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Abstract. A finite conflict with given payoff matrix may have many ESS's (evolu- 
tionarily stable strategies). For a given set of pure strategies {1, 2 . . . . .  n} a set of 
subsets of these is called a pattern, and if there exists an n x n matrix which has 
ESS's whose supports (i.e. the playable strategies) precisely match the elements of 
the pattern, then the pattern is said to be attainable. In [5] and [10] some methods 
were developed to specify when a pattern was, or was not, attainable. The object 
here is to present a somewhat different method which is essentially recursive. We 
derive certain results which allow one to deduce from the attainability of a pattern 
for given n the attainability of other patterns for n + 1, and by induction for any 
n+r .  

Key words: PRIMARY 90D05 - SECONDARY 92A15 - ESS - Patterns - 
Polymorphism. 

1 Introduction 

The notion of an Evolutionarily Stable Strategy (which is defined below) has 
become of major importance in studying the strategies adopted by organisms. An 
ESS corresponds to a strategy, which if adopted by a population in some conflict, 
cannot be invaded by any alternative introduced at low frequency. Such a strategy 
is therefore stable; it will persist if current payoffs and costs remain the same, and if 
no new pure strategies become available. 

An interesting feature of conflicts with a finite number of available pure 
strategies, where the payoffs can most naturally be specified by a (payoff) matrix, is 
the possible existence of multiple ESS's. The ESS's which exist will have supports 
which are restricted in various ways, and the discussion of these restrictions is the 
subject of a series of papers by the second and third of the current authors, and 
various collaborators [10, 5]. Biological relevence lies in the possibility that for 
a particular conflict with a specific payoff matrix one may observe, in separated 
niches, different strategy combinations depending on which ESS's have evolved in 
those niches. Conversely, observation of a particular pattern of supports may imply 
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that the niches do not all have the same payoff matrix. Additionally it is of interest  
to know how many different ESS's might exist for a given number of pure 
strategies, and how large these ESS's might be. 

The current paper presents new methods for addressing questions regarding 
possible patterns of ESS's. 

2 Evolutionarily stable strategies 

Suppose that pairwise contests are taking place within a species, each player 
choosing from a set U of pure strategies, with pay-offs aij forming an n × n matrix, 
A. The concept of an ESS, corresponding to a non-invadable population strategy, 
of A was introduced by Maynard Smith and Price [9]. The expected pay-off to an 
/-player when it meets a j-player is E[i,j] =aij. Let the proportion of the indi- 
viduals in the population which play i be p~ (some of these may be zero). The pay-off 
to a group of individuals of which a proportion p~ play i, against a group of which 
a proportion qi play i is 

E[_p, q] = ~,piqjE[i, j] . 
ij 

p is said to be ES (evolutionarily stable) against q w.r.t. A if 

(i) E[p,p] > E [ q , / , ]  or 

(ii) E[p,p] =E[q,p] and E[p, q] >E[q, q]. 

p is said to be an ESS (evolutionarily stable strategy) of A if for all q ~ p p  is ES 
against q w.r.t A. 

The support of an ESS p is S(p)= {i; ieU, Pi >0}, i.e. it is the set of strategies 
which have a non-zero probability of being played by an individual who plays the 
ESS p. We shall drop the p from S(p) where no ambiguity will result. 

2.1 Haigh's theorem 

Conditions for a vectorp to be an ESS of a payoff matrix A were given by Haigh 
[8]. In the generic case we require 

(1) E[i,p]=c for i~S(p) where c is constant (such a p is said to be an 
equilibrium over S(p)), and c > E[j,p] for jEU\S(p), that is, j cannot invade p. 

(2) I fB  is defined by bij=aij for i,j~S(p) andp* by P*=Pi for ieS(p), so that  
p*=(B-I.1)/(IT.B-I.1),  then if C is defined by cij=(bij--bik--bkj+bkk) for 
keS(p) fixed and i, jeS(p)\  {k}, we require that C is negative definite. The negative 
definite requirement on C arises in Haigh's theorem through a requirement that 
zT(B +BT)z < 0 for all non-zero z whose elements sum to zero. We shall refer to this 
condition on B as "the negative definiteness condition" where no confusion will result. 

This pair of conditions is necessary and sufficient in the generic case (but see [1] 
for a discussion of the non-generic case). 
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Another useful notion is that of domination; the ith-row of the matrix A is said 
to dominate the j th row if 

(1) aig > ajkVk 
(2) 31 such that au > ajl. 

3 Patterns of attainable ESS's 

Any set of supports {$1, $ 2  . . . .  , Sk} is called a pattern. If we have a specific pattern 
in mind, e.g. the supports are {1,2,3}, {1,4} and {2,4}, the pattern is written as 
{(123)(14)(24)}. 

A pattern is said to be attainable if and only if there is a payoff matrix A with 
ESS's whose supports form that pattern. We shall also say that a (specific) pattern is 
attained by a given matrix. 

A pattern is said to be maximal if it is attainable and it is not a proper subset of 
another attainable pattern. 

A pattern { T1 . . . . .  Tk} is said to be degenerate if {1 . . . .  , k} can be partitioned 
into two non-empty set X, Y s.t. (~.)i~xTi)~(~..Ji~rTi)=~J 

The following theorem is fundamental to the study of patterns of ESS's, and is 
taken as read throughout this paper. 

3.1 

Bishop and Canning's theorem I f  I and d are the supports of ESS's of some payoff 
matrix A, then neither I nor J is a subset of the other [-2]. 

There are now several papers dealing with the subject of patterns of ESS's. The only 
known method of showing that a particular pattern is attainable is by finding a 
payoff matrix which has this pattern. Conversely a pattern is shown not to be 
attainable if it can be proved that no such matrix exists. So, for example, [10] gives 
several theorems which show that patterns of particular types do not exist and [-5] 
shows how to construct matrices of a particular type generating a special class of 
patterns. 

Cannings and Vickers [10, 5] conjecture that if a pattern is attainable then so is 
any subset of that pattern. If this is correct then a complete specification of the set 
of attainable patterns is implicit in a list of the maximal, non-degenerate, attainable 
patterns. 

