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Game theory has had remarkable success as a framework for the discussion of animal 
behaviour and evolution. It suggested new interpretations and prompted new observational 
studies. Most of this work has been done with 2-player games. That is the individuals of a 
population compete in pairwise interactions. While this is often the case in nature, it is not 
exclusively so. Here we introduce a class of models for situations in which more than two 
(possibly very many) individuals compete simultaneously. It is shown that the solutions (i.e. 
the behaviour which may be expected to be observable for long periods) are more complex 
than for 2-ptayer games. The concluding section lists some of the new phenomena which can 
occur. �9 1997 Society for Mathematical Biology 

1. Introduction. The modelling of animal behaviour by means of game 
theory provided a rich source of ideas to both biology and mathematics. It 
was used in studying very specific examples "in the field" and provided 
insights into the evolution of organisms as well as interesting mathematical 
concepts. Most noteworthy and fundamental of the latter is the evolutionar- 
ily stable strategy, which was coined by Maynard Smith and Price (1973). 
Almost all of this work was in the context of 2-player games. This is 
somewhat surprising because game theory has its origins in economics 
(specifically with von Neumann and Morgenstern 1944) in which multi-player 
models have always featured very strongly. Important texts in this area are 
Harsanyi and Selten (1988) and Binmore (1992). There is a very good 
reason why mathematical biologists have generally avoided multi-player 
games; their complexity. But now much is known about 2-player games, 
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even when the interaction is in time and space, so that it is appropriate to 
start on their systematic study. The comparison and contrasting properties 
of the two types of games will be the basis of this paper. 

It is to be expected that multi-player games will become increasingly 
studied if only because many naturally occurring situations can only be 
considered in this context, for example, hierarchies of animals or birds 
nesting in a colony. Even if games are pairwise there may be a structure to 
the collection of games which mean that the games cannot be considered in 
isolation and so are, in effect, a multi-player game. An extreme form of 
multi-player games is what Maynard Smith (1982) refers to as "playing the 
field." In this situation each individual is in competition against the whole 
population. However, the conflicts considered are usually somewhat indi- 
rect,  e.g. establishing the best sex-ratio or gamete size. 

In this paper we shall only consider matrix games which are symmetric. 
This means, inter alia, that the payoffs do not depend upon the ordering of 
the individuals which come together to play the game. Also the various 
opponents are always a random selection of the population as a whole. In 
section 5, the games will be further restricted to those in which all the 
players (in any particular contesting group) receive the same payoffs. We 
coin thee term super-symmetry to describe this situation. 

2. The Model. 

2.1. Evolutionarily stable strategies. The concept of an evolutionarily 
stable strategy was introduced by Maynard Smith and Price (1973). Con- 
sider a population of animals competing for some resource such as food or 
mates. Individuals compete in (usually) pairwise games for a reward. 
Classically, it is assumed that all the members of the population are 
indistinguishable and that each individual is equally likely to face any other 
individual. We shall always assume that only a finite number of strategies is 
available to the players, these are the pure strategies which are labelled 
1 , . . . ,  n and we let U = {1,.. . ,  n} be this set of pure strategies. 

Given the strategies played the outcome is determined; if player 1 plays i 
against player 2 playing j, then 1 receives the payoff or reward a u (2 
receives aji) representing an adjustment in Darwinian fitness. The value aij 
can be thought of as an element in the n x n matrix A, the payoff matrix. In 
this paper the matrix A is a constant; it does not depend upon the 
frequency with which the various strategies are being played. This is the 
usual assumption for matrix games. 

An animal need not play the same, pure strategy every time. Instead it 
may play a mixed strategy i.e. play i with probability p~ for each of 
i = 1 , . . . ,  n. This implies that the strategy played by an animal is repre- 
sented by a probability vector p. With the assumption that the two protago- 
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nists are randomly chosen from the population, it follows that the expected 
payoff to a player playing p against an opponent playing q, which is written 
as E[p, q], is 

E[p, q] = Epiaijqj = pTAq. 

A fundamental question is, what  strategies are likely to be prevalent in the 
population? 

Suppose that p is played by almost all members of the population, the 
remainder of the population being a small, mutant group (constituting a 
fraction e of the total population) playing q. We say that p is evolutionarily 
stable (ES) against q if 

E[p, (1 - e )p  + eq] > E[q, (1 - e)p  + eq], 

for all, sufficiently small, e. This implies that either 

(i) E[p, p] > E[q, p], or 
(ii) E[p, p] = E[q, p] and E[p, q] > E[q, q]. 

If almost all players play p, then almost all potential opponents are p 
players, so if p does better against p than q does, then q players will die out 
through natural selection. However, if they do equally well against p, then 
how well the strategies perform against q becomes important. Conse- 
quently, in this case, p must then do better against q than q does for p to be 
ES against q. 

The vector p is said to be an evolutionarily stable strategy (ESS) if p is 
ES against all q ~ p. This means that if all members of a population play p, 
then p cannot be invaded by a small group playing a different strategy. 
Thus the strategy p persists as the dominant strategy through time. 

An alternative interpretation of ESS theory is to suppose that each 
individual plays a pure strategy and that it is the different frequencies of 
the various type of individuals which make up the ESS vector p. The two 
approaches are indistinguishable for our purposes (except when we explic- 
itly consider the time evolution in section 5.2) and we shall use the 
terminology appropriate to the situation in which all individuals are identi- 
cal and each plays the ESS. 

