish large
di!erences. In some cases, this led to more obvi-
ously stable behaviour than in (i), with some
strategies persisting for long periods of time.

Figure 1(a) shows the evolution of a popula-
tion with p"0.3, C"100 and strategies of
Type 1. The proportions of the population play-
ing the most dominant strategies is shown; the
plotted points being &&running means of 1000'' (i.e.
the mean proportion from the last 1000 genera-
tions). A total of 100 000 generations are con-
sidered. There are four strategies which together
make up most of the population. Generally, two
or three of them are present in the population in
large numbers at any particular time. At any time
the most common strategy is usually (200, 600),
but sometimes (200, 700), and one or both of (100,
700) and (300, 600) is also present. For clarity, the
"gure only shows three of these strategies [(200,
700) is excluded].

Figure 1(b) shows the same plot as Fig. 1(a),
except that C"150. There are again four com-
mon strategies with (200, 700) easily the most
common, often making up 70% of the popula-
tion. Generally, there is one other strategy which
co-exists with this, namely one of (100, 700),
FIG. 1(a). Proportion of players of given strategies of
Type 1, when p"0.3, C"100 plotted as running means of
1000 generations for a single large area of 1000 nest sites.
** (100, 700); } } } } (300, 600); ) ) ) ) ) (200, 600).
(100, 800) or (300, 700). The strategy (100, 800) is
omitted from the plot, again for clarity.

In both cases, although the actual mixture in
the population changes the basic features remain
the same. There is a mixture of values of I 100,
200 and 300, which resembles the pivotal strategy
from the previous section. The value of J is less
variable, sometimes almost all players have
J"700 in Fig. 1(b), but sometimes there is an-
other value of J also present. The only type of
strategy that can invade the pivotal strategy is
one where J is larger and I smaller, or vice versa.
This is precisely the type of strategies which occur
in Fig 1(a) and (b) (larger I tend to be associated
with smaller J). Thus, these "gures provide evid-
ence to support the hypothesis of a co-existing
band of strategies close to the pivotal strategy.

Figure 1(c) shows the same plot as Fig. 1(a),
except that the strategies are of Type 3 instead of
Type 1. Now there is one common strategy
(300, 500) which occurs with a wide range of
other strategies. The mixture is very variable,
with (300, 500) making up just under half the
population, but no other strategies making
a large contribution. The most signi"cant other
strategies are (200, 500) and (200, 600). When C is
increased to 150 there is no persistent dominating
FIG. 1(b). Proportion of players of given strategies of
Type 1, when p"0.3, C"150 plotted as running means of
1000 generations for a single large area of 1000 nest sites.
** (100, 700); } } } } (200, 700); ) ) ) ) ) (300, 700).



FIG. 1(c). Proportion of players of given strategies of
Type 3, when p"0.3, C"100 plotted as running means of
1000 generations for a single large area of 1000 nest sites.
** (300, 500); ) ) ) ) ) (200, 500); and (200, 600).
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strategy or mixture of strategies. The most com-
mon overall strategy is (200, 500), which can
dominate the population for a while, but then it is
eliminated only to return and dominate the
population again.

The existence of relatively stable strategy
mixtures in Fig. 1(a) and (b) for Type 1 strategies
is in contrast to Type 3 strategies [Fig. 1c]. Indi-
viduals start "lling up the sites from I, so avoid-
ing challenges with players of the same strategy.
Thus, there is con#ict between strategies with
di!erent values of I and there are no longer stable
mixtures. In each case, there appears to be
a clearly best strategy; however, if its numbers are
reduced due to chance (since the population is
small) it loses its advantage and can be removed
from the population completely; this is especially
true in the case when C"150. Thus, in this case
the dominant strategies do not resemble the
pivotal strategy.