Cannings and Vickers [7] gave details of the progress made in the attempt to 
specify all the maximal, non-degenerate attainable patterns in the 5-strategy case 
(the 4-strategy case being complete). There are a small number of patterns whose 
attainability is unknown (i.e. no payoff matrix has been found with that pattern, 
but it has not been proven that such a matrix cannot exist). Many potential 
patterns have been shown not to exist by use of exclusion theorems (principally 
those in [10]). Out of the patterns which have been shown to be attainable (in 
particular the maximal patterns) most have been found by individual construction 
or computer generated trial and error. The only methods so far available for 
generating patterns are the clique matrices of [51, which cannot give all the 
patterns in the 4-strategy case, and which find only five out of the sixteen known 
maximal patterns in the 5-strategy case, (although they do generate all attainable 
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patterns with supports of size three or less) and methods for special types of pattern 
(e.g. one n-element ESS plus pair ESS's see [3]). 

4 Sequential methods 

This paper provides more methods for generating general patterns; in particular 
showing the existence of patterns on n strategies conditional on the existence of 
patterns on n - 1  strategies. These methods generate all the patterns known 
attainable in [7] for the 5-strategy case except {(123)(234)(345)(451)(512)}. Some 
further progress has been made for n = 5 which will be presented elsewhere. 

Given that we know that a certain pattern {$1 . . . .  , Sk} exists on strategies 
{1 . . . . .  n-- 1}, can we say that certain patterns exist on { 1 , . . . ,  n}? Trivially we 
can say that {S1 . . . . .  Sk} and {$1 . . . . .  Sk, (n)} are attainable, but what of more 
interesting patterns? For all-but-one of the theorems in this paper, the 
( n - 1 ) x ( n - 1 )  payoff matrix A which gives the pattern {S1 . . . .  , Sk} on 
{ 1 , . . . ,  n-- 1} will be kept fixed and only the elements of the nth row and column 
introduced by the addition of a new strategy n will be varied. 

There are two basic methods used in this paper, spl i t t ing and adding. Splitting is 
so-called because one (or more) elements is (are) 'split' into two, i.e. if the pattern is 
{(12)} and 1 is split, then the new pattern is {(12)(32)}. This is the method used in 
Theorem 1. Theorem 1 splits one element, say 1, so that every support which 
contains a 1 is copied and a new support is formed with 1 replaced by the new 
strategy, e.g. {(123)(14)(24)}-=,{(123)(523)(14)(54)(24)}; 1 has been 'split' into 1 and 
5. Theorem 3 uses a more complicated version of this basic method, splitting two 
strategies simultaneously. 

Adding is used in Theorems 2, 4, 5, 6, and occurs when a new strategy is 'added' 
to a support; e.g. if the pattern is {(12)}, 3 can be added to make the pattern {(123)}. 
This is all that happens in Theorem 2. Part a) adds the new element to every 
support, so that, for example, {(123)(14)(24)}~{(1235)(145)(245)} and parts b)-d) 
add the new element only to some subset of the supports. Theorems 4-6 are more 
complicated. They create new ESS's and do not seem to be adding in the same way 
as in Theorem 2, but in reality the method is very similar. They create new supports 
which include the new strategy, 'adding' this strategy to sets of strategies which, 
although they did not form the supports of ESS's, satisfied enough of the conditions 
to make the new supports attainable. 

Some of these methods are also of use when considering the more restricted 
case of symmetric payoff matrices, and are used in [4]. In particular Theorems 1, 
2a), 2b), 3, 5a), 5b) still apply. Theorem 2c) still works for i-- 1, although a proof 
with a form similar to that of Theorem 1 is required to show this. 

In this paper every payoff matrix is assumed to have zeros down the leading 
diagonal, i.e. aii= 0 for all i. That it is only necessary to consider such matrices was 
first pointed out by Zeeman [11]. Such matrices are said to be in 'reduced form'. All 
the theorems in this paper are, obviously, true if the indices are permuted. 

4.1 

Theorem 1 l f  the pa t tern  {S1,  . . . , St, St , l . . . . .  Sk } is a t ta inable  on {1 . . . . .  n -  1} 
and such that  1 eS i  iff i <= t, then {$1 . . . . .  St,  S'1 . . . . .  S't, St+ 1 . . . . .  Sk } is a t ta inable  
on {1 . . . . .  n} where  S ' i - - - -{n}uSi \{1} .  
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Proof Let A=(aij), i , j = l , . . . , n - 1  be a matrix with pattern {$1 . . . . .  St, 
St+l,. • . ,  Sk}. Now let A'=(a}j) be an n x n matrix s.t. 

a~j=aij i,j<_n--1 

a',,j=alj 2 < j < n - 1  

a),,=ajt 2<j<=n--1 

a ; .=O a ] . = a ; , = - - l .  

With column n removed, row 1 of A' dominates row n, so that any ESS with 
support containing 1 cannot be invaded by n and any ESS with support not 
containing 1 cannot be invaded by n since it cannot be invaded by 1. So any ESS on 
A is an ESS of A '. Consider A +, the submatrix of A' with the first row and column 
removed but then A ÷ is just the same matrix as A with subscript 1 replaced by n. So 
for every ESS of A there is an ESS of A ÷ with 1 replaced by n in its support. 
Omitting column 1, row n dominates row 1, so that every ESS on A + is an ESS 
of A'. 

No support of an ESS of A' can contain both 1 and n, since the negative 
definiteness condition would be violated (all pairs aij and aji s.t. i and j are in the 
support of the ESS must sum to a positive value). So if any other ESS's exist they 
must be of A ÷, since we know the pattern ofA. But using a similar argument to that 
used above, this would mean that the corresponding ESS with strategy 1 instead of 
strategy n would be an ESS of A (if a support does not include an n, then it is 
already the support of an ESS of A). But such an ESS does not exist, so the only 
'new' ESS's are those described above. Thus Theorem 1 is proved. 

An example of Theorem 1 is as follows: 
The pattern {(123)(24)(34)} is attained by the payoff matrix 

M I =  

0 - 1  2 - 3  7 

1 
2 0 - 1  3 

- 1  2 0 2 " 

- 8  7 1 0 

Theorem 1 shows that the pattern { (123)(125)(24)(34)(54)} is attainable (here 3 has 
been split into 3 and 5 rather than splitting index 1 as in the statement of the 
theorem). The matrix M 2  is a payoff matrix for this pattern, obtained from the 
construction for Theorem 1, where i0123 i] 2 0 --1 3 - -  

M 2 =  1 2 0 2 - . 

