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a b s t r a c t 

Fitness is often defined as the average payoff an animal obtains when it is engaged in several activities, 

each taking some time. We point out that the average can be calculated with respect to either the time 

distribution, or to the event distribution of these activities. We show that these two averages lead to 

the same fitness function. We illustrate this result through two examples from foraging theory, Holling 

II functional response and the diet choice model, and one game-theoretic example of Hamilton’s rule 

applied to the time-constrained Prisoner’s dilemma (PD). In particular, we show that in these models, 

fitness defined as expected gain per unit time equals fitness defined as expected gain divided by expected 

time. We also show how these fitnesses predict the optimal outcome for diet choice and the prevalence 

of cooperation in the repeated PD game. 
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. Introduction 

A key concept of evolutionary and behavioral ecology is fitness.

ypically, individuals during their life are engaged in various

ctivities with differential consequences on fitness that is then

alculated as an average over these activities. Each of these activ-

ties may occur more than once and each occurrence takes some

ime. Fitness can then be calculated as the average payoff with

espect to either the time distribution of the different activities

r the number of different activity events. These two approaches

an be controversial. One such controversy relates to optimal

oraging theory ( Pulliam, 1974; Charnov, 1976a; 1976b; Stephens

nd Krebs (1986) ) where fitness (or a proxy of fitness) is defined

s the average energy gained per average duration of foraging

out. Templeton and Lawlor (1981) argued that several papers on

ptimal foraging defined fitness as the average of energy intake

er unit of time which is inconsistent with the formula given in

hese articles that expresses fitness as average energy gained per

verage foraging bout. They argued that such a “fallacy of the

verages” is due to the fact that the expected value of the energy 

ained per unit time (denoted as E ( G ) where G is the energy
T 
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btained in a time interval of length T ) is not the expected gain

ivided by the expected time (denoted as E (G ) 
E (T ) 

). 

To see clearly the problem in question, Stephens and Krebs

1986) provide the following example, with a forager in a three

atch environment. An individual can either go to patch 1 and stay

here for 8 minutes and obtain 5 units of food (choice 1), or it can

o first to patch 2, an empty patch, and stay there for 3 minutes

nd then go to patch 3 for 5 minutes and obtain there 6 units of

ood (choice 2). For the first choice E ( G T ) = 

E (G ) 
E (T ) 

= 

5 
8 . For the sec-

nd choice E ( G T ) = 

3 
5 < 

E (G ) 
E (T ) 

= 

3 
4 . With these expected values, the

ptimal choice for the forager depends on how fitness is defined

or choice 2. That is, if fitness is taken as E ( G T ) (respectively E (G ) 
E (T ) 

),

hen choice 1 (respectively, choice 2) is optimal. 

Turelli et al. (1982) argued that the Templeton and

awlor (1981) fallacy of averages had not been committed

ecause these authors incorrectly interpreted results of the articles

hey criticized. Finally, Gilliam et al. (1982) showed that no fallacy

f averages was committed by Charnov (1976b) because expected

alue of the quotient equals the quotient of the expected values

hen probability spaces are chosen correctly in his foraging model.

ndeed, in the above example, the expected values for choice 2

re calculated with respect to the probability space that has two

vents, A (empty patch 2) and B (patch 3), each with probability

1 
2 . That is, E ( G T ) = 

1 
2 × 0 + 

1 
2 × 6 

5 = 

3 
5 and 

E (G ) 
E (T ) 

= 

1 
2 

×0+ 1 
2 

×6 
1 
2 

×3+ 1 
2 

×5 
= 

3 
4 . The
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above probability distribution for calculating E ( G T ) is incorrect. In-

stead, the probability of event A (respectively, event B) here should

be the probability the forager is in the empty patch (respectively,

patch 3) when a time between 0 and 8 minutes is chosen at

random. These probabilities are then 

3 
8 and 

5 
8 , respectively. This

results in E ( G T ) = 

3 
8 × 0 + 

5 
8 × 6 

5 = 

3 
4 , which is the same as E (G ) 

E (T ) 
for

choice 2 with respect to the original probability space. That is, the

expected gain per unit of time, E ( G T ) , equals expected gain divided

by expected time, E (G ) 
E (T ) 

, when these expected values are calculated

with respect to the correct probability distributions. 