2.2. Patterns of ESSs. 

Definition 2.2.1. Suppose that p = (Pi) is an ESS of the payoff matrix A. 
The support of p, S(p), is the set S(p) = {i: Pi ~> 0 } .  Thus it is the set of pure 
strategies that can be played by a p-player. 
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Definition 2.2.2. Any collection of supports (with no repeated elements) 
is called a pattern. A particular pattern is the pattern of  the matrix A if it is 
the collection of supports of the ESSs of A. A pattern is said to be 
attainable if there is some matrix A which has that pattern. 

If a constant is added to all the entries in a column of the payoff matrix, 
then the set of ESSs is unaltered. Thus the pattern of B = (a u + cj) is the 
same as that of A. In particular, with cj = -a j j  V j, the set of ESS of a 
matrix is the same as that of its reduced matrix (adding a constant to each 
column tO make the leading diagonal terms zero). This useful result is due 
to Zeeman (1980). 

The biological relevance of the concept of a pattern is as follows; if the 
same type of conflict is taking place in several locations, different ESSs may 
be observed. It is of interest to determine whether this difference in 
behaviour is due to differences in the local conditions (resulting in a 
different payoff matrix) or to the fact that the same payoff matrix may have 
more than one ESS. In the latter case the pattern of the matrix will consist 
of (at least) two entries. It is known that even low-order matrices may have 
very complicated patterns e.g. Cannings and Vickers (1988), Vickers and 
Cannings (1988a), Cannings and Vickers (1991). 

A fundamental restriction on the pattern of a matrix is provided by the 
following theorem. 

THE BISHOP-CANNINGS THEOREM 2.2.3. I f  p is an ESS with support I and 
r ~ p is an ESS with support J, then I ~ J. 

The original theorem, which is a little more general, appears in Bishop and 
Cannings (1976), where a proof is given. It follows immediately that if I = U 
then the ESS is unique. 

2.3. Multi-player games. Much work has been done on 2-player games 
e.g. Hofbauer and Sigmund (1988), Maynard Smith (1982), Haigh (1975) 
and Cressman (1992). However, in the biological context, there has been 
little published work on multi-player games, examples are Haigh and 
Cannings (1989), Cannings and Whittaker (1995), and Broom, Cannings 
and Vickers (1996). This is due to both the wide applicability of 2-player 
models and to their relative simplicity. 

There is a logical extension of the definition of an ESS from the 2-player 
case to the multi-player case. We will assume that the game is symmetrical 
among all the players in the sense that the order of the players is irrelevant 
(as well as the set of options available being the same for all players). 
Hence we can assume that any player that we are considering is the first 
player without loss of generality. We use the notation E[p; Pl,P2,--.  ,Pn-]]  
to denote the expected payoff to an individual playing p in a conflict 
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involving a total of n players, the strategies of its opponents being 
Pl,P2,---,Pn-1. When some of the strategies are the same, then we may 
write, for example, E[p; Pl, P2, p~-3]. As mentioned in the introduction, the 
set of opponents will be chosen at random from the complete population. It 
follows that the payoff is linear in each of the p's and so 

n = ( n - - l ) ( 1 _ 6 ) k  ,,_k_lE[p;p~,p,~_k_l]. E[p; {(1_ e)p l  + ~p2)} _1 ] n~l  k 
k=0 

A strategy p is ES against a strategy q if 

E[p;(1 - e)p  + ~q,(1 - e)p  + eq , . . . , ( 1  - ~)p + ~q] 

>E[q ; (1  - ~)p + ~q,(1 - e)p  + ~q , . . . , (1  - e )p  + eq], 

for all, sufficiently small e. This condition is equivalent to the following; 
A strategy p is ES against a strategy q if 

either 
E[p ;p  n-l] > E [ q ; p ~ - l ] ,  

or 

E [ p ; q , p  n-2] > E [ q ; q , p  ~-2] and 

or, there is a j (2 ~<j ~< n - 1) such that 

and 

E[p ;p  n-l] = E [ q ; p ~ - l ] ,  

E[p;qJ, p n-y-l] > E[q;qY, p n-j-l] 

E[p;qi,p~-i-1] =E[q;qi,p n-i-l] (0~<i~<j -1 ) .  

More compactly, p is ES against q if there is a j (0 ~< j ~< n - 1) such that 
E[p; pn- 1 - j ,  q j  ] > E[q; p '~- 1 -j, qj ] and E[p; pn- 1 - i, qi  ] : E[p; p "- 1 - i, qi ] for 
all n i <j .  Naturally, p is an ESS if it satisfies a condition of this form for 
every q ~ p. An ESS which satisfies these conditions with j never more 
than J will be called be an ESS of level J. Note that for the generic case 
most of the preceding conditions will be superfluous (only ESSs of level 0 
or 1 are required). 

If p is an ESS then 

E[p ;p  n-l]  >/E[q;p n-1 ] Vq, 

and since the payoffs are linear in each of the ps it follows that 

E[p ;p  n-l]  = E [ q ; p  n-l]  whenever S(q) ___S(p). 
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3. Comparison with 2-Player Games. It is well known that for two players 
no two ESSs can have the same support. This is a consequence of Theorem 
2.2.3. It is for this reason that the notion of a pattern described in the 
introduction is both extremely useful and relatively simple. However, for 
multi-player games the situation is very different. It is shown in section 4, 
while considering the possible collections of ESSs for 2-strategy, 3-player 
games, there can be ESSs with supports (1) and (1, 2), respectively, for the 
same payoff matrix. Thus the Bishop-Cannings theorem does not hold for 
three or more players. For four or more players it is even possible to have 
more than one internal ESS (i.e. an ESS in which each option is repre- 
sented, so Pi > 0 Vi), again see section 4. 

