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On the number of local maxima of a constrained
quadratic form

By M. Broom"?, C. CaxnNiNGgs! AND G. T. VICKERS?

! Department of Probability & Statistics and * Department of Applied &
Computational Mathematics, The University, Sheffield S10 2TN, U K.

We consider the problem of determining the greatest number of local maxima that
a quadratic form can have when the vector is constrained to lie within the unit
simplex. Specifically, we investigate the local maxima of

V = pTAp,

where p = (py, Py, ..., Pn) €A, ={xeR":2,>0,%,2,=1} and 4 = (a;) is a real,
symmetric n x n matrix. Considering the central role played by quadratic forms in
the history of mathematics in general and algebra in particular, it is perhaps
surprising that this problem does not appear to have received any attention. It is
a rather awkward problem because the constraint cannot be readily incorporated. A
complete solution to the problem is lacking, but we show that the greatest number
of maxima that any n x » matrix can have increases geometrically with » and also
present some results on the lengths (i.e. the number of non-zero elements) of the
maximizing vectors.

1. Introduction

Apart from its intrinsic interest, the problem being considered arises naturally in the
context of population genetics. If there are n alleles 4,,4,,...,4, at a particular
locus and a;; is the viability of the genotype 4; 4; then the classic recurrence equation
for the vector of allelic frequencies p is

p; = pi(Ap),/p"Ap (1 <i<mn), (1)

where a prime denotes the values in the next generation and it is a well-known result
that the mean fitness V increases monotonically from one generation to the next (see
Kingman (1961b) for an attractive proof) and is only constant at an equilibrium
point. Thus, provided that all of the p, are initially positive (i.e. p¢d4,,, the boundary
of 4, at the first generation) p will always converge to a point at which V has a local
maximum and every such vector is a locally stable equilibrium point of equation (1).
The determination of these points is a straightforward, if tedious, process for any
given 4. The determination of the greatest number of stable equilibrium points that
a system of n alleles can have is an interesting mathematical problem but also has
biological implications. The existence of different allele combinations in different
populations of a species does not automatically imply that the populations are
subject to different factors. However, one would only expect different maxima to
coexist if the populations are isolated. If they are connected spatially for a significant
time then travelling waves are likely to develop which will replace one of the maxima
by the other. Such a wave does not necessarily replace the smaller fitness by the
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larger; the outcome may also depend upon the dispersal rates (assuming these to be
dependent upon the genotypes involved). Such a situation has been considered by
Hutson & Vickers (1992).

The notion of a local maximum of a quadratic form (or symmetric matrix) can be
extended to non-symmetric matrices by means of the following:

Definition. If A = (a;) is a real n X n matrix then pe 4, is an evolutionarily stable
strategy (mss) of 4 if (i) pT™Ap > q*ApV qed, and (ii) if ge4,, q # p, p*Ap = q"Ap
then pTdq > q"Aq. ]

A biological motivation of Esss is to be found in Maynard Smith & Price (1973) and
Maynard Smith (1974). All the results presented here are equally valid for msss. It
was shown in Vickers & Cannings (1988b) that there are constraints upon the
supports of the Ess vectors and some of their results will be used here. In what follows
the term Ess will normally be used for a local maximum on 4,, and maximum will be
used when the statement applies only to symmetric matrices. The support of pe 4,
is denoted by R(p), i.e. R(p) = {i:p;, > 0}.

The expected number of local maxima (and the lengths of them) in random
matrices is a problem which is considered in Haigh (1988, 1989) and Kingman (1988,
1989). For example, Kingman (1989) contains the result that the number of stable
polymorphisms with just two alleles is asymptotically

1
MG,

when the a;; are independent and chosen from a uniform distribution.

2. Bounds on the number of maxima

Let U,, be the greatest number of Esss that any n X » matrix can have. It is shown
in Cannings & Vickers (1988) that if n = 3r+s (where s = 2, 3 or 4) then

U, > s3".