We should note that the fallacy of averages described above

is related to Jensen’s inequality ( Jensen, 1906 ), where in general

E ( f (X )) ≤ (≥) f ( E (X )) if f is a concave (convex) function. For

example the fact that log ( X ) is a concave function implies that

the geometric mean is never greater than the arithmetic mean

for positive-valued X . In the case we consider there is a similar

inequality caused by a failure to correct for the appropriate usage

of probability spaces when evaluating fitness in two distinct ways. 

Let us consider an individual with two activities that we call

activity 1 and activity 2 (this is easily extended to the case with

an arbitrary number of activities, see the Appendix). Now consider

a time interval T = T 1 + T 2 where T i is the total time the individual

spends in activity i . The probability distribution of these activity

times is then (t 1 , t 2 ) = (T 1 /T , T 2 /T ) . We define our fitness (proxy)

� as the average (with respect to the distribution of activity times

 = (t 1 , t 2 ) ) energy gain per time. That is, 

� = E t 

(
G 

T 

)
= 

π1 

τ1 

T 1 
T 

+ 

π2 

τ2 

T 2 
T 

= 

π1 

τ1 

t 1 + 

π2 

τ2 

t 2 , (1)

where E t is the expectation operator with respect to the distribu-

tion of activity times, π i is the energy gain of a single event of

activity i and τ i is the time this event takes. 

Now we consider the distribution of activity events. Let m i 

be the number of times event i takes place in a time interval T .

Then the distribution of activity events is (e 1 , e 2 ) = (m 1 /M, m 2 /M)

(where M = m 1 + m 2 ). Since T i = m i τi and T = m 1 τ1 + m 2 τ2 , the

relationship between the distribution of activity times and the

distribution of activity events is given by 

 i = 

m i τi 

m 1 τ1 + m 2 τ2 

= 

e i τi 

e 1 τ1 + e 2 τ2 

. 

Thus, 

� = E t 

(
G 

T 

)
= 

π1 

τ1 

t 1 + 

π2 

τ2 

t 2 = 

e 1 π1 + e 2 π2 

e 1 τ1 + e 2 τ2 

= 

E e (G ) 

E e (T ) 
, (2)

where E e is the expectation operator with respect to the distribu-

tion of activity events ( Fig. 1 ). 

In this article, we begin by briefly illustrating the equivalence of

E t 
(

G 
T 

)
and 

E e (G ) 
E e (T ) 

through applying the method to the development

of the well-known Holling II functional response ( Holling, 1959 )

and to the diet choice model ( Charnov, 1976a ). We then provide

a more comprehensive treatment of a third application that

generalizes Hamilton’s rule ( Hamilton, 1963; Broom and Rychtář,

2013 ) on the evolution of cooperation to the repeated Prisoner’s

dilemma game when the number of rounds played depends on

strategy choice. As pointed out there and in the Discussion, the

equivalent ways to calculate rate of gain have renewed importance

for more recent behavioral models that include the effects of

activity times. In all three examples, we show how to calculate

either the time or the event distribution, which is the crucial

component in determining an individual’s gain rate. 

2. Holling type II functional response 

For the Holling II functional response, we consider two ac-

tivities of a predator: searching for a prey, and handling a prey.
ecause searching for a prey is always followed by handling a

rey, the number of searching events ( m 1 ) and handling events

 m 2 ) must be the same ( m 1 = m 2 ) and so half the events are

andling and the other half are searching, i.e., e 1 = e 2 = 1 / 2 is the

istribution of events. Moreover, from the searching activity event

he predator does not gain any energy, π1 = 0 , while handling a

rey item provides energy gain π2 = E. Thus 

= 

E e (G ) 

E e (T ) 
= 

1 
2 

0 + 

1 
2 

E 
1 
2 
τs + 

1 
2 

h 

= 

E 

τs + h 

, (3)

here we assume that on average it takes time τ1 = τs to find a

rey and time τ2 = h to handle the prey. If x denotes the number

f prey and λ is the predator search rate, a searching predator

ncounters on average λx prey per unit time and τ1 = τs = 1 / (λx ) .

hen 

= 

Eλx 

1 + λhx 

s the rate of energy intake based on the Holling type II functional

esponse that measures the expected number of prey consumed

y the predator per unit time ( Holling, 1959 ). We note that the

istribution of activity times is now 

 1 = 

m 1 τ1 

m 1 τ1 + m 2 τ2 

= 

m 1 / (λx ) 

m 1 / (λx ) + m 1 h 

= 

1 

1 + λhx 

nd 

 2 = 

m 2 τ2 

m 1 τ1 + m 2 τ2 

= 

m 1 h 

m 1 / (λx ) + m 1 h 

= 

λhx 

1 + λhx 
. 