THEOREM 3.1. It is not possible to have two ESSs with the same support in a 
3-player game. 

Proof. Suppose that p is an ESS of a 3-player game. Then one of the 
following three conditions holds for any q 4= p, 

(i) E[p; p, p] > E[q; p, p], 
(ii) E[p; p, p] -- E[q; p, p] and E[p; q, p] > E[q; q, p], 

(iii) E[p; p, p] -- E[q; p, p], E[p; p, q] = E[q; p, q] and E[p; q, q] > E[q; q, q]. 

If q is a different ESS with the same support as p, then 

E [ p ; p , p l = E [ q ; p , p ]  and E[q;q ;q]=E[p;q ,  ql. 

Thus condition (ii) is the only possibility and so 

E[O; q, pl > E[q; q, p]. 

But concentrating upon q rather than p shows that 

E[q; p, q] > E[p; p, q]. 

This contradiction completes the proof. 
To summarise: 

if n = 2 then Bishop-Cannings holds, 
if n - - 3  then Bishop-Cannings does not hold, but there cannot be more 

than one ESS with the same support. 
if n > 3 then there can be more than one ESS with the same support. 

4. 2-Strategy, n-Player Games. The case where there are only two strate- 
gies but there are any number of players is considered. This is the simplest 
non-trivial case and we find exactly what combinations of ESSs are possible. 
Label the strategies S 1 and S 2. 
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Def ine  Otij as the payoff to a player playing strategy i against n -  1 

players, j of  which play strategy 2, i being equal to 1 or 2. Fur thermore ,  
define /3j = a l j  - o ~ 2 j .  

4.1. Pure ESSs.  If p = ( 1 , 0 )  represents the pure strategy S 1 then 
E [ p ; p  n - l ]  = al0. Similarly E [ q ; p  n - l ]  = qlCelo -F q2a20 where  q = (ql ,  q2). 
The pure  S 1 is thus an ESS of  order  0 if alO > a20 i.e. if /30 > 0. Similarly, 
the pure strategy S 2 is an ESS if aln_ ~ < O~2n_ 1 o r / 3 n -  1 < 0. 

It follows in a similar manner  for the non-generic case that S 1 is an ESS 
of order  j if /3j > 0 and /3 i  = 0 V i  < j  and that S 2 is an ESS of  order  j if 

/3n- l - j  < 0 and /3n-1-i = 0 Vi  <j .  

4.2. Mixed ESSs.  The payoff to an individual playing r = (r 1, r z) against 
a set of  opponents,  each of which is playing p = (Pl ,  P2) = (P l ,  1 - -P l ) ,  is 
given by 

E [ r ; p  n- l ]  =E[r;(pl,P2 )n-l] 
n,( 

n - 1 ] . -k -1  kE[ r n-k-1  = (1,0) , 1) k] 
k=0 k )P l  P2 [ ;  (0, 

n l( ) 
= ~ n - 1 n -k -1  k 

k=o k Pl  p 2 ( r l a l k  + r2a2k )" 

It follows that 

E [ p ; p  n- l ]  - E [ q ; p  n- l ]  

n l( ) 
= k=0 ~-" n -k 1 p , ] - k - l p k z ( p l a l  k +p20~2 k __ qlOZlk __ q2Ce2k ) 

n l( ) 
= ~ n - 1  _~_ 

k=0 k P~' lp2k(pl -- ql)/3k 

= (p~ - q l ) p ~ - l h ( t ) ,  

where 

e l  
t - - -  and 

1 - P l  

n I( ) 
h ( t )  = ~ n - 1 / 3 k t n - k - 1 .  

k=0 k 

For  p to be a level 0 ESS this expression must be positive whenever  q 4= p 
which is clearly impossible. In addition, if the expression is ever negative, 
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then the corresponding value of q gives a strategy which invades p. Hence  
the expression must be zero, so h ( p l / p  2) = 0 is the equation that any ESS 
must satisfy. 

Now consider E[p; q, p'* - 2 ] _ E[q; q, p " -  2 ]. Assuming w.l.o.g, that the q 
player is second in the order, we have 

n - 2 (  
E [ r ; q ,  pn-2] =rlql ~ n - 2 ~  ~-k-2 k 

k=O k )Pl P2alk 

which implies that 

E [ p , q , p n  2] _ E [ q ; q , p ~ - 2 1  

~ 
+ r2q 1 Y'~ 

k=O 

n - 2 )  _ ~ _  
k P~ 2P~2k 

. - 2 [  21 , ,-k-2 k 
+ r l q 2  y- ~ ~ n - -  ) P l  P 2 a l k + l  

~=o k n-a( 
+ r2q 2 Y'~ 

k=O 

n - 2 |  \ - k - 2  k 
k ] P f  p2OZ2k+l' 

n2() 
= k=o ~' n-k 2 pf-k-2p~(plqlalk + p l q 2 t ~ l k +  1 +pzqla2k +p2qza~zk+ 1 

--qZalk - qlq2 alk +1 -- qzql azk - q~ azk +1 ) 