8 7 1 0 

1 2 - 1  2 
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4.2 

Theorem 2 Suppose that the pattern { $ 1 , . . . ,  Sk} is attainable on the strategies 
{1 . . . .  , n -  1). Then the pattern {S'a . . . .  , S'k } is attainable on {1 . . . . .  n} in each of 
the following cases; 

a) S)=Sju{n} ,  all j. 
b) S)=Sju{n} ,  if none of 1 . . . .  , i are in Sj, i < n - 1 ,  otherwise S)=Sj .  
c) S)=Sju{n} ,  if Sj contains at least one of 1 . . . .  , i, i < n -  1, otherwise S)=Sj.  
d) Partition {1,. .  ,, n -  1} into non-overlapping sets U1 . . . .  , Us 

(i.e. each i is contained in one and only one of the Uj's). Then 

S)=Sy{n} if Sj= I wl=l  Ut but SjogU~t=x Uz some t<(s -1 ) /2 ,  otherwise Sj=Sj .  

a), b) and c) are special cases of d), with U[s defined as follows; 

a) s=i, Vl={a,. . . ,  n- l }  
b) s=2 ,  U l = { i + l , . . . , n - 1 } , U z = { 1 , . . . , i }  
c) s=3 ,  U I = ~ ,  U 2 = { i + l  . . . . .  n - l } ,  U3={1 . . . .  ,i}. 

The construction of the new payoffmatrix A' for Theorem 2 is given as follows: 
For  each of a)-d) 

a~j = a u i, j = 1 . . . . .  n -  1 and a,,  = 0 

a) a ' , j=M,a ) ,= l  j = l , . . . ,  n - 1  where M=sup{au}  (or M = I  if n=2). 
b) a ' , j = M j = i + l , . . . , n - l :  a ' , j = - e M j = l , . . . , i : a ) , = l j = l  . . . .  , n - 1 .  
c) a' , j=eM j = l  . . . . .  i: a',j=O j = i + l  . . . . .  n - l :  a ) , = f l j = l  . . . .  , n - 1 .  
d) a ; j = ( - - 2 e ) l - l M  where l is such that jeUl V j e { 1 , 2 , . . . , n - 1 } :  

a ) ,=f l  j = l  . . . .  , n - 1  

where ~ = 1/(infp~t), p~ being the tth non-zero element in the sth ESS of A, and/~ is 
sufficiently large. Theorem 2 is proved in Sect. 5.1. 

For example, the pattern {(123)(24)(34)) is attained by the payoff matrix 

0 

2 0 - 1  
M 3 =  --1 2 0 " 

- 8  7 1 

Using Theorem 2 part a) we get the pattern {(1235)(245)(345)}, attained by the 
matrix 

M 4 =  

i --1 2 --3 1 
0 --1 3 1 

-- 2 0 2 1 
--8 7 1 0 1 

7 7 7 7 0 
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Theorem 2b) with {1, 3} as {1 . . . .  , i} shows that the pattern {(123)(245)(34)} is 
attained by the matrix 

M 5 =  

0 - 1 2 - 3  

2 0 --1 3 

--1 2 0 2 . 

- 8  7 1 0 

- 7 0 / 3  7 - 7 0 / 3  7 

Part  c), again with {1,3} as {1 . . . .  , i} generates the pattern {(1235)(24)(345)}, 
which is attained by the payoff matrix 

M 6 =  

0 - 1 2 - 3 500 

2 0 - 1 3 500 

- 1 2 0 2 500 

- 8 7 1 0 500 

70/3 0 70/3 0 0 

There are two other special cases of Theorem 2 which are of interest: 

1) UI=S1, U2={1 . . . . .  n - 1 } \ $ 1  adds n to $1 but leaves all other supports 
unchanged. 

2) U I = ~ ,  U2=S~, U 3 = { 1 , . . . ,  n-1}\S~ adds n to all supports except S,,  
which remains unchanged. 

In fact the entire theorem is a Special case of Theorem 5, as will be seen later. 
Patterns on larger numbers of strategies can be built up from those on smaller 

numbers as follows: 

{(1)} is attained by payoff matrix [0]. 
{(1)(2)} is attained by 

using Theorem 1. 
Then using Theorem 2a), {(13)(23)} is attained by the matrix [yl ] 

M 7 =  - 0 . 

1 

From this matrix we can generate the pattern {(13)(23)(34)}, attained by 

M 8 =  - 0 1 - 1  
1 0 1 

- - 1  1 0 
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and {(13)(23)(14)(24)}, attained by 

0 - 1  1 1]  

M 9 =  - 1  0 1 1 
1 1 0 - 1  

1 1 - 1  0 

using the construction for Theorem 1. From M9, using Theorem 2a), we can 
construct a matrix with the pattern {(135)(235)(145)(245)}, viz. 

M 1 0 =  

0 --1 1 1 1 7 

1 
- 1  0 1 1 1 

1 1 0 - 1  1 . 
1 1 - 1  0 1 
1 1 1 1 0 

In this way patterns on larger numbers of strategies can be built up. 
In [5] a class of matrices was defined which yielded many useful results. For this 

class matrices were symmetric, had O's on the diagonal, and + 1 or - 1 off the diagonal. 
The ESS's of such a matrix have supports matching the (maximal) cliques of the graph 
whose adjacency matrix is obtained from the payoff matrix by substituting 0 for each 
-1 .  We refer to such payoff matrices as clique matrices, though this term is used 
differently in the general graph theory literature, and resulting pattern as clique patterns. 

The matrices given above are all clique matrices, and using Theorem 1 or 2a) (as 
well as 2b) or 3) clique patterns will only generate clique patterns. However, using 
the other theorems non-clique patterns can be generated from clique patterns. The 
methods in this paper are of greater interest when applied to patterns which cannot 
be attained by clique matrices but which have been found using other methods. For 
example the  pattern {(123)(345)(14)(15)} exists for the 5-strategy case and is 
attained by the following payoff matrix [0 969, 

- 95 0 96 - 500 - 

M l l =  96 - 9 5  0 8 . 