This follows from a consideration of the graph theoretic notion of cliques and
provides a lower bound which we improve upon later. This result was discovered by
several authors (see Hofbauer & Sigmund 1988), and rests upon a result of Moon &
Moser (1965). Furthermore the supports of the vectors which form the local maxima
constitute an antichain, because of the non-inclusion result of Bishop & Cannings

(1976), and so
n
nel)
3]

which is a classic result of Sperner (1928). Here, and throughout this paper, square
brackets will be used to denote the integer part of an expression. It is thus natural
to conjecture that U, increases geometrically at a rate between 35 and 2. The
following theorem is used to establish this result. Define u,(r) to be the greatest

number of ESss (whose supports have length r) achievable by any n x n matrix.
Theorem 1. (i) u,(r) %,,(8) < Uy p(r+38) (r <m,s <m), and (i) U, U, < U

m+n:

Proof. 1t is sufficient to prove that if p is an Ess of the n X n matrix 4 with

=a, 1eR(p)
{25 e
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and if ¢ is an BSS of the m X m matrix B with

= eR
(Bq)i{ p oM

<p. i¢R(q)
then rt = (%:i)f;,%:z)_q;)
is an Ess of the (n+m) X (n+m) matrix C' = (c;;) where
@y 1<i<<n1<)j<n,
Cj =3 bicnjon, nH1I<i<nt+mn+l<j<n+m,
M, otherwise,

and M is any number which exceeds all the elements of 4 and B. Necessary and
(barring degeneracies) sufficient conditions for a local maximum are given in
Kingman (1961a) and for an mss they are given in Haigh (1975). For the purpose of
this paper, it suffices to know that if pe 4, is such that

— MicR(p),
“ )"{< N i¢R(p),

and (p—q)"A(p—q) < 0 whenever ge4,,, q # p, R(q) = R(p) then p is an Ess of 4.

N
ow M=p)Apyi+M—a)M .
M_a_ﬁ 5 ~ ~ b
(Cr); =
(M_ﬂ)]g],;%__?wq)i_n’ n+1<i<ntm
_rap
or “oi—a—p EHO)
(Cr),
M —oaf :
<Si—a-p HEO)

Let A’, B’, (" be the submatrices of 4, B, C' which correspond to the supports of p, q,
r and let the lengths of these supports be s,¢, s+ respectively. Since p maximizes the
quadratic form xT4’x (xe4,) we have

s 2
xT4'x < ( py x,c) oV x € R* not parallel to p
k=1
t 2
and similarly yIBy < ( > y,c) BY ye R not parallel to q.
k=1
x s+t
Let z={ ] with Xz, =0.
y i=1

Then s ; ) )
70z =+ 21( 3 ) 5 )1 Ey < (2 a) -2+ <0,
k=1 k=1

k=1
with equality only if z = 0. This completes the proof.
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This theorem, together with a result of Pélya & Szego (1972) and the bound of
Sperner, gives the following.

Theorem 2. The sequence {U,} is such that lim,, , UY™ exists. Furthermore, denoting
this limit by v, UY™ <y for all n.

Note that UY™ is not necessarily monotone increasing. It follows from these results
that 2 > v > 35. Tt is natural to conjecture that lim, . (U,,,;/U,) also exists. We
have not been able to prove this, but clearly if the limit does exist then its value is
also y. The lower bound for y will be improved upon later.

Obviously

u,(1)=n and wu,(n)=1

and it is shown in Vickers & Cannings (1988b) that

U, (n—1)=2
and in Cannings & Vickers (1988) that
1,2
9y _ Jam n even, 9
Un(2) {i(nz—l), n odd. @)

This result uses a classic theorem of Turan (1954) on the number of edges that can
be present in a triangle-free graph. Now suppose that we have an n X n matrix which
has u,,(r) Bsss of length r. Then each of 1,2, ..., 7 is in (on average) w, (r) r/n different
Esss. Remove the index which is in the least number of supports of the Esss. Then
we see that

un*l(’r) = ’I,l/n(T') - (T/n) un(7)7

A . nu,,_(r)
which implies U, (r) < [ﬁ]
This shows that u,(m—2)<n

and later we will see that this upper bound is attainable. Consider now the set of
numbers v, (r), with n > r+1, defined by