) = ( P l - q l )  ~ n - 2  pl_k_2pk2(q~k+qZ~k+l)" 
k=0 k 

Let 

n--2 

k= 0 k k'l D2 k 

Then 

n-2  

k=0 k p~,-k- 

n l( ) 
p1T1 + p 2 T  2 = y ,  n - -  1 k=0 k P']-k-lpk flk 

= p ~ - l h ( p l / p  2) 

= O~ 
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at an ESS and so 

Also 

E [ p ; q ,  p n - 2 l - E [ q ; q , p  n-21 = (Pl  - q l ) ( q l T 1  +q2T2 ) 

= (P l  - q l ) [ ( q l - p l ) T 1  + ( q 2 - P 2 ) T 2 ]  

= ( P l  - - q l ) 2 ( T 2  - T,) 

= - (Pl  - ql)2T1/P2" 

n2( ) 
h ' ( t ) = ( n - 1 ) k = o  ]~ n k - 2  t . k-2/3k. 

Hence,  for a level 1 ESS it is required that  T1 be negative, or equivalently, 
that  h ' ( p l / p  2) be negative. In summary,  the condit ions for a level 1 ESS at 
p are 

(i) h ( t )  = O, 
(ii) h'(t) < O, 

where  t = p l / ( 1  - P l )  and 

) h ( t ) =  ~_, n - 1  1 
k=0 k ~kt n k 

It can be shown that  the condi t ions for an ESS of level j are 

d~h(t)  dJh(t) 
h( t )  = O, dt------ W -  - 0 (k  < j ) ,  dt----7-- < O, 

if j is odd. If j is even no such ESS can exist. Equivalently, p is an ESS of 
order  j if t 1 = p l / ( 1  - P l )  is a root  of order  j of the polynomial  h(t) and 
the j th  derivative at t = t 1 is negative. 

Excluding polynomials  which have double  roots, ESSs correspond to the 
al ternate roots of h ( t ) =  0 (if the polynomial  has a negative derivative at 
one root  then  the derivative must  be positive at the next and vice versa) so 
that  the max imum n u m b e r  of internal ESSs is the integer part  of n / 2  (the 
polynomial  is of order  n - 1). In addi t ion if there is a pure  S 1 ESS then 
h(1) is positive so that  the last root  does not  cor respond to an ESS, if there 
is a pure  S 2 ESS then  h(0) is negative so that  the first root  does not  
correspond to an ESS. Hence  the possible sets of ESSs are as follows: 

0 pures,  l internals l less than or equal to the integer part  of n / 2 .  
1 pure,  l internals l less than or equal to the integer  part  of n / 2 -  1. 
2 pures,  l internals l less than or  equal  to the integer part  of  n / 2  - 2. 
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Note that the a s are unrestricted, so that any combination of ESSs (i.e. any 
values of the roots q , . . . ,  t~ of h(t) = 0) is possible provided that the total 
number is in accordance with the preceding text. 

5. 3-Player, 3-Strategy Games. After 2-strategy games the next simplest 
example is clearly that of 3-strategies. However, whereas it is possible to 
show exactly which collections of ESSs are attainable (not just collections of 
supports) when there are 2-strategies and n-players, this is very difficult t o  
do for three strategies even for the 3-player case. Since for four or more 
players there can be more than one ESS per support, the notion of a 
pattern loses its attraction; however, for three players it is still useful. We 
shall consider which patterns are attainable for the general 3-player, 
3-strategy case before considering some special cases. 

The payoff to each member of a competing group is, from now on, 
assumed to be the same. They share the spoils equally. For a 2-player game, 
this results in a symmetric matrix. The adjective super-symmetric is descrip- 
tive of the situation that we have in mind. It follows that the payoffs are 
aijk, where each of i , j  and k is 1, 2 or 3, and that the value of aij k is 
unchanged by a permutation of its subscripts. Thus, for example, all 2 is the 
payoff to each member of a group of three players, two of which are playing 
strategy 1 and the third playing strategy 2. 

A biological situation in which an equal division of the payoff may be 
appropriate is provided by a group of male frogs which are calling to attract 
mates. An individual might "cheat" by not calling but under favourable 
circumstances the payoff to that individual is primarily determined by the 
total number of callers. Also if a hunting animal joins a pack then its payoff 
is mainly determined by the success of the pack. 

Consider a 3-player 3-strategy game with a population playing strategy 
p ~ ~3. The mean fitness of the population is W, where 

3 3 3 
W= E E E aiykPiP:Pk �9 

k=l j= l  i=1 

The mean fitness is thus a homogeneous, cubic polynomial defined on the 
unit simplex, which here is a triangle (see Edwards (1977) for a discussion 
of the use of homogeneous coordinates in genetics). Also, 

g [ e l ; p  2] ~ - - g [ e l ; ( p l e  1-['-p2e2nt-p3e3 )2] 

3 3 

}7- E[%;ei,e:]piP: 
j = l i = l  
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3 3 

= E E alijPiPj 
j= l  i=1 

1 0 W  

3 0 p l '  

where  e I is the unit  vector corresponding to the pure  strategy of always 
playing opt ion 1, S 1. For  an n-player, m-strategy game the general  result is 

E e . _ n  1 [ / ,~  - ] - -  
1 0 W  

n cgpi 
( l ~ < i ~ < m ) .  