4.2. A DISCUSSION OF SIMULATION (b)

C was chosen to be either 1 or 1.5, p was again
0.3 and each bird had a base capital of 1. Note
that if the values of the sites<

i
, the cost C and the

base pay-o! are all multiplied by a constant the
simulation results are identical. Multiplying by
100 gives site values 1000, 900,2, 100 over
a similar range to simulation (a). The cost be-
comes 100 or 150 and the base pay-o! becomes
100 exactly as in simulation (a). Thus, values of
the parameters have been chosen to make the
results from the two simulations comparable.

Strategies were chosen in a similar way to (a).
One thousand di!erent areas of ten birds were
simulated and the total payo!s won by each
strategy were collected together from all of the
sites. The proportion of the total payo! won by
each strategy again becomes the proportion of
players of that strategy for the next generation. If
any total payo! for a strategy is negative, then
a new strategy is chosen randomly and introduc-
ed with 100 birds (a proportion 0.01 of the popu-
lation) the numbers for the other strategies being
adjusted to make 10 000 birds in total).

Figure 2(a) shows the evolution of a popula-
tion with p"0.3, C"1 and strategies of Type 1.
The proportion of the population playing the
most dominant strategies is shown; the plotted
points again being &&running means of 1000'' (i.e.
the mean proportion from the last 1000 genera-
tions). A total of 100 000 generations are con-
sidered. Generally, there are three co-existing
strategies: (2, 6) (the most common), (1, 7) and
(3, 6). However, the population may lose either
(1, 7) or (3, 6) temporarily.

In Fig. 2(b), C is now 1.5. For almost all of the
time, there is a mixture of two strategies: (2, 7)
(easily the most common) and one of (1, 7) and
(1, 8). As for Fig 1(a) and (b), Fig 2(a) and (b) show
a stable strategy mixture which resembles the
pivotal strategy. The mixture is less variable,
probably due to the increased population size
(10 000 rather than 1000).

Figure 2(c) shows the same plot as Fig. 2(b),
except that the strategies are of Type 3 not Type
1. The strategies (2, 5) and (2, 6) dominate the
population. The frequencies are virtually equal,
with no other strategy featuring to any signi"cant
extent. If C is increased to 1.5, the strategy (2, 5)
completely dominates the population, always ac-
counting for over 90% of the population.

The stable mixtures of Fig. 2(a) and (b) with
di!ering values of I are replaced by single domi-
nant I values, as in Fig. 1 but with two notable
di!erences. Firstly, the dominant strategies are
very stable; for Type 3 strategies, when C"1.5



FIG. 2(a). Proportion of players of given strategies of
Type 1, when p"0.3, C"1 plotted as running means of
1000 generations for a 1000 areas of ten nest sites.** (1, 7);
} } } } (3, 6); ) ) ) ) ) (2, 6).

FIG. 2(b). Proportion of players of given strategies of
Type 1, when p"0.3, C"1.5 plotted as running means of
1000 generations for a 1000 areas of ten nest sites.** (1, 7);
} } } } (1, 8); ) ) ) ) ) (2, 7).

FIG. 2(c). Proportion of players of given strategies of
Type 3, when p"0.3, C"1.5 plotted as running means of
1000 generations for a 1000 areas of ten nest sites.** (2, 5);
) ) ) ) ) (2, 6).
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a single strategy completely dominates the popu-
lation. Secondly, in Fig. 2(c) there is a mixture of
two strategies with the same I but di!erent J.
This mixture is again stable, and it is presumed
that the true &&best'' value of J lies between 5
and 6, thus allowing the strategies from either
side to dominate the population.

4.3. A COMPARISON WITH OPTIMAL PLAY

In this paper, we have considered simple strat-
egies which had some features in common with
the optimal play from Broom et al. (1997a). How-
ever, do the best strategies from this restricted
class resemble the optimal strategy numerically?