In this example, it was trivial to obtain the distribution of

vents, due to the sequential nature of searching for and handling

f prey items. In general, the distribution of events and/or times

an be more complicated or more difficult to calculate, as we will

emonstrate in the following two examples. 

. The diet choice model of optimal foraging theory 

The diet choice model ( Charnov, 1976a ) for two types of prey

onsiders a predator searching for prey in an environment with

rey types a and b . Let us assume that there are x i ( i = a, b) prey

ype i in the environment. Also assume the predator has the same

earch rate λ for both types and cannot encounter more than one

rey at a time. Then, during a total search time T 1 , the predator

ncounters T 1 λ(x a + x b ) prey, of which T 1 λx a (respectively, T 1 λx b )

re type a (respectively, type b ). 

Upon encountering a prey type i = a, b, the predator either

tarts to “handle” the prey with probability u i , or starts a new

earch for another prey. Immediately after handling a prey item

he predator starts searching for a new prey. Thus, there are three

ctivities of a predator: searching for a prey (activity 1), handling

rey type a (activity 2), and handling prey type b (activity 3).

n time interval T , a predator either searches for a prey (which

akes time T 1 ), or handles prey type a ( T 2 ), or prey type b ( T 3 ),

.e., T = T 1 + T 2 + T 3 . If it takes h i time units to handle a single

rey of type i (i.e. τ2 = h a , τ3 = h b ), then T 2 = λu a x a h a T 1 and

 3 = λu b x b h b T 1 . Thus, T 1 = T / (1 + λu a h a x a + λu b h b x b ) , from which

he distribution of activity times ( 
T 1 
T , 

T 2 
T , 

T 3 
T ) follows easily. 

Let E a and E b be energy gains from handling one prey a or b

tem, respectively (i.e. π2 = E a , π3 = E b ). Also, π1 = 0 since the

redator does not get any energy during searching. Thus, the

redator’s fitness defined as average energy gain per unit time is

iven by 

= E t 

(
G 

T 

)
= 

π1 

τ1 

T 1 
T 

+ 

π2 

τ2 

T 2 
T 

+ 

π3 

τ3 

T 3 
T 

= 

λu a x a E a + λu b x b E b 
1 + λu a x a h a + λu b x b h b 

(4)
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Fig. 1. Illustration of formulas (1) and (2) . In this example there are two activities with energy gain per event π1 = 1 and π2 = 2 . Also, in time interval T = 9 , there are 

three activity 1 events and two activity 2 events with each event taking time τ1 = 1 and τ2 = 3 , respectively. Thus the distribution of activity times is (t 1 , t 2 ) = (1 / 3 , 2 / 3) 

and so the average energy gain per unit time is 1 × 1 / 3 + 2 / 3 × 2 / 3 = 7 / 9 as in (1) . The distribution of activity events is (e 1 , e 2 ) = (3 / 5 , 2 / 5) . The area below the graph of 

the function is the total energy gain E e (G ) = 3 π1 + 2 π2 = 7 obtained in the total time T , so � = 7 / 9 as in (2) . 
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1 With these parameters, Hamilton’s rule is that altruistic behavior is favored 

when c 
b 

< r, where r measures the degree of relatedness. 
2 In this section we change terminology to the more traditional one used in evo- 

lutionary game theory. That is, instead of energy gain we use payoff and instead of 

average gain rate we use fitness. 
hich extends Eq. (1) to three activities. Eq. (4) is the well-known

ormula for fitness used in the diet choice model of optimal

oraging ( Charnov, 1976a; Stephens and Krebs, 1986 ). 