In this case p ~ ~m and W is homogeneous  of degree n. 
Re turn ing  to the case m = n = 3, each pure  strategy, Si, corresponds to a 

vertex of the triangle of reference,  which we choose to be equilateral  and of 
unit  height. The  mixed strategy with P=(Pl,Pe,  P3) is a point  of this 
triangle whose perpendicular  distance f rom the edge opposi te  the vertex 
labelled i is Pi. There  is a 1-1 cor respondence  be tween points of the 
triangle and possible strategies which the popula t ion  could play. The  m e a n  
fitness of a popula t ion  playing a part icular  strategy is the value of W at the 
point  represent ing that  strategy. 

If p* is an ESS then  

Thus,  

E [ p * ; p  n-1 ] > E [ p ; ~  n- l ]  V ~ = ( 1 -  e )p*  + e p  

(p 4: p* and e small and positive). 

-~ i l  OW f, 1 3W ,, 3W 
n P~-~Pi > - E P i - - z - -  =~ E ( P * - P i ) - ~ p  i > 0 ,  . n i aPi [~ i 

f rom which it follows that  W has a (local) max imum at p*. Thus  ESSs are 
represented  by local maxima within the bounds  of the triangle. 

5.1. Attainable patterns for the 3-player case. T h e o r e m  3.1 shows that  for 
three  players it is not  possible to have two ESSs with the same support .  
Also, in section 4 it was shown that  it is not  possible to have two pure  ESSs 
as well as an internal  ESS for the 2-strategy, 3-player case. If a pa t te rn  
(with union  V, [VI = N )  is at tainable as a set of ESSs on n > N strategies, 
then  it is also attainable as a set of ESSs on N strategies. Thus  the pa t te rn  
(1, 2) (1) (2), which is not  attainable for two strategies, is not  attainable for 
three  strategies and nei ther  is any pa t te rn  which contains this set of 
supports.  Of  the 2 7 pat terns  ( there are seven non-empty  supports  each of 
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which  m a y  or  m a y  not  be in the  pa t te rn)  the re  are  only 40 pe rmuta t iona l ly  
distinct ones,  and  this res t r ic t ion implies that  12 o f  these  are  unat ta inable .  

T h e  at tainabil i ty of  the  40 pe rmuta t iona l ly  distinct pa t te rns  is given in 
Table  1, t oge the r  with how to cons t ruc t  t h e m  if they  are  at tainable.  A 
pa t t e rn  is label led "specia l"  if it a t ta inable  by a g a m e  with the  fo rm 

al l  1 = a222 = a33 = 0 and  aij k = _+ 1 o therwise .  

The  table shows that  no  fewer  than  17 o f  the  pa t te rns  are  a t ta inable  by 
games  of  this type. Such mat r ices  were  cons ide red  for  the  2-player  case in 
Cannings  and  Vickers  (1988) as the  resul t  of  a mapp ing  of  the  ESSs to the  
cliques o f  a re la ted  graph.  T h e r e  are  32 such pe rmuta t iona l ly  distinct sets 
of  p a r a m e t e r s  and  they  are  listed in Table  2 toge the r  with thei r  pa t tern .  
The  cor respond ing  fitness surfaces are  shown in Fig. 1. These  d iagrams will 
be discussed fu r the r  in the  next  sect ion w h e n  evolut ion is cons idered .  

If  a pa t t e rn  is a t ta inable  on  a set of  s trategies  it is cer ta inly a t ta inable  
upon  any  superse t  o f  that  set. Hence ,  since we know that  (1); (1) (2); (1, 2); 
(1), (1, 2); are  a t ta inable  for  two strategies,  they  are  for  three ,  giving four  
m o r e  pat terns .  Such a pa t t e rn  is labeled " subspace"  in Table  1. This leaves 
seven to be decided.  F o u r  pa t te rns  were  found  using c o m p u t e r  " tr ial  and  
e r ro r "  and  are  label led " e x a m p l e "  in Table  1. The  pa t t e rn  (1,2) (1,3) (2) 
(3) + I was found  by cons t ruc t ion  ( the  space w h e r e  this pa t t e rn  exists is so 
small that  the  r a n d o m  search fai led to find it). 

Table 1. The complete list of 40 patterns for 3-player, 3-strategy, super-symmetric games 
and their attainability. An interior ESS, i.e. one with support (1, 2, 3), is denoted by I. 

Pattern Attainability Pattern Attainability 

(1) subspace (1) + I special 
(1) (2) subspace (1) (2) + I special 
(1) (2) (3) special (1) (2) (3) + I special 
(1, 2) subspace (1, 2) + I special 
(1, 2) (1) subspace (1, 2) (1) + I special 
(1, 2) (3) special (1, 2) (3) + I example (a) 
(1, 2) (I) (2) unattainable (1, 2) (1) (2) + I unattainable 
(1, 2) (1) (3) special (1, 2) (1) (3) + I example (b) 
(1, 2) (1) (2) (3) unattainable (1, 2) (1) (2) (3) + I unattainable 
(1, 2) (1, 3) special (1, 2) (1, 3) + I example (c) 
(1, 2) (1, 3) (1) special (1, 2) (1, 3) (1) + I special 
(1, 2) (1, 3) (2) special (1, 2) (1, 3) (2) + I example (d) 
(1, 2) (1, 3) (1) (2) unattainable (1, 2) (1, 3) (1) (2) + I unattainable 
(1, 2) (1, 3) (2) (3) special (1, 2) (1, 3) (2) (3) + I example (e) 
(1, 2) (1, 3) (1) (2) (3) unattainable (1, 2) (1, 3) (1) (2) (3) + I unattainable 
(1, 2) (1, 3) (2, 3) special (1, 2) (1, 3) (2, 3) + I special 
(1, 2) (1, 3) (2, 3) (1) special (1, 2) (1, 3) (2, 3) (1) + I unknown 
(1, 2) (1, 3) (2, 3) (1) (2) unattainable (1, 2) (1, 3) (2, 3) (1) (2) + I unattainable 
(1, 2) (1, 3) (2, 3) (1) (2) (3) unattainable (1, 2) (1, 3) (2, 3) (1) (2) (3) + I unattainable 
~b unattainable I special 
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Tab le  2. T h e  32 cases  for  t h e  spec ia l  class o f  s u p e r - s y m m e t r i c  g a m e s  a n d  the i r  pa t t e rns .  
T h e  cod ing  c o r r e s p o n d s  to  Fig.  1; + ind ica t ing  tha t  t h e  ma t r ix  is as in t h e  f igure  