When the number of sites is 1000, C"100, and
p"0.3, as in Fig. 1(a), the optimal value of J lies
between 600 and 700. Thus, the mean overall
payo! is 500.5!100 multiplied by the propor-
tion of challenges, so is approximately 500.5!
100]350/1000+465. The maximum value of
I occurring regularly (and so the lowest site com-
monly challenged upon) was 300. Finding the
optimal strategy with these parameters, the "rst
bird to challenge is B

588
, so that the number

of challenges is 413, and so the mean expected
payo! is 459.2. The lowest site challenged upon
is S

364
. Thus, there is a rough correspondence

between our simpli"ed case and the optimal
one. The main di!erence appears to be that
individuals are not challenging enough in the
simpli"ed case, and could thus be exploited
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by more aggressive players with more complex
strategies.

Figure 2(a) shows that when the number of
sites is ten, C"1 and p"0.3 then the most
common value of J is 6. Thus, the mean overall
payo! is 5.5!0.4"5.1. The maximum value of
I which commonly occurs is 3. For the optimal
strategy, the "rst bird to challenge is B

7
, thus

there are four challenges and the mean payo! is
5.1. The lowest site to be challenged upon is S

3
.

Thus, there is a strong resemblance between the
two strategies.

5. Discussion

Severinghaus (1996) studied the behaviour of
Brown Shrike ¸anius cristatus arriving at a
breeding ground. The locations of the territories
of early arrivals tended to be scattered through-
out the study area, and later birds "lled the gaps
between them. The sizes of territories varied
greatly amongst birds; although early occupied
territories were not generally larger, they may
have been in preferred locations. Initially, there
was little aggression between birds, but as the
breeding ground "lled up this aggression in-
creased and some territory owners had to defend
their territories several times. This agrees with
our general predictions of the "rst birds occupy-
ing good sites, and later birds challenging for
a site when only poor sites remain free, and in
particular closely approximates the threshold
phenomenon found in Broom et al. (1997a). It
was also noticed that prior residence granted the
defender an advantage in any contest, again as in
our model. Note that the behaviour of birds in
this case was complicated by a large number of
&&transient'' birds who stopped at the site only
brie#y, before continuing on to other sites. This
introduced &&wait and see'' strategies, where a bird
would choose an inferior site temporarily, and
wait for a transient bird on a superior site to
leave, and then occupy the newly vacant site.

In Broom et al. (1997a), we found the optimal
site-choice strategy for a group of birds arriving
sequentially at a nesting area. This turned out to
be complicated, but did possess some important
features which were simple, for instance the thre-
shold phenomenon. It is unreasonable to assume
that real birds will be able to evaluate very
complicated (and parameter-sensitive) strategies,
and so in this paper we have introduced strat-
egies which possess the important features of
Broom et al. (1997a) without their complexity.

When birds which do not challenge always
occupy the best free site, simulations (Figs 1(a),
(b), 2(a), (b)) show a population #uctuating around
an equilibrium, which we refer to as the pivotal
strategy. By comparing the values of the para-
meters I and J obtained to the theoretical results
from Broom et al. (1997a), we notice that the
simple strategy is a good approximation to
the optimal strategy. If birds are allowed to
choose a free site other than the best (particularly
the best that birds playing the same strategy
would never challenge upon), then the resem-
blance to the pivotal strategy is no longer in
evidence. There is either little structure as for
simulations of type (a), or there is a highly stable
strategy or mixture of strategies as for simula-
tions of type (b).

The results of our previous work (Broom et al.
1997a) were rather daunting in that it concluded
that the best strategy was extremely complicated.
It is quite unreasonable to believe that any or-
ganism (including human) could calculate it. But
here we see that quite simple rules can produce
behaviour which e!ectively mimics the best strat-
egy. We suggest that this might be a common
feature of evolution: life is complex and situations
can change without warning; do not try to solve
the full problem, but "nd simple robust rules
which work well most of the time.

One of the authors (MB) was supported by a
BBSRC research grant reference no. GR/J31520 when
much of this work was done.