150 - 5 0 0  - 6  0 24[ 

225 - 5 0 0  8 - 1 8  

Now using Theorem 1 (copying ESS's with 1 to ESS's with a 6 instead of a 1), we get 
the pattern {(123)(345)(236)(14)(15)(46)(56)} on 6 strategies. The matrix generated is 

M 1 2 =  

0 96 - 9 5  35 75 - 1 

- 9 5  0 96 - 5 0 0  - 5 0 0  - 9 5  

96 - 9 5  0 8 - 6  96 
150 - 5 0 0  - 6  0 24 150 
225 - 5 0 0  8 - 18 0 225 

- 1 96 - 9 5  35 75 0 
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Similarly starting from the same original payoff matrix, using Theorem 2a), we get 
the pattern {(1236)(3456)(146)(156)}. The matrix generated is 

M 1 3 =  

0 96 - 9 5  35 75 1 

- 9 5  0 96 - 5 0 0  - 5 0 0  1 

96 - 9 5  0 8 - 6  1 

150 - 5 0 0  - 6  0 24 1 

225 - 5 0 0  8 - 18 0 1 

96 96 96 96 96 0 

Theorems 1 and 2 (here only 2a)) have been considered here because they are both 
very useful and fairly simple to follow. From the above examples it can be seen that 
complex patterns can be generated by these theorems very easily. On the other 
hand Theorem 3 is of only marginal importance, while Theorems 4-6 involve extra 
conditions than just knowing a particular pattern exists on n -  1 strategies. 

4.3 

Theorem 3 Suppose that the pattern { $ 1 , . . . ,  St, St+ l . . . .  , Sk } is attainable on 
n-- 2 strategies where, { 1, 2} c Si iff i <_ t. Then the pattern, 

{ s l  . . . .  , s , ,  s l . . . . .  s t ,  s L .  . . ,  . . . .  , ( n -  1, n)} 

is attainable, where S ~ = S ~ w { n - 1 } \ { 1 }  and S~=Siw{n} \ {2}  for l <i<-t. 

The construction of the new payoff matrix, together with a proof of the theorem, is 
given in Sect. 6.2. 

As an example the pattern {(123)} on 3 strategies is attained by the matrix 

i lil M 1 4 =  0 

1 

and using the construction for Theorem3, we see that the pattern 
{(123)(234)(135)(45)} is attained by the payoff matrix i01 36;] 1 0 1 1 36 

M 1 5 =  1 1 0 1 . 

- 3 6  1 1 0 

1 - 3 6  1 6 

The next theorem refers to negative definiteness and we remind the reader that 
a matrix B is said to satisfy the negative definiteness condition if and only if 
"zT(B+BT)z<O for every non-zero vector Z whose elements sum to zero. 
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4.4 

T h e o r e m  4 Suppose the pattern { $1, . • . ,  Sk } is attainable on {1 . . . .  , n -  1} and that 
I is a subset o f {1  . . . .  , n - 1 } f o r  which S i ¢ I ,  i=  1 . . . . .  k. Suppose further  t h a t A i ,  
the submatrix o f  A corresponding to the set I, satisfies the negative definiteness 
condition. Then the pattern {St . . . .  , Sk, I ' }  is attainable on { 1 . . . .  , n} where I '  is the 
set I u {n}. 

The proof of the theorem, which includes the construction for the matrix, is given 
in Sect. 6.3. 

For example, a matrix with attains the pattern {(12)(23)} is 

[i M 1 6 =  0 7 
- 2 0 

3 
Also [  02 0]  satisfies the negative definiteness condition (which for 2 by 2 matrices 

is a 1 2 + a 2 ~ - a a x - a 2 2 > O ) ,  and so the matrix 

i 1 3 1 
M 17 = 0 7 - 35 

- 2 0 1.5 

l_ 6.75 - 3 5  6.25 0 

attains the pattern {(12)(23)(134)} which cannot be achieved by cliques. 

4.5 

T h e o r e m  5 Suppose that {T~ . . . . .  Tj, T j + I , . . . ,  Tk} is a pattern on {1 . . . .  , n- - l}  
and that { S~ . . . .  , S,, } is a pattern on the strategy subset { 1 , . . . ,  r} where r < n - 1  
such that each Tl is the same as one o f  the S 's  for  l>j .  Then the pattern 
{T1 . . . .  , T i, S'1 . . . .  , S'm} is attainable on {1 . . . .  , n}, where S~=SIu{n} .  

Proo f  The construction for the proof of this theorem is as follows: 

a~, and a'~ are defined as in the corresponding sections of Theorem 2 if I__< r, and 
a~,= - M y ,  a',l= --of-XM if l > r  

where e is defined as in previous theorems, 7= 1/(minpj,), and the pj,'s are the 
equilibrium values which are non-zero for the nth strategy on the new matrix A'. 
This theorem is proved in Sect. 6.4. 

For  example, (using the same initial pattern as for Theorem 2) the pattern 
{(123)(24)(34)} is attained by the matrix 

M 1 8 =  0 - - 1  3 
2 0 2 
7 1 0 
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The subpattern attained by the submatrix corresponding to the strategies 1, 4 is 
{(1)(4)}. So that, by Theorem 5, the pattern {(123)(24)(34)(15)(45)} is attainable 
and is attained by the matrix 

M 1 9 - -  

0 - 1  2 - 3  1 

2 0 - 1  3 - 5 6  

- 1  2 0 2 - 5 6  

- 8  7 1 0 1 

7 -70/3 -70/3 7 0 

4.5.1 Corollary Theorem 5 generates every pattern that is attainable by cliques 
matrices. 

Proof. Suppose that Theorem 5 generates every clique pattern up to k strategies. 
Any clique pattern can be generated by a matrix with 

au = O, aij = aji = +_ 1, j t- i .  

All ESS's are such that for every pair i, j in the support of the ESS a~i=aj~= 1. An 
ESS can only be invaded by row I if a~i = 1 for every i in the support of the ESS. 

Now consider a clique pattern on k + l  strategies. Let this pattern be 
{ $ 1 , . . . ,  SR, 1'1,. • . ,  1'3} where none of the S~'s contain k +  1, but all of the Ii's do, 
and where It = I'~\ {k + 1}. Thus if i is an element of Il then ak+ 1~ = 1. So that each of 
the I~'s is a subset of J, where i~J  iffak+ 1~ = I. Similarly ak+ 1~ = - ! for at least one 
of i~Sg, i.e. none of the St's is a subset of J. 

Now if we apply Theorem 5 we can add k + 1 to every support of an ESS on J, 
and leave every ESS which has support which is not a subset of J the same. If the 
clique pattern on {1 . . . .  , k +  1} is as above, then the pattern on J is { 1 1 , . . . ,  13} 
and the supports of ESS's on {1 . . . . .  k} which are not subsets of J are the Sl's. This 
means that Theorem 5 yields the required clique pattern on { 1 . . . .  , k + 1 }. So that 
the corollary is proved. 