and  - t ha t  all s igns a re  changed .  

a l l  2 a l l  3 a221 a223 a331 a332 a123 Pattern Figure code 

- 1 - 1 1 - 1 1 1 1 (1) ,  (1 ,  2)  (1 ,  2, 3)  l ( a )  + 
1 1 - 1 1 - 1 - 1 - 1 (3) (1, 3) (2, 3) (1, 2, 3) l ( a )  - 

- 1 - 1 - 1 - 1 - 1 - 1 1 (1 )  ( 2 )  (3 )  (1,  2, 3)  l ( b )  + 
1 1 1 1 1 1 - 1 (1, 2) (1, 3) (2, 3) l (b )  - 

- 1 1 1 - 1 - 1 1 1 (1,  2)  (1 ,  3)  (2 ,  3)  (1,  2, 3)  l ( c )  + 
1 - 1 - 1 1 1 - 1 - 1 (1, 2) (1, 3) (2, 3) 1(c) - 
1 1 - 1  - 1  - 1  - 1  1 ( 2 ) ( 3 ) ( 1 , 2 , 3 )  l ( d ) +  

- 1  - 1  1 1 1 1 - 1  ( 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 2 , 3 )  1 ( d ) -  
- 1  - 1  1 1 1 1 1 (1) (1 ,2 ,3 )  l ( e ) +  

1 1 - 1 - 1 - 1 - 1 - 1 (2) (3) (1, 2) (1, 3) l ( e )  - 
- 1 1 1 1 1 1 1 (1 ,  3)  (1 ,  2,  3)  l ( f )  + 

1 - 1 - 1 - 1 - 1 - 1 - 1 (2) (3) (1, 2) l ( f )  - 
1 - 1 - 1 - 1 - 1 1 1 (2) (1, 2) (2, 3) l (g)  + 

- 1 1 1 1 1 - 1 - 1 (1,  3)  (1 ,  2, 3)  l ( g )  - 
- 1 1 1 1 1 - 1 1 (1,  3)  (1 ,  2, 3)  l ( h )  + 

1 - 1 - 1 - 1 - 1 1 - 1 (2) (1, 2) (2, 3) l (h )  - 
1 - 1 - 1 - 1 - 1 - 1 1 (2) (3) (1, 2) l ( i )  + 

- 1 1 1 1 1 1 - 1 (1 ,  3)  (2 ,  3)  l ( i )  - 
1 - 1 - 1 - 1 1 - 1 1 (2) (1, 2) (1, 3) l ( j )  + 

- 1  1 1 1 - 1  1 - 1  ( 1 , 3 ) ( 2 , 3 )  l q ) -  
1 - 1  1 - 1  - 1  - 1  1 ( 3 ) ( 1 , 2 )  l ( k ) +  

- 1 1 - 1 1 1 1 - 1 ( 1 , 3 )  (2 ,  3)  l ( k )  - 
- 1  1 - 1  1 - 1  1 1 ( 1 , 3 ) ( 2 , 3 )  1(1)+ 

1 - 1 1 - 1 1 - 1 - 1 (1 ,2)  (1, 3) 1(1) - 
- 1 - 1 - 1 1 1 1 1 (1 )  (2 ,  3)  l ( m )  + 

1 1 1 - 1 - 1 - 1 - 1 (3) (1, 2) (1, 3) l ( m )  - 
- 1 1 - 1 1 1 1 1 (1,  3)  (2 ,  3)  l ( n )  + 

1 - 1 1 - 1 - 1 - 1 - 1 (3) (1, 2) l (n )  - 
- 1 1 1 1 - 1 1 1 (1,  3)  (2,  3)  1 ( o )  + 

1 - 1 - 1 - 1 1 - 1 - 1 (2) (1, 2) (1, 3) 1(o) - 
1 1 1 1 1 1 1 (1, 2, 3) l (p )  + 

- 1 - 1 - 1 - 1 - 1 - 1 - 1 (1 )  (2 )  (3 )  l ( p )  - 

It is impossible to have no ESS in the super-symmetric case since the 
point in the triangle with the maximum payoff is an ESS (except for 
degenerate cases where there is an infinite number of points which achieve 
the maximum). However, this pattern is attainable in general 3-player, 
3-strategy games. 

The attainability of one pattern, viz. (1, 2) (1, 3) (2, 3) (1) + I, is unknown. 