REFERENCES

AXELROD, R. & HAMILTON, W. D. (1981). The evolution of
cooperation. Science 211, 1390}1396.

BARNARD, C. J. & BURK, T. E. (1979). Dominance hierar-
chies and the evolution of individual recognition. J. theor.
Biol. 81, 65}73.

BERTHOLD, P., HELBIG, A. J., MOHR, G. & QUERNER, U.
(1992). Rapid microevolution of migratory behaviour in
a wild bird species. Nature 360, 668}670.

BINMORE, K. (1992). Fun and Games (A ¹ext on Game
¹heory). Lexington, MA: Heath.

BISHOP, D. T. & CANNINGS, C. (1976). Models of animal
con#ict. Adv. Appl. Prob. 8, 616}621.

BROOM, M., CANNINGS, C. & VICKERS, G. T. (1996). Choos-
ing a nest site: contests and catalysts. Am. Nat. 147,
1108}1114.



400 M. BROOM E¹ A¸.
BROOM, M., CANNINGS, C. & VICKERS, G. T. (1997a).
A sequential-arrivals model of territory acquisition. J.
theor. Biol. 189, 257}272.

BROOM, M., CANNINGS, C. & VICKERS, G. T. (1997b). Multi-
player matrix games. Bull. Math. Biol. 59, 931}952.

CANNINGS, C. & WHITTAKER, J. C. (1994). The "nite hor-
izon war of attrition. Games Econom. Behav. 11, 193}236.

CLAYTON, N. S. & DICKINSON, A. (1999). Scrub jays
(Aphelocoma coerulescens) remember the relative time of
caching as well as the location and content of their caches.
J. Compar. Psychol. 113, 403}416.

CRESSMAN, R. (1992). ¹he Stability Concept of Evolutionary
Game ¹heory: A Dynamic Approach. Lecture Notes in
Biomathematics, vol. 94, Berlin: Springer-Verlag.

GRAFEN, A. (1990a). Sexual selection unhandicapped by the
Fisher process. J. theor. Biol. 144, 473}516.

GRAFEN, A. (1990b). Biological signals as handicaps.
J. theor. Biol. 144, 517}546.

HAIGH, J. (1975). Game theory and evolution. Adv. Appl.
Probab. 7, 8}11.

HAIGH, J. & CANNINGS, C. (1989). The n-person war of
attrition. Acta Appl. Math. 14, 59}74.

HOFBAUER, J. & SIGMUND, K. (1988). ¹he ¹heory of
Evolution and Dynamical Systems. Cambridge: Cambridge
University Press.

HOFBAUER, J. & SIGMUND, K. (1998). Evolutionary Games
and Population Dynamics. Cambridge: Cambridge Univer-
sity Press.

KOKKO, H. (1999). Competition for early arrival in migra-
tory birds. J. Anim. Ecol. 68, 940}950.

LUCE, R. D. & RAIFFA, H. (1957). Games and Decisions.
New York: Wiley.

MAYNARD SMITH, J. (1982). Evolution and the ¹heory of
Games. Cambridge: Cambridge University Press.

MAYNARD SMITH, J. & PRICE, G. R. (1973). The logic of
animal con#ict. Nature 246, 15}18.

MCNAMARA, J. M., WEBB, J. N. & COLLINS, E. J. (1995).
Dynamic optimization in #uctuating environments. Proc.
Roy. Soc. ¸ond. B 261, 279}284.

SEVERINGHAUS, L. L. (1996). Territory strategy of the migra-
tory Brown Shrike ¸anius cristatus. Ibis 138, 460}465.

VON NEUMANN, J. & MORGENSTERN, O. (1944). ¹heory of
Games and Economic Behaviour. Princeton: Princeton
University Press.

ZEEMAN, E. C. (1980). Population dynamics from game
theory. In: Global ¹heory of Dynamical Systems (Nitecki, A.
& Robinson, C., Eds), New York: Springer.