Note that Theorem 5 does not only generate clique patterns. 
The following theorem uses a combination of the methods used in Theorems 4 

and 5, which now become special cases of 

4.6 

Theorem 6 Suppose { T1, . . . , Tr } is a pattern on a payof f  matrix on { 1 , . . . ,  n -  1} 
and that { S t , . . . ,  Sj} is a pattern on {1 . . . .  , k} such that each of  the S~' s is a subset 
o f { l , . . . ,  i} where i < k <_ n - 1 .  T~ is a subset o f { I , . . . ,  k } for  l > s but not for  l <= s, 
s < r and i <- k <_ n -  1. Suppose further  that I is a subset of{ i  + 1 . . . .  , k}, that T~ is not 
a subset o f  I for  l~{1 . . . .  , s} and that the s u b m a t r i x A i  o f  A corresponding to the set 
I satisfies the negative definiteness condition. Then the pattern { T t , . . .  , Ts, 
S'~,. . . ,  S), I ' }  is attainable on { 1 , . . . ,  n} where I ' = l u { n } ,  and S } = S t u { n } .  

The construction of the new matrix A'  together with the proof of the theorem is in 
Sect. 6.5. 
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Example. The pattern {(123)(234)} is attained by the matrix 

i! -19 1 0.5 

M 20 = 0 1 
-- 2 0 " 

- 2  10 

The pattern attained by the submatrix associated with 1, 2, 4 is {(2)} and the 
submatrix corresponding to 1, 4 is negative definite. Then by Theorem 6 the 
pattern {(123)(234)(145)(25)} exits on {1 . . . .  ,5}. Using the construction in 
Sect. 6.5, it is attained by the matrix 

0 - 1  9 0.5 1 

2 0 1 9 0.95 

M 2 1 =  - 4  2 0 9 -4000 

2 - 2  10 0 0.9985 

500.24925 10 -4000  500.25075 0 

5 Pattern generation for up to five strategies 

The diagram shows how patterns on higher numbers of strategies are generated 
from patterns on lower numbers of strategies, when the number of strategies equals 
one up to five. The only patterns considered are maximal and non-degenerate. All 
degenerate patterns and all known non-maximal patterns on one to five strategies 
can be attained by using these theorems, but the maximal non-degenerate patterns 
are the more complex and difficult to find in general, and so are the more 
interesting. Where a pattern can be found by using Theorem 1 or Theorem 2a) it is 
stated (these are the simplest of the theorems). Another method will only be given 
for a pattern which cannot be attained by either of these two theorems. 

All known maximal patterns on five strategies can be obtained by applying 
the methods in this paper to the patterns on four strategies, except 
{(123)(234)(345)(451)(512)} (all non-maximal patterns can also be found in this 
way). All patterns on four strategies can be found using these methods on the 
patterns on three strategies, and similarly for the patterns on three strategies and 
two strategies. However this does not mean that all these patterns can be generated 
starting from one strategy using these methods; the construction for {(12)(13)} 
given by using Theorem 1 on (12) will not yield {(12)(13)(234)} under Theorem 4. 
Theorems 4-6  require additional conditions, as well as the pattern on the original 
payoff matrix, which are not satisfied by this construction. 

The problem with the pattern {(123)(234)(345)(451)(512)} (as with some of the 
patterns as yet unresolved on five strategies) is that each pair of strategies occurs in 
the support of at least one ESS. The only Adding Theorem which can generate such 
a pattern is Theorem 2a), which adds the new element to all existing ESS's. So any 
pattern with every strategy pair in some ESS but no one element in every ESS 
cannot be attained by use of one of these theorems. Patterns of this type become 
more common as the number of strategies increases, so that the number of 'holes' in 
the diagram will increase as the number of strategies does. 



Sequential methods for generating patterns of ESS's 609 

.....[~--- 2o - - - [B  
Za 

Fig. 1 

The numbers in the diagram represent patterns as follows: 

1 {(1)} 
2 -  {(12)} 
3.1 - {(123)} 
3 . 2 - -  
4 .1 -  
4 . 2 -  
4 .3 -  
4 .4 -  
4 .5 -  
5 .1 -  
5 .2 -  
5 .3 -  
5 .4 -  
5 .5 -  
5 .6 -  
5 .7 -  
5 .8 -  
5 .9 -  

{(12)(13)} 
{(1234)} 
{(123)(124)} 
{(12)(13)(14)} 
{(12)(23)(34)(14)} 
{(123)(14)(24)} 
{(12345)} 
{(123)(234)(145)(25)} 
{(123)(124)(125)} 
{(12)(13)(14)(15)} 
{(1234)(15)(25)(35)} 
{(14)(15)(24)(25)(34)(35)} 
{ (12)(23)(34)(45)(51) } 
{ (123)(234)(345)(15) } 
{(123)(234)(345)(451)(512)} 



610 M. Broom et al. 

5 .10-  {(123)(14)(24)(15)(35)} 
5.11 - {(123)(14)(24)(35)(45)} 
5 .12-  {(123)(14)(24)(15)(25)} 
5.13 - {(123)(234)(15)(25)(45)} 
5 .14-  {(123)(234)(25)(35)} 
5 .15-  {(123)(345)(14)(25)} 
5 .16-  {(123)(345)(14)(15)} 

The dotted line on the diagram indicates a split from a subpattern of 4.4, 
{(12)(23)(34)}. Pattern 5.9 cannot be found from any of the 4-strategy patterns 
using any of the methods. 

Conclusion 

The methods described in this paper provide new ways of finding new patterns of 
ESS's using known patterns on a small number of strategies. It is thus possible to 
build up complex patterns quite easily. However, it is not possible to find all 
patterns using these methods, and as the number of strategies increase, more a n d  
more of the interesting/complicated patterns will not be generated using these 
methods. Indeed for even small n the attainability of some patterns is unknown (the 
patterns {(1234)(125)(345)} and {(1234)(125)(235)(345)} on five strategies have 
only recently been shown to be attainable, the attainability of other patterns dn five 
strategies is still unknown). Many interesting problems remain and are proving 
surprisingly intractible, whilst those that are solved often throw up new questions. 