As emphasized in this article, the fitness is also given through

he distribution of activity events. Specifically, in the time inter-

al T , there are m 1 = T 1 λ(x a + x b ) searches, m 2 = T 1 λu a x a prey

 handled and m 3 = T 1 λu b x b prey b handled events. Since the

earch time for one prey is τs = 1 / (λ(x a + x b )) (cf. Holling type II

unctional response), 

= 

E e (G ) 

E e (T ) 
= 

m 1 0 + m 2 E a + m 3 E b 

m 1 
1 

λ(x a + x b ) + m 2 h a + m 3 h b 

= 

T 1 λu a x a E a + T 1 λu b x b E b 
T 1 + T 1 λu a x a h a + T 1 λu b x b h b 

. (5) 

he equivalence of (4) and (5) was pointed out by

illiam et al. (1982) using different notation. 

To maximize �, the predator will handle all prey items it

ncounters that are most profitable (i.e., u a = 1 if we assume that
E a 
h a 

> 

E b 
h b 

) and will handle all (respectively, none) of prey type b it

ncounters if the density x a of prey type a is below (respectively,

bove) the positive threshold level of 
E b 

λ(E a h b −E b h a ) 
( Charnov, 1976a;

tephens and Krebs, 1986 ). As shown in Cressman et al. (2014) ,

his optimal outcome of foraging theory can be interpreted as the

ame-theoretic solution where the predator faces a decision tree

nd chooses the Nash equilibrium solution. 

The following example applies similar game-theoretic reasoning

n a more traditional setting. 

. Fitness in the repeated Prisoner’s dilemma game: Hamilton’s

ule 

One fallacy of averages mentioned by Templeton and

awlor (1981) is Hamilton’s rule that altruistic behavior is fa-

ored in models of kin selection when 

Loss of individual fitness 
Gain in relative’s fitness 

is less

han the degree of relatedness. This is related to cooperation and

efection in the repeated Prisoner’s dilemma (PD) game. 

The single shot PD assumes that when two individuals interact,

hey have two strategies, either to cooperate, or to defect. If an
ndividual cooperates, it pays cost c and gives benefit b > c > 0 to

ts partner. 1 If it defects, it does not pay the cost. The single shot

D game has the payoff matrix 

(6) 

here the matrix entries give the payoff to the row player when

nteracting with the column player. Thus, any player prefers to

lay against a cooperator rather than against a defector. So, if each

layer in an interacting pair is free to decide whether to continue

he interaction or not, it can be assumed that a pair of cooperators

ant to stay together as long as possible while all other pairs will

isband after one round. This leads us to consider the repeated

risoner’s dilemma where the same players play the single shot

D game for several rounds. 

In our repeated PD game there are two types of players,

ooperators and Defectors. When two cooperators meet, their in-

eraction lasts for τ > 1 rounds and that their cumulative payoff is

CC ≡ (b − c) τ for each of them. On the other hand, when a Defec-

or meets either a Cooperator or another Defector, the interaction

asts one round. The payoff matrix per interaction is then 

(7) 

here the payoffs are given for the row player. We also assume

hat, between rounds, individuals from disbanded pairs, (i.e., those

layers whose interactions has ended) form new pairs at random. 

Fitnesses 2 for the two strategies are taken as average pay-

ffs per round with each round lasting one unit of time. Let us
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a  
consider the fitness of a cooperator 3 . In each round, this coopera-

tor has two activities; namely, it is either paired with a cooperator

or with a defector. Let T CC (respectively T CD ) be the total time

(i.e., the number of rounds) that the cooperator is paired with a

cooperator (respectively, defector) in T = T CC + T CD rounds, i.e., in

the time interval T . That is, the distribution of the cooperator’s

activity times is (t CC , t CD ) = (T CC /T , T CD /T ) and so the fitness of a

cooperator, �C is 

�C = E t 

(
G 

T 

)
= 

πCC 

τ

T CC 

T 
+ 

πCD 

1 

T CD 

T 
= (b − c) 

T CC 

T 
− c 

T CD 

T 
. (8)

We can also consider the distribution of activity events

( e CC , e CD ) for the cooperator. Let m CC (respectively, m CD ) be the

number of interactions the cooperator has with a cooperator

(respectively, defector) in a time interval T . Then the cooperator’s

distribution of activity events is (e CC , e CD ) = (m CC /M, m CD /M)

(where M = m CC + m CD ). Since t CC = 

m CC τ
m CC τ+ m CD 

= 

e CC τ
e CC τ+ e CD 

and

 CD = 

m CD 
m CC τ+ m CD 

= 

e CD 
e CC τ+ e CD 

, 

�C = E t 

(
G 

T 

)
= 

πCC 

τ
t CC + 

πCD 

1 

t CD = 

e CC πCC + e CD πCD 

e CC τ + e CD 

= 

E e (G ) 

E e (T ) 
. 