5.2. Dynamics. The previous sections of this paper have dealt with 
multi-player games in a static sense. We shall now consider these games 
dynamically, modelling the way the strategy mix in the population changes 
through time with the assumption that only pure strategies exist. There are 
two types of dynamic, the discrete dynamic and the continuous dynamic. 
The discrete dynamic models the frequency of each pure strategy in the 



944 M. BROOM et al. 

~ \ ' ~  "".  e l 2 3  �9 I 0 0 0  

(b) 

i ! . . . .  

(c) (d) 

Figure 1. The  fitness and dynamics of  the 16 permutationally distinct cases with 
al l  I = a222 = a333 = 0 and aij  k = +_ 1 otherwise. The  bold triangle is the triangle 
of reference. The  thin, continuous curves are the contours of  mean fitness, the 
thin dot ted lines are the special contours through the equilibrium points and 
the thin dashed (straight) line is an asymptote of  the contours. The thick dot ted 
lines are the out  sets of  the saddle points and the thick dashed lines are the in 
sets. Nodes (other than vertices) are starred. Every ESS is a node and a node is 
an ESS of  A or - A .  The  in sets and out  sets delineate the basins of  attraction. 

population in successive generations. The continuous dynamic models the 
same process but now time is a continuous variable. This latter model 
corresponds to overlapping generations. 

The discrete dynamic relates the current strategy p to that in the next 
generation, p', by the equation (for an n-player, m-strategy game) 

(E[ei;pn-l] +C ) 
P~=Pi E[p;p,,_l] + C  (l~<i~<m), 
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- -  a l l 2  �9 - I . 0 0 0 ~  
a l l 3  * - I . 0 0 0 ~  
a221 * 1 . 0 0 0 - -  
e 2 2 3  * 1 . 0 0 0 ~  

" " " - " " " " " - A  " " " . . . . . . . . . . . . .  a331 �9 1 . 0 0 0  ~ 
- - "  / ? k  * * 3 3 2  * 1 . 0 0 0 - -  

u 1 2 3  * 1 . 0 0 0  ~ 

, :~ : o~176 f 

(e) 
\ / 

(f) 

(g) (h) 
Figure 1. (Continued). 

or, equivalently, 

P~=Pi n Opi + C  ( W + C )  ( l ~ i ~ < m ) .  

The constant C is needed to ensure that all of the new frequencies are 
positive, or, more biologically, to ensure that the fitness of every individual 
is non-negative. Baum and Eagon (1967) show that, for a set of recurrence 
equations of this form, the mean fitness, IV, increases monotonically. Now 
the continuous dynamic is given by the following system of differential 
equations, 

dPi - P i  W , (1 ~ i  ~<m), 
dt n Opi 
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i i; ...... 

(k) (I) 

F i g u r e  1. (Continued). 

and he re  also W increases monotonical ly.  Thus  there  is no  qualitative 
difference be tween the two types of dynamics. In each case the system will 
converge to a max imum of W, which corresponds  to an ESS. Note  that  if a 
constant  is added  to every e lement  of a payoff  matrix, the ESSs are 
unchanged.  Unusually,  here  the discrete dynamic also does not  change the 
stability of equil ibrium points. Evolut ion happens  more  slowly the larger 
the constant  added  to all the terms, as the constant  tends to infinity the 
discrete dynamic tends to the cont inuous  dynamic  (whose behaviour  is 
unaffected by the addi t ion of a constant).  Only the cont inuous  dynamic will 
be explicitly considered here  and fu r the rmore  we mainly consider  the 
special games in which 

alH = a222 = a333 = 0 and ai.ik = + 1 otherwise.  
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Figure 1. (Continued). 

The corresponding problems for the 2-player, 3-strategy situation are to 
have 

(i) A = + 1 0 1 or  ( i i )  A = _+ 0 . 

- 1  1 0 1 

In case (i) the trajectories are given by 

( P l - P 3 ) 3 - p z ( P Z - P  2) + 2plP2p31n(pl/P3) =CplP2P3, 

where C is any constant. Taking the positive sign for A, there are two ESSs 
(1/2, 1/2,0) and (0, 1 /2 ,1 /2 )  whose basins of attraction are separated by 
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the line pl=p3. For the negative sign, the ESSs are now (0,1,0), 
(1/2,0,  1/2) and they are separated by 

(p, -p3 )3 -pa(pZ-p  2) + 2plpzP31n(pl/p3 ) = 0 .  

In case (ii) the trajectories are curves of the form 

3 Od i 3 

Y'. - -  = 0 where Y'. a i 
i = l P l  i 1 

= 0 .  

The positive sign for A gives the unique ESS ( 1 / 3 , 1 / 3 , 1 / 3 )  and the 
negative sign gives the three pure strategies as ESSs, their basins of 
attraction being separated by the lines P2 =P3, Pl =P3 and Pl =P2. We 
see that even in this very special case the analytic solutions are not 
particularly simple. Indeed, we were unable to persuade Maple to provide 
any solutions to the first case. Not surprisingly, therefore, in the following 
presentation of the solutions for the 3-player case, we concentrate upon the 
qualitative behaviour. 