6 Proofs 

6.1 Proof of Theorem 2 

To prove this theorem we need an additional result, namely that if A is 
a ( k - 1 ) ×  (k -1 )  matrix which satisfies the negative definiteness condition, then 
B = (bq), which is k × k, satisfies the same condition, where g is defined as follows: 

XI :  bij=aij Vi, je{1 . . . . .  k - l }  
bik=ai, bki=r--ai V i e { l , . . . ,  k -  1} and r sufficiently large: bk,=O 
X2: bij=aij Vi, j e { 1 , . . . , k - l }  
blg=r, bki=C~i Vie{1 . . . .  , k - l } :  bkk=O, for sufficiently large r. 

Note that the c~i are arbitrary. 

ProofofX 1. Le ty  be any k-vector whose elements sum to zero. Se ty=  (z, c~) where 
~zi = - e .  Let A 1 = (A +A T )/2 and define s by (Als)i = 1 for Vie {1 . . . .  k -1} .  Put 
xi=(~si)zi+es i Vie{1 . . . . .  k - l } ,  then ~,xi=O. Let S=2s  j then O>xTAlx= 
Zx~(S(A iz)i + ~(A ls)~) = ~ x i ( S ( A  iz)~ + ~) = SxTA ~Z = S(SzTA tz  + ~sTA ~Z) = 
S(SzTAz+ezTAls)=S(SzTAz+e~zi). Thus O>S(Sz~z-(~zi)  2) and hence 
z~Az <(Y~ ~)2/Ys~. 

Now yTBy = zTAz-- r (Zz~) 2 < (Zzi) 2 (1 -- rS)/S, so that the new matrix satisfies 
the negative definiteness condition if r > 1IS. 
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The  p roof  fails if Det  (A ~ ) = 0, for then such an s may  not  exist. In this case there 
is a solut ion to (Als)i=O Vis{1 . . . . .  k - 1 }  so that  O>xXAx=S2zTAz. 

N o w  y TBy = z TAz -- r (~z~)2 so if r > 0, then y'rBy < 0, i.e. B satisfies the negative 
definiteness condit ion.  

Proof of X2. Let q be a k-vector whose elements sum to zero. Let  w be a k-vector 
which comprises the first k - 1  elements of q, together  with a zero in the k th  
position. Then  q+Bq = wrBw + qk(~wi)r + qkZwi ~i = wTBw-- qEr + qk(2wi~i). Let  
x be a k-vector, which k th  element zero. There  exists a positive h such that  
whenever  m a x ( I x i l ) =  1 and ~xi=O,  x T B x <  --h. (If this were not  t rue we could 
find a sequence ofx ' s  such that  the limit o fxTBx  is zero, and since the limit of the 
x's has elements which sum to zero a l though it is not  identically zero, B would not  
satisfy the negative definiteness condition). 

Suppose w is such that  max(Jx i ] )=  1 and set x~=wi Vie{l ,  2 , . . . ,  k - 2 }  and 
Xk-l~-Wk-l-t-qk, then £xi=O=~2Wi=--qk , wTBw<--h+lqk](~i<k_l]ak_li+ 
a~k- 1 I). Considering such w's is sufficient, since any k -  i vector  can be expressed as 
a constant  multiplied by a vector  whose max imum element is 1, and the constant  
cannot  affect the sign of  wTBw. Thus 

qTBq <--_ -- h + ]qk [(2i  <k -1 lag - l i  + a,k-1 l) -- q2 r + qk ~WiO~i 

< --h--(qk)2r+y[qk[, 

where 7 = ~lai[ + ~ i  < k- 1 [ak- li + aik- 1 ]. NOW 7 and h are constant ,  irrespective of 
the vector  q. Let  r be greater than ~2/(4h). Then  qTBq is always negative for any 
q whose elements sum to zero (but q =~ 0). Hence  B satisfies the negative definiteness 
condition.  

Proof of theorem, a) 
(i) M - -  sup (aij) so that  row n dominates  all other  rows (excluding column n), so 

n invades every ESS on A, so all ESS's on A'  involve n. 
(ii) Suppose P = ( P l  . . . . .  p~) is an equil ibrium on a submatr ix  of A, C i.e. 

(Cp)j = ~ Vje{1 . . . . .  i} (choosing the suppor t  o f p  to be { 1 , . . . ,  i} wi thout  loss of 
generality). 

Let  r=(tpl  . . . . .  tpi, ( 1 - t ) )  so that  ~ r ~ =  1, and let t =  1 / ( M - ) ~ +  1). Let  C' be 
the payoff  matr ix  associated with the set of strategies {1 . . . . .  i,n} then 
( C ' r ) j = t ( C p ) j + ( 1 - t ) = t 2 + ( 1 - t ) = M / ( M - 2 + l )  V j e { 1 , . . . , i }  and (C ' r ) ,=  
Mt = M / ( M - - 2 +  1). 

N o w  M > 2 since n invades all ESS's, so 0 < t < 1 and all elements of r are positive 
which implies that  r is an equil ibrium on { 1 , . . . ,  n}. 

(iii) It  is easy to show that  strategy k invades r if and only if it invades p. 
E[k, r] = t(Cp)k + (1 -- t) < E Jr, r]  iff (Cp)k < 2 i.e. k invades r if and only if it invades 
p, so the equil ibrium on {1 . . . . .  i, n} is invaded on {1 . . . . .  n -  1} iff the equilib- 
r ium on { 1 , . . . ,  i, n} is invaded on {1 . . . . .  n}. 

(iv) By result X1, if C is negative definite, then so is C'. 
F r o m  (i)-(iv) we can see that  if Sj is the suppor t  of an ESS on {1 . . . . .  n -  1} 

then S}, which is the same as Sj•{n}, is the suppor t  of an ESS on {1 . . . . .  n}. 
Similarly using a reverse a rgument  on (ii) and (iii) (together with the fact that  
every submatr ix  of a matr ix  which satisfies the negative definiteness condi t ion 
satisfies the condi t ion itself) we can see that  if any other  ESS exists on {1 . . . . .  n} 
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containing n then there exists a corresponding ESS on { 1 , . . . ,  n - l }  with n 
removed. Hence Theorem 2a) is proved. 

b) Suppose Sj contains none of {1 . . . . .  i}, then following the same argument as 
in a), we can see that S} is the support of an ESS on { 1 . . . .  , n} iff S~ is the support of 
an ESS on { 1 , . . . , n - i } .  