(9)

That is, the cooperator’s fitness is given either as the expected pay-

off per round (with respect to the cooperator’s distribution of ac-

tivity times) or as the expected payoff divided by expected time

(with respect to the cooperator’s distribution of activity events). 

To calculate fitness from (9) , we need to know one of the

activity distributions of the cooperator as a function of the num-

ber of cooperators n C and the number of defectors n D in the

population. To this end, we assume that the distribution of activity

times is given through the equilibrium of the discrete-time pair

formation process that describes changes in the number of pairs

as in Zhang et al. (2016) . We note that in this example the CC in-

teraction time τ affects both the payoffs from such an interaction

and the overall distribution of the interacting pairs. 

Let n CC ( t ) be the number of cooperator pairs (i.e., CC pairs),

n CD ( t ) be the number of CD pairs and n DD ( t ) be the number of

DD pairs at round t . With random pairing of disbanded singles

between rounds, the distributional dynamics is then 

n CC (t + 1) = 

(
1 − 1 

τ

)
n CC (t) + 

(
2 n CC (t) 

τ + n CD (t) 
)2 

4 

(
n CC (t) 

τ + n CD (t) + n DD (t) 
) , 

n CD (t + 1) = 

2 

(
2 n CC (t) 

τ + n CD (t) 
)
(n CD (t) + 2 n DD (t)) 

4 

(
n CC (t) 

τ + n CD (t) + n DD (t) 
) , 

n DD (t + 1) = 

(n CD (t) + 2 n DD (t)) 2 

4 

(
n CC (t) 

τ + n CD (t) + n DD (t) 
) . (10)

For example, the number of cooperating pairs in the next round

equals the number of continuing pairs (1 − 1 
τ ) n CC plus the num-

ber of newly formed pairs ( Zhang et al., 2016; K ̌rivan and Cress-

man, 2017 ). These authors show that for τ � = 1, 4 (10) has a unique

equilibrium 

n CC = 

n C (2 τ − 1) + n D −
√ 

4 n C n D τ + (n C − n D ) 2 

4(τ − 1) 
, 

n CD = 

√ 

4 n C n D τ + (n C − n D ) 2 − n C − n D 

2(τ − 1) 
, 
3 The fitness of a Defector is calculated analogously. 
4 For τ = 1 , the distribution of pairs is given by (n CC , n CD , n DD ) = 

( 
n 2 C 

2(n C + n D ) , 
n C n D 

n C + n D , 
n 2 D 

2(n C + n D ) ) where pair proportions are given by the Hardy–Weinberg 

formula (e.g., the proportion of CC pairs among all pairs is 
n 2 C 

(n C + n D ) 2 and the number 

of all pairs is (n C + n D ) / 2 ). 

l  

I  

s  

t  

s  

t  
 DD = 

n C + n D (2 τ − 1) −
√ 

4 n C n D τ + (n C − n D ) 2 

4(τ − 1) 
. 

The distribution of activity times for a cooperator are then t CC =
2 n CC 

2 n CC + n CD 
and t CD = 

n CD 
2 n CC + n CD 

. The fitness functions evaluated at this

istribution are 

�C = 

( 

n C (2 τ − 1) + n D −
√ 

(n C − n D ) 2 + 4 n C n D τ

2 n C (τ − 1) 

) 

b − c, 

D = 

( √ 

(n C − n D ) 2 + 4 n C n D τ − n C − n D 

2 n D (τ − 1) 

) 

b, (11)

hen τ � = 1. We note that, for τ = 1 , the fitness functions are those

f the classic one-shot PD game, �C = 

n C 
N b − c and �D = 

n C 
N b,

here it is always better to defect than cooperate. These classic

ayoffs can be found directly by assuming Eq. (10) is in equilib-

ium using τ = 1 , or taking the limit of Eq. (11) as τ tends to 1. 