?)n(7') = [nvn~1(7)/(n_7)]> Ur+1(7) = 27 (3)

so that v,(r) = u,(r) and one can show that v,(2) = w,(2). It follows from this last
equation that
0,y (r)/(n—1) =1 < 0,(r) < v,y (r)/(n—r)

from which it can be shown that

2(r—=2)(n\ n—r+1 2 (n
o) < <25 () @

r Sty

and so v, (r) is of order n” when n > . The recurrence relation (3) is a very interesting
one and a discussion of its properties will be published elsewhere. One special case is
the result

13

3__ 2 _
vn(3)=[n 3n%46n 13]
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and solim,  (v,(3)/n®) = &. Quite generally, lim,, _ (v,(r)/n") exists and is less than
2/(r+1)! because (n—r)!v,(r)/n! decreases as n increases. When » and » are large the
inequality (4) shows that v,(r) behaves like

2(n
r\r)
Thus for large n, v,(r) is a maximum when r is approximately in and

lim max v, (r)'/* = 2.

n—>oo0 r
This suggests that the value of v might be 2. We have no contradictory information.
A more accurate approximation to wu,(r) is provided by w,(r), where w,(r) is the
maximum number of subsets of size r that can be chosen from n objects when no
collection of (r+1) objects contains more than 2 of the subsets. Then

V(1) Z wy(r) 2 Uy (r).

The essence of the latter part of this relationship is Theorem 4 of Vickers & Cannings
(1988b) which asserts that if {1,2,3} = X then there cannot be three EsSs with
supports X\ {1}, X\{2}, X\{3}. Clearly w,,(2) is just the maximum number of edges in
a triangle-free graph and is the same as u,(2) given by (2) above. When the
complementary sets are considered, we see that w,(r) is the maximum number of
subsets of size (n—r) that can be formed from a set of » objects when no collection
of (n—r—1) objects may belong to more than two of the subsets. This formulation
of the problem suggests a fairly close link between the evaluation of w,(r) and block
designs. Following Anderson (1989), a block design (b,n,s,k,A) is a family of b
subsets of a set of n elements such that each subset has k elements and each pair of
elements belongs to exactly A subsets. Also

s(k—1) =A(n—1) and bk = ns.
The correspondence between the problems is only exact when (n—r—1) =2, A =2
and k =n—r = 3. So if the block design (b,%,s,3,2) exists then b is in(n—1) and
this is also w,(n—3). Note that
v,(n—3) = [n(n—1)].
It follows that w,(4) is 14 because the subsets

124 235 346 457 561 672 713

126 237 341 452 563 674 715
constitute (14,7,6,3,2). Another classical problem which is closely allied to both
w,(r) and block designs is that of determining the existence of Steiner systems. Again
following Anderson (1989), a Steiner system S(l,m,n) is a collection of m-element

subsets of an n-element set such that every l-element subset lies in exactly one of the
m-element subsets. If the Steiner system S(/, m, n) exists then it contains

(/)

subsets. For the problem w,(r), m is (n—r) and ! is (n—r—1). Hence

2 (n
w, (r) < +1<r> (5)
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and there is equality only if an optimal solution exists, that is one in which every
collection of (n —r— 1) objects belongs to exactly two of the subsets of size (n—7). The

factor of 2 is to allow for the different definition of Steiner systems from that of w,,(»).
For example, S(3, 4, 8) exists and a realization of it is

1234 1256 1358 1278 1367 1457 1468
5678 3478 2467 3456 2458 2368 2357.

The cyclic permutation 1—-2-...—~8—1 gives another realization in which no
subset is the same as the first. Thus the union of the two shows that w,(4) is 28.

The Steiner system S(2, 3,7), usually called a Steiner triple system, exists if and
only if n =1 or 3 (mod6). Hence

w,(n—3) =n(n—1) (6)

for such n provided that there is a permutation which does not change the label of
one subset (of length 3, i.e. a triple) so as to be the same as an original label. From
the construction of (2, 3,7) given by Anderson (1989) it is easy to see that such a
permutation exists. The result (6) can be extended to give the following.

Theorem 3.
w,(n—3) = [In(n—1)]

Proof. When n =3 (mod6) a Steiner triple system exists and furthermore it
contains a subsystem of in disjoint triples (see Anderson 1989). It is easy to re-order
the elements of the base set and so construct another Steiner system in which all of
the triples of the new system are different from the old ones and so it also has a new
subsystem of disjoint triples.