Appendix A

Proof of Theorem 1

Suppose that almost all players in the population
play ( f ; X;>). Consider a bird playing this strategy
which arrives at time 1!z, so that the best free site
is site z. The expected payo! to it is /

1
(z) where

/
1
(z)"

G
=

z,1~z
"=

z,1~Y
(X(z(1),

=
z,1~z

";
z

(>(z(X),

(1!p)(;
z
!C)#p P

1

X

f (x)=
x,1~z

dx (0(z(>).
Note that when X(z(1, the site a bird occu-
pies will be subject to challenges later. However,
these only occur when an incoming bird "nds the
best free site to be of low value, that is when z(>.
Thus, no challenges occur before time 1!> and
the expected payo! to the occupier is not a!ected
until this time, i.e.=

z,1~z
"=

z,1~Y
.

Thus, the expected payo! to a bird playing
( f ; X; >) is

/
1
"P

1

X

=
z,1~Y

dz#P
X

Y

;
z
dz

#(1!p) P
Y

0

(;
z
!C) dz

#p P
Y

0
P

1

X

f (x)=
x,1~z

dx dz.

Now, consider a bird playing (g; X*; >*)
in a population playing ( f ; X; >). If (g; X*; >*) is
only a single mutation away from ( f ; X; >) then
either X*"X or >*"> and so >*(X. The
expected payo! to it is thus /

2
(z) where

/
2
(z)"

G
=

z,1~z
"=

z,1~Y
(X(z(1),

=
z,1~z

";
z

(>*(z(X),

(1!p)(;
z
!C)#p P

1

X*
g(x)=

x,1~z
dx (0(z(>*).

Thus, the expected payo! to a bird playing
(g: X*; >*) is

/
2
"P

1

X

=
z,1~Y

dz#P
X

Y*
;

z
dz

#(1!p) P
Y*

0

(;
z
!C) dz

#p P
Y*

0
P

1

X*
g(x)=

x,1~z
dx dz.

The di!erence between the payo!s is therefore

/
1
!/

2
"P

Y*

Y

;
z
dz#(1!p) P

Y

Y*
(;

z
!C) dz

#p P
Y

0
P

1

X

f (x)=
x,1~z

dx dz

!p P
Y*

0
P

1

X*
g(x)=

x,1~z
dx dz. (A.1)
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To prevent the new strategy from invading
the population, the above expression must be
positive.

Firstly, we suppose that f (x)"g(x) for all x,
and thus X"X*. Here eqn (A.1) reduces to

/
1
!/

2
"P

Y*

Y
A;z

!(1!p) (;
z
!C)

!p P
1

X

f (x)=
x,1~z

dxB dz.

This needs to be positive for values of >* slightly
greater than >, and also for values of >* slightly
less than >. Both f (x) and =

x, t
are continuous,

and so the bracketed term is continuous and thus
must be equal to zero when z">. Thus, to
prevent strategies of the type ( f ; X; >*) invading
we require

;
Y
#

1!p
p

C"P
1

X

f (x)=
x,1~Y

dx. (A.2)

To prove that this is su$cient, all we need to
show is that

p;
z
#(1!p)C!p P

1

X

f (x)=
x,1~z

dx

is an increasing function of z. This is clearly true,
since ;

z
is an increasing function of z, and

=
x,1~z

is the expected future payo! to a bird at
the site with value x after time 1!z, and all
expected future payo!s are non-decreasing with
time (there are less birds to challenge on the site)
and thus non-increasing with z.

Now, suppose that >*">. Letting X
m
"

min(X, X*), eqn (A.1) reduces to

/
1
!/

2
"p P

Y*

0
P

1

Xm

( f (x)!g(x))=
x,1~z

dx dz

"p P
1

Xm

( f (x)!g (x)) AP
Y

0

=
x,1~z

dzB dx.