When the population size N ≡ n C + n D is fixed, the above fit-

esses define a two-strategy time-constrained (population) game.

efect is always a (pure-strategy) Nash equilibrium (NE) of this

ame (since 0 = �D > �C = −c when n D = N). On the other hand,

ooperate is never a NE since b = �D > �C = b − c when n C = N.

owever, for τ ≥ (b+ c) 2 
(b−c) 2 

, there exist other mixed strategy NE which

re found by solving �C = �D . These are given by ( K ̌rivan and

ressman 2017 ; see also Zhang et al., 2016 ) 

(n C , n D ) = 

( 

1 

2 

N 

( 

1 −
√ 

τ (b − c) 2 − (b + c) 2 √ 

τ − 1 (b − c) 

) 

, 

1 

2 

N 

( 

1 + 

√ 

τ (b − c) 2 − (b + c) 2 √ 

τ − 1 (b − c) 

) ) 

, 

(n C , n D ) = 

( 

1 

2 

N 

( 

1 + 

√ 

τ (b − c) 2 − (b + c) 2 √ 

τ − 1 (b − c) 

) 

, 

1 

2 

N 

( 

1 −
√ 

τ (b − c) 2 − (b + c) 2 √ 

τ − 1 (b − c) 

) ) 

. (12)

They also showed that the second mixed NE in (12) with

he larger proportion of cooperators is stable when τ > 

(b+ c) 2 
(b−c) 2 

n the sense that �C > �D (respectively, �C < �D ) when the

roportion of cooperators is slightly less (respectively, slightly

ore) than at this NE. That is, Hamilton’s rule generalizes to

he time-constrained PD game to state that selection favors the

oexistence of cooperators and defectors when the interaction

etween cooperators lasts a sufficient number of rounds, which is

ndependent of genetic relatedness. 

. Discussion 

In this article, we consider the problem of calculating fitnesses

n ecology in an appropriate and consistent manner. We show that

tness calculated as expected gain per unit time equals fitness

alculated as expected gain divided by expected time provided

robability spaces are chosen correctly. We apply this approach to

hree fundamental models of population and evolutionary ecology.

n the first model, the two activities of an individual predator

re searching for a prey and then handling it when encountered,

eading in a natural way to fitness given through the Holling type

I functional response when all prey are of the same type. In the

econd model, the diet choice of optimal foraging with two prey

ypes, an individual predator has three different activities; namely,

earching for a prey, handling prey type one or handling prey type

wo. In the third model, the repeated Prisoner’s dilemma, where
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C  

G  
he number of rounds is strategy dependent, the game’s solution

ased on Nash equilibria leads to a version of Hamilton’s rule

redicting when selection favors cooperative behavior. 

In all three models, we explicitly show that the fitnesses

hether they are calculated as average gain per time, or average

ain over average time lead to the same outcome when averaging

s taken with respect to the distribution of activity times or the

istribution of activity events, respectively. However, as illustrated

y the third model, the challenging problem when calculating fit-

esses can be to describe the distribution of activity times or activ-

ty events. This becomes more problematic in multi-strategy time-

onstrained games, including those that involve searching times in

he pair formation process, where analytic expressions for these

istributions are often unavailable. Nevertheless, in several recent

rticles on these general models, it has been shown, either by gen-

ralizing the distributional dynamics approach of Example 3 (e.g.,

 ̌rivan and Cressman, 2017; Cressman and K ̌rivan, 2019 ) or by us-

ng Markov methods (e.g., Garay et al., 2017; 2018 ), that the distri-

utions still exist and are unique as functions of strategy numbers.

he resultant fitness functions then define a population game that

an be solved numerically if their analytic formulas are intractable.