Let n =4 (mod6). Construct the two Steiner systems, as above, on (n—1)
elements. Remove the (n—1) triples of one of the subsystems and form the (n—1)
triples using the nth element and each pair contained in the triple of the subsystem.
This produces

s(n—1)(n—=2)—3n—1)+(n—1) =3n—1)n

triples and each pair of triples belongs to exactly two of them. Thus the result is true
for such n.

Let » =5 (mod 6). The construction above on (n—1) elements will produce a set
of 3(n—1) (n—2) triples which contain a subsystem of {(n—2) disjoint triples. (The
construction of 2 Steiner systems on (n —2) elements had two such subsystems; one
has been removed.) Repeat the procedure of the last paragraph to obtain

Yn—1) (n—2)—n—2)+(n—2) = {n—2) (n+1)
= In(n—1)—3
= [n(n—1)]
triples of the required type. The pair of elements (n—1,n) will not belong to any
triple.

When 7 = 1 (mod 6) a Steiner triple system exists but it only contains in disjoint
triples, using the construction of Anderson (1989). It is thus necessary to re-number
the elements to produce a second Steiner system in which not only is every triple
different from the old but the union of the new disjoint triple is the complement of

the old. This is in fact easy to do and the proof for n = 2 (mod 6) now follows the same
lines as that for n = 5 (mod 6).

Proc. B. Soc. Lond. A (1993)
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The case n = 0 (mod 6) is the most awkward. We first show the subsidiary result
that if
w,(n—3) = [zn(n—1)]

when n = k then it also holds for n» = 3k. Suppose first that £ = 0 or 1 (mod 3). Divide
the 3k elements into 3 blocks of k:

1 2 ok
E+1  k+2 ... 2k
2k+1 2k+2 ... 3k.

Within each block we may select 1k(k—1) triples where each pair belongs to exactly
two of the triples. Now choose triples with one element from each block as follows;

{(i k+1  2k+¢) (0 k+2 2k+i+1)...(0 2k 2k—i—1),

. . . . . . <i< k.
(t k+1 2k+i—2) (o k+2 2k+i—1)...(¢ 2k 2k—1-3),

This gives a total of
k(k—1)+2k* = k(3k—1) = 4(3k) (3k—1)

triples as required, with every pair of elements in exactly two triples.

Suppose now that k=2 (mod3). Since k=2 or 5 (mod6) we can choose
Y(k—2) (k4 1) triples in each block of k element and all pairs bar one will belong to
exactly two of the triples. The exceptional pair belongs to none of the triples. Choose
the three exceptional pairs (one from each block) to be

1 2) (k+1 k+2) @k+1 2k+2).

Now choose triples, one element from each block, exactly as above except that the
following four triples are not selected;

(1 k+1 2k+1) (1 k+2 2k+2)
2 k+1 2k+2) (2 k+2 2k+1).

Now form the triples

(1 2 k+1) (k+1 k+2 2k+1) 2k+1 2k+2 1)
(1 2 k+2) (k+1 k+2 2k+2) (Ck+1 2k+2 2)

to give as the total number of triples
(k—2) (k+1)+ (2k*—4)+6 = k(3k—1).

A little checking will confirm that each pair does indeed belong to exactly 2 of the
triples.

We now know that the theorem is true if » # 0 (mod 6) and that if it is true for k
then it is also true for 3%. This only leaves the case n = 2.3% and since the theorem
is true when » = 6 it is true for all n. O

Theorem 3 is not new and proofs of the results can be found in Street & Street
(1987) and Stevenson & Wallis (1983). However, the proof given here is much more
direct, being based upon an explicit construction rather than Latin squares, and is
consequently more appropriate to our problem.

It is also known that S(3, 4, n) exists if and only if » = 2 or 4 (mod 6). Hence, for
such n,

wy(n—4) = gn(n—1) (n—2), (7)
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because a suitable permutation will again exist. Unfortunately equation (7) cannot
be extended to apply for all » simply by inserting square brackets. This is because
we have been able to show that w,(3) is only 15 whereas the formula (7) gives 173.