Figure 1 shows the contours of the mean fitness for each of the special 
games and also the basins of attraction of each of the ESSs (for the 
continuous dYnamic). The boundaries of these basins are the in and out 
sets of the unstable equilibrium points (saddles). All nodes (other than 
those which happen to be pure strategies) are marked by a star. An ESS is 
always a node and a node is always an ESS for either A or - A .  Each of the 
16 diagrams gives two patterns since each gives information for both A and 
- A .  The last column in Table 2 indicates which of the 16 diagrams is 
involved and also whether the pattern refers to A (shown by +)  or - A  
(shown by - ) .  There are 17 different patterns including some with four 
ESSs (e.g. Fig. l(a) with - A  and l(b) with A) thus these very special payoffs 
cover a wide range of possibilities (though not as great a proportion as the 
equivalent special case for two players, where all attainable 3-strategy 
patterns and all but one attainable 4-strategy patterns are achieved by such 
matrices). Fig. l(a) demonstrates clearly how Bishop-Cannings is violated 
for 3-player games (in total 18 out of the 32 cases violate Bishop-Cannings). 

Some of the diagrams have several ESSs but with one of them having a 
very large basin of attraction, so that it is likely that this will be the ESS 
that the population tends to, e.g. Fig. 1(c) with - A ,  although if pure 
strategies are introduced sequentially and the population allowed to settle 
to an ESS each time, then it is possible to reach any of the ESSs (by 
suitably ordering the introduction of the strategies). In Figs. l(b) and 1(c) 
(each with -A) ,  a sequential introduction would prevent the population 
reaching the mixed ESS even though it has the largest basin of attraction. 
Note that for symmetric, 2-player games it is always possible to reach an 
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ESS if the strategies are introduced in a particular order. A complete 
discussion of this is to be found in Cannings, Tyrer and Vickers (1993). 

Figure 2 shows the trajectories for the five examples referred to in Ta- 
ble 1. These provide patterns which are not attainable by the special 
payoffs considered in Fig. 1. Finally, Fig. 3 shows a set of payoffs which give 
another result which is not possible for the case of two players. For 
symmetric matrices (equivalent to the genetic problem of multiple alleles at 
one locus) if new alleles-strategies are introduced into the population 
sequentially and the population allowed to converge to an ESS between 
each introduction, then if a new allele-strategy invades the current ESS it 
must feature in the support of the new ESS (see Vickers and Cannings 
1988b). This is not true for the game in Fig. 3. If we start with the strategy 1 

/ # / ~  ' ~  :',~T; ' o= \  

J ./ ;  

(a) 

mill 0.~40 

/ / / / / / ~  :~; o~ :,~o 
t531 0.650 '~'~'~ / / / / / / ~  . , 3 2  o.o= 

/ / / / /  / / \ :',~T: ~ 
.~22 - 0.1(30 

..: 
-5 

(b) 

(c) 

o0:0~.,.'" 
0, 7 0 O /  
O. 300 

(d) 
Figure 2. The fitness and dynamics of 5 patterns which are not attainable by the 
special payoffs of Fig. 1. The coding of the lines is the same as in Fig. 1. They 
are in alphabetical order as shown in Table 1. 
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�9 . " ID I l l  = 0 I ~  
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�9 ," ' ,  Q335  �9 O .  O ~  

( e )  

Figure 2. (Cont inued) .  

and then introduce strategy 2 the population converges to a mixture of the 
two strategies. If now the third strategy is introduced then the population 
follows the out set of the equilibrium point indicated in Fig. 3 and 
converges to the pure ESS, strategy 2. Thus the first strategy is eliminated 
by the introduction of the third, but this third strategy does not feature in 
the final population, i.e. it acts as a catalyst. 

Figure 3. This demonstrates that even though a new strategy may be able to 
invade what was an ESS, it need not be represented in the final ESS. Specifi- 
cally, strategy 3 can invade (1, 2) but the outcome is (2). 
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6. Conclusion. Multi-player games are common and were much observed 
in field studies. One type of example is provided by leks. Males group 
together and females visit the lek solely for mating, the males providing no 
parental care. Clutton-Brock et al. (1988) lists 7 species of mammal and 
Oring (1982) 35 species of bird in which lekking occurs. The strategy of a 
male involves deciding when to arrive at the lek, how long to remain and 
how much energy to expend in displaying. Communal nests are another 
example. Female ostriches and also female groove billed anis (Krebs and 
Davies 1981) have communal nests (although the details are quite different). 
It is the timing of the egg laying which is particularly important. 

In this paper we are not attempting to model any specific biological 
situation. Rather a framework is presented which is sufficiently flexible to 
cover many real-world problems. Our aims have been to show multi-players 
games can be modelled and to demonstrate that the structure of the 
solutions (even in the special, super-symmetric contests) is considerably 
more complicated than that for classical, 2-player games. Even for 3-player, 
3-strategy matrix games (with the super-symmetry condition) there are new 
features: 

(i) the support of one ESS may be contained in another, 
(ii) there are restrictions on the patterns attainable, for example, {(1), 

(1, 2), (2)} is impossible, 
(iii) if a new strategy appears (through mutation, perhaps) which can 

invade, then it may cause the system to move to a new ESS in which 
it does not feature, 

(iv) an ESS (with a large basin of attraction) need not be attainable by a 
sequential introduction of strategies. 

With 4-player games, there may even be ESSs with identical supports. One 
of the fundamental problems of applying game theory to economic models 
is that of deciding which of several equilibria (often Nash equilibria) is the 
"best." This is the problem addressed by Harsanyi and Selten (1988). The 
same problem was studied in the biological context, mainly by way of 
travelling waves, but perhaps it has not received the attention that it 
deserves. It is clear that as the study of multi-player, multi-strategy games 
progresses, it will be a serious challenge to relate theory and observation. 

M.B. is grateful for support from BBSRC grant GR/J31520. 
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