This must be nonnegative for arbitrary values
of f (x)!g (x), the only restrictions being that
the function has an integral of zero and is
non-positive for x(X. Thus, we require

P
Y

0

=
x,1~z

dz

to be constant for X(x(1 and to take a value
less than or equal to that constant for all other
values of x. It is clear from considering the value
of this function when x"X [see condition (A.4)]
that

P
Y

0

=
x,1~z

dz">;
X
. (A.3)

Here we have only shown that no invading strat-
egy can have a larger payo! than a strategy that
ful"ls this condition. To prevent invasion, we
need to show that an invader does worse when it
is played by a non-zero but small proportion of
the population.

If a small proportion now play (g; X*;>), then
the number of challenges upon values of x for
which g(x)'f (x) increases and so its expected
future payo! decreases. But since g(x)'f (x), the
occupier of these devalued sites is more likely to
be an invader than the proportion of the popula-
tion that are invaders implies. Similarly, the num-
ber of challenges upon values of x for which
g(x)(f (x) decreases and so its expected future
payo! increases. Since g (x)'f (x), the occupier
of these sites is more likely to be a ( f ; X; >)
player than would be expected through choosing
a random player. Thus, the payo! to the
(g; X*; >) players is less than that of the ( f ; X; >)
players, and so they cannot invade the
population.

Under the assumption of continuity of f (x), we
know that

f (X)"0 (A.4)

[in fact, if the assumption of continuity of f (x)
was made only for x3(X,1], it is fairly straight-
forward to prove that this is true]. Thus, any
strategy which satis"es eqns (A.2}A.4) cannot be
invaded by another strategy which is a single
mutation away.

That for every game de"ned by C, p,;
x
there is

exactly one such strategy can be seen from the
following argument.
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It is clear that for any x'X if f (x)"0 then
=

x,1~Y
*;

X
and for su$ciently large f(x),

=
x,1~Y

(;
X
. Thus, by allowing f (x) to vary, and

not imposing the restriction that f (x) integrates
to unity, for given values of > and X there is
a unique function f (x) which solves eqns (A.3)
and (A.4).

For a given>, there will be exactly one value of
X which generates an f (x) with an integral of
unity. Clearly, when >P0 (nobody challenges)
the value of X for which eqn (A.3) is satis"ed
approaches one. Further notice that if > in-
creases and the value of X does not decrease, then
since the value of =

x,1~y
decreases with y, the

value of f (x) must decrease. But this is true for all
x, so that f (x) would no longer integrate to unity.
Thus, if > increases, X must decrease.

Note that this argument breaks down for> su$-
ciently close to 1, when the corresponding X would
be less than >. However, since we know that

;
Y
#

1!p
p

C"P
1

X

f (x)=
x,1~Y

dx(;
X
,

i.e. the value of > which solves eqn (A.2) must
be less than X, such cases are of no interest. In
fact, it can be seen that since the solution to eqns
(A.3) and (A.4) has the value of X decreasing with
>, and that there is a solution X"1, >"0,
there will be a unique solution which also solves
eqn (A.2), and thus a unique pivotal strategy.

The pivotal strategy, however, is not an
ESS. Equation (A.2) implies that every player
playing a strategy (g; X*; >) performs identically
within a population of ( f ; X; >) players. Sup-
pose, however, that a new strategy plays
>*">#e, for small positive e. Then, on aver-
age, it does not matter what g is chosen for the
birds arriving after time 1!>. However, those
arriving between times 1!>* and 1!> will
face a situation in which it is better to challenge
on a site near X rather than 1 (the value to an
occupier of all these sites is on average equal and
the sites near 1 get better relative to those near
X as we get nearer to the last arrival). Thus,
a g which is larger than f for x near X in conjunc-
tion with >*'> can invade. Similarly, if e
is negative a g can be chosen which is larger than
f when x is near unity, such that (g; X; >*)
can invade. K
Appendix B

Proof of Theorem 2

The intrinsic value of S
x

is ;
x
"x and the

density function of challenges is f (x). To satisfy
condition (A.2) it is required that the payo! to
B
1~Y

is the same whether the bird challenges or
not. If there is no challenge the payo! is just
;

Y
">. If there is a challenge then the expected

payo! is

p P
1

X

f (x)=
x,1~Y

dx#(1!p) (>!C),

which implies that

P
1

X

f (x)=
x,1~Y

dx"
1!p

p
C#>.