According to Anderson (1989) only 14 Steiner systems are known with [ greater
than 3. We are only concerned with those for which m is {4+ 1 and this reduces the
number to 5. Specifically, we can say that the values of

wip(6),  wyy(18), wy(42), wyy(66) and  wg,(78)
are all given by the formula
w, (r) = 2 (n
T\

because again a suitable permutation will exist.

The numbers w, (r) satisfy the same inequality as that demonstrated for the u,,(r)
in theorem 1. This is because if X is a typical member of the subsets of length » of a
set of size n whose elements are labelled 1,2,...,n and if Y is likewise a typical
member of the subsets of size s of a set of m elements labelled n+1,7n+2,...,n+m
then the collection of all sets like X U Y will form subsets of length »+s of n+m
elements. For example, wq(4) being 28 implies that w,;(12) is at least 21 952. Perhaps
of more significance is that the above inequality implies that the limit

lim max w,, (r)!/"
Nn—>o0 T

exists and does not exceed 2. This result is improved upon in the next theorem.

Theorem 4.
lim max w,(r)V" = lim w,,(n)"*" = 2.
Nn—>00 T n—>00
Proof. Let t,(r) be the maximum number of subsets of size r that can be formed
from a base set of n elements when each pair of subsets differs by at least 2 elements.
In such a family of subsets, no collection of (r+ 1) elements can contain more than
one subset. Hence ¢,(r) certainly cannot exceed w,,(r). It is first shown that

ww>@—. ®)

Divide a base set of 2¢ elements into two equal blocks. There are “C, possible
subsets of size p that can be formed from each block. Arbitrarily associate the subsets
from one block with those formed from the other. This will give 2C, subsets of
length 2p from a base set of 2¢ elements and clearly any two of the subsets will differ
by at least two elements. For example, with p = 2, ¢ = 3 we can choose

1245
2356
1346.
Thus t,,(2p) is at least ?C,. Now form the ¢C,, different solutions by simply permuting

the subsets from the second block. For the example above this would give the
following:

1245 1246 1256
2356, 2345 and 2346.
1346 1356 1345

Proc. R. Soc. Lond. A (1993)
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Let a third block of ¢ elements now join the base set and form the ?C, subsets of
length p. Assign each of these to one of the solutions above, e.g.

124578 124689 125679
235678, 234589 and 234679.
134678 135689 134579

This will give (?C,)* subsets of length 3p from a base set of 3¢ elements which
preserve the required amount of difference. Thus

(1

We may now form different solutions by permuting the subsets from the third block.
This will give ?C, different solutions to the three-block problem. Fourth, and
subsequent blocks may be added in exaetly the same way. This establishes the
inequality (8). When combined with a weak form of inequality (4) we obtain

(nq> = Q)nq(’ﬂp) nq(np) 2 tnq(np) ; (z) i

np
nal 1/nl l 1/1-1/nl
and so ("Zl) = (W, (npl)) ™ = (Zl) )
Letting n = {— o0 gives
lim (w,,q(np))'" = g%/ (p?(q—p)*?), (9)
n—>00

where 7 is restricted to being a square. However, we know that

Wi (T +8) 2 Wy (1) Wwy,(8)
and if we define Ay = Wy o(NpP)

for fixed p and ¢ it follows that a,,,, > a, a,, and so, using the result of Pélya & Szego
(1972) again, we know that the limit

lim (a,,)/" = lim (w,,(np))"/"
n—>o0 n—>00
exists. This shows that the limit (9) exists without any restriction on the values of
n. In particular,
lim w,, (n)Y/?" = 2.
n—>00

Since we already know that

lim max w,,(r)4/"*

n—>00 r

exists and does not exceed 2, its value must also be 2

3. Symmetric circulant matrices

The analysis for arbitrary (symmetric) matrices is in general rather difficult. It is
thus natural to seek a simpler class of matrices for which it is possible to find all the
local maxima. It was these considerations which prompted the study of matrices

Proc. R. Soc. Lond. A (1993)
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with a;;, = 0 and a;; = +1 (i # j) in Cannings & Vickers (1988). However, it was shown
in Vickers & Cannings (1988a) that such matrices will not in general provide the
greatest number of maxima. This was shown by demonstrating that the 7 x7
symmetric circulant matrix with first row given by

0 8 13 2 2 13 §]

has 14 local maxima (or Esss) rather than the 12 which is all that clique matrices can
provide. The general problem of finding all maxima for such matrices would again
seem to be rather complex but we present some results for special cases.