A series of papers that also involve time delays and similar

ypes of calculations are the game-theoretic kleptoparasitism

odels starting with Broom and Ruxton (1998) (see also Broom

t al. (20 04, 20 08) ). Here individuals could find their own food or

teal from others, and were faced with strategic decisions about

hether to challenge for food items, or to concede items when

hallenged. Individuals chose strategies to minimise the expected

ime for them to consume an item; thinking of an activity event

s the sequence of actions until an item is consumed, the payoff

s then effectively that from (2) where by definition E e (G ) = 1

nd E e ( T ) is the expected consumption time. Payoffs were also

alculated in an equivalent way too, through finding the handling

atio, the proportion of individuals handling a food item at any

ime. Since food could only be consumed when in the handling

tate, the payoff per unit time was simply the handling ratio

ultiplied by the handling rate, which is a special case of Eq. (1) . 

The methodology that we have described can generalise to

ore complex scenarios where a number of different events are

ossible, each with their own distinct durations and rewards, and

ften with restrictions on the sequence in which they can occur. A

atural area to consider is life history theory ( Roff, 1992; Stearns,

992 ), where trade-offs between times in distinct stages of life,

nd relative investment in different aspects such as reproduction

nd growth, are both common and often complicated. Here the

cenario is generally not so simple as to maximise the expected

eward functions (1) or (2) , but there is potential to adapt the

deas we have developed here to consider more general situations.

s a rule the more complex the model, the greater the scope for

rroneous thinking when evaluating fitness. As we have consid-

red in this paper, even apparently straightforward situations can

e perilous. 

In summary, foraging situations can be modeled either by con-

idering the expected gain per unit time, or the expected gain per

oraging event. Some modeling situations lend themselves to the

rst approach, some to the second. In this paper we have shown

hat when properly considered, these two methods are entirely

quivalent and consequently researchers can be appropriately

exible in their approach. 

cknowledgments 

This project has received funding from the European Union

orizon 2020 research and innovation program under the Marie

klodowska-Curie grant agreement No 690817. VK acknowledges

upport provided by the Institute of Entomology (RVO:60077344)
nd RC by an NSERC of Canada Individual Discovery grant 7822 .

e also thank the two referees and the Handling Editor for their

ncouraging comments on the original submission. 

ppendix A. Equivalence of payoffs with respect to time and 

vent distributions 

Let us consider i = 1 , . . . , I events, each taking time τ i . The

ayoff from each event is π i , and the number of times each event

akes place is m i . 

Consider the following three forms (A and B are similar in

ppearance, C somewhat different) of fitness payoff/fitness func-

ions. 

ayoff A = 

∑ I 
i =1 m i πi ∑ I 
i =1 m i τi 

, 

hat is, the total reward from all events divided by the total time.

ividing all terms by the total number of events 

 = 

I ∑ 

i =1 

m i 

e obtain 

ayoff B = 

∑ I 
i =1 

m i 

M 

πi ∑ I 
i =1 

m i 

M 

τi 

, 

here m i / M is the proportion of events of type i . 

We can rearrange payoff A in another way 

ayoff C = 

∑ I 
i =1 m i πi ∑ I 
i =1 m i τi 

= 

I ∑ 

i =1 

m i τi ∑ I 
j=1 m j τ j 

πi 

τi 

. 

ere the term 

m i τi ∑ I 
j=1 m j τ j 

in the sum is the proportion of time spent

n event i . 

We note that Payoff B is written as the reward per interaction

eighted by the proportion of interactions, and Payoff C is the

eward per time weighted by the proportion of time. There are

wo plausible mistakes that can be made when calculationg the

ayoff. The example from Stephens and Krebs (1986) gives two

ifferent payoffs. E ( G )/ E ( T ) is just Payoff B above, and so also

quivalent to Payoff C. Their other payoff E ( G / T ) gives a different

alue as we have discussed. This makes the mistake of using re-

ard per time weighted by proportion of interactions. The reverse

ias, which uses reward per interaction weighted by proportion of

ime, is a well known concept in renewal theory, “length-biased

ampling” ( Qin, 2017 ). Here individuals that live/stay longer (or are

arger) are more likely to be observed and lead to estimation bias

although the bias can be corrected for as long as the researcher

s aware of it, Lehnen, 2005 ). 

eferences 

room, M. , Luther, R.M. , Ruxton, G.D. , 2004. Resistance is useless? - Extensions to
the game theory of kleptoparasitism. Bull. Math. Biol. 66, 1645–1658 . 

room, M. , Luther, R.M. , Ruxton, G.D. , Rychtář, J. , 2008. A game-theoretic model of
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