The value on the left-hand side of this equation
cannot exceed unity. Thus, the values of p and
C must satisfy

(1!p)
p

C(1 or p'
C

1#C
.

If this inequality is not satis"ed then the cost of
injury is so large that no challenges take place.

Let P
t
(x) be the probability that a bird occu-

pies S
x

at time t given that it occupies it at time
1!>. Thus, P

1~Y
(x)"1 and

L
Ly

P
t
(x)"!f (x)pP

t
(x)

NP
t
(x)"e~f(x)p(Y~1`t)NP

1
(x)"e~f(x)pY.

It follows that

=
x,1~Y

"xe~pf(x)Y

#P
1

1~Y

(1!t!C)e~f(x)p(Y~1`t) f (x)p dt

and setting y"1!t gives

=
x,1~Y

"xe~pf(x)Y

#P
Y

0

(y!C)e~f(x)p(Y~y) f (x) p dy.
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The "rst term is the payo! for holding S
x

multi-
plied by the probability of doing so, the second
term combines all the possible sites which
the bird could be displaced to, integrating the
product of the payo! at S

y
minus the cost,

the probability of still holding S
x

at time y and
the probability density of being successfully chal-
lenged at y. Thus,

=
x,1~Y

"xe~h(x)!C(1!e~h(x))#> A1!
1!e~h(x)

h(x) B
NP

1

X

f (x) Axe~h(x)!C (1!e~h(x))

#> A1!
1!e~h(x)

h (x) BB dx">#C
1!p

p
.

Multiplying both sides by p> and rearranging
gives the following:

P
1

X

(h(x)xe~h (x)#Ch(x)e~h(x)!>[1!e~h(x)]) dx

">C

NP
1

X
A
x#C
>

h(x)e~h(x)!1#e~h(x)B dx"C.

This is eqn (2).
The expected payo! to a challenger on S

x
at

time 1!y'1!> is

pAxe~pf(x)y#P
y

0

(z!C)e~f(x)p(y~z) f (x)p dzB
#(1!p) (y!C)

using similar reasoning as above. Thus, the
expected payo! to a random player arriving
from time 1!> to 1 conditional on that player
challenging upon x [let this be E(x)] is just the
integral of this w.r.t. y over > to 1, divided by >.
This gives us

E(x)"(1!p) A
>
2
!CB!

px
> C

e~f(x)py

f (x)p D
Y

0

#

p
> P

Y

0
A[(z!C)e~f(x)p(y~z)]y

0

!P
y

0

e~f(x)p(y~z) dzB dy

"(1!p) A
>
2
!CB#px

1!e~h(x)

h(x)

!Cp A1!
1!e~h(x)

h(x) B#p
>
2

!p
>

h(x)
#>p

1%e~h(x)

[h (x)]2
.

As xPX, h (x)P0, so that for condition (A.3) to
hold we require the above expression to be equal
to (1!p) (>/2!C)#pX, the mean payo! for
a challenger at X (there is probability 0 of being
displaced by another bird), thus

1!e~h(x)

h(x) Ax#C#

>
h(x)B"

>
h(x)

!

>
2
#X#C

which rearranges to give eqn (1).
In addition to the above we require that

P
1

X

f (x) dx"1N
1

p> P
1

X

h(x) dx"1

which gives eqn (3) and so Theorem 2 is proved. K
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