If Sj contains one or more of {1 . . . .  , i} and is the support of an ESS then 
n cannot invade, because one or more of the entries ant in the row trying to invade is 
-c~M which dominate(s) the other entries. So S~ is still the support of an ESS. If Sj 
is not the support of an ESS on {1 . . . .  , n -  1} then Sjw{n} is not the support of an 
ESS on { 1 , . . . ,  n} for the same reasons as in a). The pure {n} is not the support of 
an ESS on { 1 , . . . ,  n}. So Theorem 2b) is proved. 

c) Suppose that Sj is disjoint from {1 . . . .  , i} and is the support of an ESS on 
{ 1 , . . . ,  n - l } .  Then E[n,p] =O<E[p,p] wherep is the ESS on Sj, so that n does 
not invade p i.e. Sj is the support of an ESS on { 1 , . . . ,  n}. Using the same 
argument as in a) and b) if Sj is not the support of an ESS on {1 . . . . .  n - 1 )  then 
Sju{n} cannot be the support on an ESS on {1 . . . . .  n). Now suppose that Sj does 
contain at least one element of { 1 , . . . ,  i). At least one of the elements in the 
invading row is aM which means that EEn, p] is at least M, so that n invades p. 

Using a similar argument to a)(ii) we can show that Sj has an equilibrium on it 
of the form (tp, (1 - t ) )  for some re(0, 1) since n invades p iffp is an equilibrium. In 
the same way r, the new equilibrium, can be invaded by n iffp can be. Finally, by 
X2, the corresponding submatrix to Sj satisfies the negative definiteness condition 
iff the submatrix corresponding to Sj does. Hence Theorem 2c) is proved. 

d) Suppose S~ is the support of an ESS, p on {l . . . .  , n - l )  so that 
E[n,p]=~l~sj)antpl. Each leSj is a member of some Us. Let k be given by 
k = max~sj(S: le Us). The values of an~ have been constructed in such a way that the 
invasion row is dominated by the values of a,t for which le Uk. So that if k is odd 
n invades, and if k is even n does not invade. 

By X2 the new submatrix corresponding to S~ satisfies the negative definiteness 
condition, and using the same arguments as before existence of an equilibrium and 
invadability by other rows is unchanged. In the same way no other ESS can exist 
on A', so that Theorem 2d) is proved. 

6.2 Proof of Theorem 3 

A = (aij) is the pay-off matrix defined on strategies { 1 , . . . ,  n - 2 } .  The construction 
used to prove Theorem 3 is as follows: 

a~j=alj Vi, j~{1 . . . .  , n - 2 }  

a'-lj=al~,a~,-1 =a~l k/je{2 . . . . .  n - 2 }  

a',j=a2j, aj,=aj2 V j ~ { 1 , 3 , 4 , . . . , n - 2 }  

a'n- l ~ = a] ,_  1 = a'n2 = a~, = - (2c~)2M 

t l t t 

an_ln_ 1 =ann=O, an_ln=ann_l  = 2 ~ m  

where M = max last ] s, t = 1 , . . . ,  n-- 2, ~ = 1/min (Pst), and P,t is the value of the tth 
non-zero element of the sth ESS of A. 
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Now if we exclude columns n and n - 1, row 1 dominates row n -  1 and row 2 
dominates row n and so all ESS's of A are still ESS's of A '. Le tA + be the submatrix 
o f A '  associated with elements {2 . . . . .  n - 1 } .  Then A ÷ is just the same matrix as 
A with 1 relabelled n -  1, so for every ESS on A there is an ESS of A + with 
1 replaced by n -  1. Now if we exclude columns 1 and n, we can see that row n - 1 
dominates row 1, so that row 1 cannot invade any ESS of A ÷. We now show that 
n invades any ESS of A + if and only if its support  contains 2. Recall that 
a',,_ 1 = 2aM, an2 = - (2a )2M and so i fp  is an ESS with support  Sj which does not 
contain 2 then E [n, p ]  > 2 M -  M = M so n invades (E [ p , p ]  < M). 

If  Sj does contain 2, then E[n ,p]<2o~M-(2a)ZM+M<-aM so strategy 
n cannot invade. So p is an ESS iff 2eSj. 

This means that if A has an ESS whose support  Sj contains both 1 and 2, 
another ESS exists on A'  with 1 replaced by n -  1. Using the same argument we find 
that if Sj of A contains both 1 and 2, another ESS exists on A'  with 2 replaced 
by n. { n - l ,  n} is the support  of an ESS (E[p,p]=2c~M>2M>E[i,p]Vie 
{1 . . . .  , n - 2 } ) .  No  ESS can have a support  which contains both 1 and n - 1  or 
both 2 and n, or both n -  1 and n, except { n -  1, n} itself, since it is the support  of an 
ESS. Using a similar argument to that in Theorem 1, no other ESS's can exist on 
A',  so Theorem 3 is proved. 

6. 3 Proof of Theorem 4 

Let the matrix A '  be defined as follows: 

ai~=alj Vi,je{1 . . . . .  n - l }  

a~,=bi,a',i=h-b~ Vi~l 
! ! t a,, = a,i = - M, Vi i i ,  a,, = 0,  

where M is sufficiently large and h and the b~ arbi t rary .  

Define ri as ~(j~i)aij, let L I I be the size of I and let b~ = b l + (a/(1 -[ILa))(r l  - r~)  
VieI. Consider p = ( a , a  . . . . .  a, 1 - 1 I l a )  a vector on I ' .  Then Eli, p]= 
~,(~i)(aai2)+bi(1-[Ile)=ari+(rl-ri)c~ +bl(1-[Ila)=arl  +bl (1 -111a)  for ieI 
and E [n ,p )=  ahlI[-a~i~ x bi which can be shown to equal arl  + b l( 1 - I l i a )  when 
h= 1/(alI[)[bl +arx -4- ~2/(1 -a[I[)~i~i(rl -ri)]. So for 0 < a <  1/]II,p is an equilib- 
rium on I ' .  

For  large enough M,p cannot be invaded by any i not in I. By making bl large 
or a small we can make h sufficiently large to ensure that, by X1 in Sect. 6. B, irA1 
satisfies the negative definiteness condition so does A t ,  and hence t ha tp  is an ESS 
of {1 . . . .  , n} with support  I ' .  

If  S~ is the support  of an ESS of { 1 , . . . ,  n - 1 } ,  then there is at least one leSj 
which is not an element of I. Thus a,i = - M ,  where M is large, so that strategy 
n cannot invade the ESS on Sj i.e. Sj is the support  of an ESS on {1 . . . . .  n}. 