Theorem 5.
U, (n—2) = n.

The proof of this theorem is given as an appendix and consists in showing that the
n X n symmetric circulant matrix with first row

[—2cos0 1 0...0 1]

has n local maxima when
2n/n < 0 < 2n/(n—1).

Since v,(n—2) = n it follows that w,(n—2) is also n.

Theorem 6.
v = 30V9(> 1417 > elle > 313,

This depends upon the principal 9 x 9 submatrix of the 11 x 11 symmetric circulant
matrix with first row

0 15 0.01 14 11 76 7.6 1.1 14 0.01 15]
having 30 local maxima each of length 3. The supports of these maxima are
123 125 127 129 147,

and their cyclic companions (on 1 to 11), but omitting any with 10 or 11. The result
then follows from Theorem 2.

We are grateful to I. Anderson for valuable comments made on an earlier version of this paper.

Appendix

Lemma 1. (This is a slightly stronger form of a result of Kingman (1961«).)
Suppose that A = (a;;) is a symmetric, non-singular n x n matrix and let the equations

M=

(Au); =w (1 <2< n), u;, =1

i=1

have a solution with w > 0. Then the following statements are equivalent: (i) yTAy <0
whenever X, ¥, =0 and y # 0, (ii) A has precisely one positive eigenvalue.

Proof. Let X = (x,;;) be the matrix of eigenvectors and A; be the eigenvalues (if the
eigenvalues are not all distinct, the eigenvectors can still be chosen to be linearly
independent) so that

AX)y=Axy; (1<i<n, 1<j<n), XX =1,
Proc. R. Soc. Lond. A (1993)
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where [ is the n x n identity matrix. Since the eigenvectors span R™ we can write

Vi =Zaa,, =Xy
J J
and so (Ay); = Za; Nz and  yTAy = T A0
J )

We may suppose that the columns of X are ordered so that A, > A,>... >A,.
Suppose first that y is a linear combination of the first two columns of X. Then since
YT Ay is negative it follows that A, is negative. Furthermore, #™4u is positive and so
A, is positive. Hence statement (i) implies (ii). Now suppose that 4 has just one
positive eigenvalue and that X, y, = 0. Then

(WTAX), = (X" Au),

implies that ANpi=wXa, and Yo, f,A,=0.
k [
Thus, for any 6, Aoy =0B) =T+ Z A B2
j J Jj
and also Y pjxy; =1 implies that X A;67 = w.

If we now choose 6 to be a,/f, then we see that yTAy is negative as required.
Lemma 2. The eigenvalues of the k x k tridiagonal matriz B with first row
[—2cos6 1 0 0...0]
are —2cos@—2cos (rn/(k+1)) for r=1,2,... k.
Lemma 3. The system of k equations (Bx), = const. has a solution
x; = cos (3(k+1)—t)0—cos 3(k+1)0) (1 <i<k).
1

Also the value of the constant is cos3(k+1)0(1—1/cos ) and if 2n/k > 0 > 0 then all
the x; are positive.

Proof. It is a straightforward matter to check that the exhibited z; do satisfy the
equations. Furthermore, if x, is positive then all of the x, will be positive and

%, = 28in (3£0) sin (30).
Proof of Theorem 5. The n x n symmetric circulant with first row
[—2cos6 1 0 0...0 1]

will have » local maxima, each with a support of length n—2, provided that: (a) the
(n—2)x (n—2) principal submatrix, C, has just one positive eigenvalue; (b) the
solution to (Cx); = w, ¥;x;, = 1, has x; > 0V ¢ and w is positive; and (c¢) the solution
satisfies the condition of being proof against invasion, i.e.

—2x,cos80+x, >, , and —2x,cosf+x, = x,.

The condition (@) reduces to 2m/(n—1) > 6 > n/(n—1) and this range of 6 also
satisfies the condition (b). Moreover the condition (c¢) requires that 4n/n > 0 > 2n/n
and so the final conclusion is that the exhibited circulant matrix will have n local
maxima, each with support of length n—2, provided that 2n/(n—1) > 0 > 2n/n.
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