No  ESS's can contain both an i not belonging to I and {n}, because the 
corresponding submatrix would not satisfy the negative definiteness condition. 
Thus all ESS's exist either on {1 . . . . .  n - 1 }  or on I ' .  But I '  is itself the support  of 
an ESS, so by Bishop-Cannings there can be no other ESS's on I ' ,  and since we 
already know that the pattern on {1 . . . .  , n -  1} is {$1 . . . . .  Sk} no other ESS's 
exist. The proof  of Theorem 4 is now complete. 



614 M. Broom et al. 

6.4 Proof of  Theorem 5 

Using the same reasoning as in Theorem 3, (since the submatr ix  of the payoff  
matr ix  associated with { 1 , . . . ,  i, n} is the same as tha t  used in Theorem 3), if S t is 
the suppor t  of  an ESS on { 1 , . . . , i }  then S) is the suppor t  of an ESS on 
{1 . . . . .  i, n}. Suppose that  the ESS associated with S t isp,  then if Sj contains n (if 
S} = S t then trivially k cannot  invade) 

E[k,p]=~__,i~sakiPi=Z,~sjakiPi--p,,flM<M--M=O for k¢{1 . . . .  , i, n} 

i.e. S) is the suppor t  of  an ESS on { 1 , . . . ,  n}. Each Tj is the suppor t  of an ESS on 
{1 . . . .  , n -  1}. As before the a,,t's have been chosen to be sufficiently small for I not  
a member  of {1 . . . .  , i} such that  any suppor t  which contains such an I cannot  be 
invaded (this is easy to check), so that  Tj is an ESS on { 1 , . . . ,  n} unless it is equal to 
one of  the SSs. 

No  suppor t  of an ESS can contain both  n and j for i< j<n  so that  all ESS's 
occur  on either {1 . . . .  , n - l }  or {1 . . . .  , i, n}. But we know the pat tern  for 
{ 1 , . . . ,  n -  1} and the submatr ix  on {1 . . . .  , i, n} is the same as that  in Theorem 3, 
so that  no other  ESS's exist on {1, : . . ,  i, n} either. Hence  there are no other  ESS's 
of {1 . . . .  , n}. So Theorem 5 is proved.  

6.5 Proof of  Theorem 6 

We have a matr ix  A defined on { 1 . . . .  , n -  1 }. Define the matr ix  A '  on { 1 . . . . .  n} 
as follows. 

a~j=aij Vi, j e{1  . . . . .  n - l }  

a),,=V,a'j=L W e { 1 , . . . , i }  

a),=bj, a ' , t = K - b  j V j e { i +  1 . . . .  ,k} 

a j , = a ' , t = - M  V j e { k +  1 . . . . .  n - l }  

a',, = 0  

where bj is defined as in the p roof  of Theorem 4. 
Consider  ESS's on { 1 , . . . ,  k} which only include elements of {1 . . . .  , i} in their 

supports.  L e t p  he such an ESS. T h e n p ' =  (Tp, 1 - 7 )  is such an ESS on {1 . . . . .  i, n} 
from previous proofs  (where 7=V/(V+L - 2 ) ,  2=E[p,p]) .  If M is very large 
compared  to every other  element of A',  then none  of {k+  1 . . . .  , n -  1} can invade. 
We show that  under  certain condit ions s, i <  s < k, cannot  invade p ' .  

N o w  E[.p',p'] =L V/(V+L --2) and E[s,p'] =TE[s,p] + ( 1 - 7 ) b s = 7 ( 2 - f s ) +  
bs(1-7) ,  (where 6s is positive, since p is an ESS on {1 . . . .  , k } ) =  
( v 2 -  va s + b,(L - 2 ) ) / (V+ L - 2 ) .  

So to stop s invading, we need VL > V2-Vb ,+bs (L  - 2 ) .  If V<b, then the 
r ight-hand side of  this inequali ty is less than b,L - VJ,, so if VL > b ~L - VJ, then 
s cannot  invade i.e. if as > (b,-V)L/V. 

S o p '  is certainly an ESS on { 1 , . . . ,  n} i f3  > ( b -  V)L/V, where 6 is the smallest 
of the 3~'s and b is the largest of the bs's. 

Strategy n cannot  invade any ESS whose suppor t  c o n t a i n s j ~ { k +  1 . . . .  , n -  1}, 
because of the - M's,  so the Sj's are still supports  of  ESS's. 
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N o w  because of the definit ion of the bfsp=(t,t , . . . ,  t, 1-(k-i)t)  is an ESS 
with suppor t  { i+  1 . . . . .  k, n}. Then  E[p,p] =t(k-i)K-~y=i+lbj where 

1 ( 1-(k-i) t  t k ) K- t ( k_ i )  bi+l+tri+l~ ~ (ri+x-rj) . 
j = i + l  

This expression tends to b~+ 1 as t tends to zero (as t tends to zero, all the bfs  
converge  to bi+ 1). 

k Also E[s, p3 =(~,g=~+la~j)t+(1-(k-i)t)V V s z { 1 , . . . ,  i} which converges to 
V as t tends to zero. But  V is smaller  than  bi+ 1, so tha t  for some sufficiently small t, 

p canno t  be invaded by  any  of 1 . . . .  , i. N o n e  of the strategies k + 1 . . . . .  n -  1 can 
invade because of the - - M ' s  in the nth co lumn (the s t ra tegy for which the entry  in 
p is tending to unity), so tha t  1 , . . . ,  i, n is the suppor t  of an ESS on A' .  

Let  b~+ 1 = V+ 1 then for small  enough t, b (the m a x i m u m  of the b~'s) is less than  
V+2 .  So tha t  (a--V)L/V<2L/V=2/V 1/2 if L=V 1/2. N o w  there are a finite 
n u m b e r  of  ESS's on A each with their own value of 6 > 0. So if V is la rge  enough  
2/V i/2 < 6  for each such 6, i.e. if S~ is the suppor t  of an ESS on {1 . . . . .  k} which 
includes only strategies in { 1 , . . . ,  i}, then S~ = Slu {n}, is the suppor t  of an ESS on 
{1,. . . ,n}. 

In  the above  a rgumen t  use is m a d e  of certain values being large c o m p a r e d  to 
others; all these a rguments  are indeed consistent.  We  have  L large c o m p a r e d  to 
a~j for i, j e { 1 , . . . ,  n - l } ,  V=L 2, the bs's are slightly larger than  V. K is large 
c o m p a r e d  to K Final ly M is large c o m p a r e d  with everything else. T h o e r e m  6 is 
proved.  
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