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Birds arrive sequentially at their breeding ground where the nest sites vary in value (measured by
reproductive success). Each bird must either choose a vacant site or challenge an occupier for its site.
In the latter case we assume the occupier to be the more likely winner. The loser of the contest incurs
a cost and must go to a vacant site. The rational strategy for such a contest is found. There is a threshold
phenomenon; early arrivals occupy vacant sites, late arrivals fight. This result is intuitively reasonable,
but the sequence of sites chosen is complex. A recursive method for specifying the solution is described
and applied explicitly to some illustrative cases.
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1. Introduction

Game theory has proved to be a valuable tool for
analysing and understanding conflicts in nature,
providing a mechanism for understanding the
behaviours observed in intra-species conflicts. Most
models of such conflicts have considered only
pair-wise conflicts. Here we deal with an n-player
game, appropriate as a model for the arrival of a
population of birds at a nesting area, or of males at
a lek. The birds arrive sequentially and must either
occupy a vacant site or challenge for one which is
already occupied. The aim is to predict how birds
should behave and in particular to determine when it
is best to challenge and, if it is, then to determine
which site should be contested. This is an initial
attempt to model such situations which we believe
gives some insights and raises some issues of interest.

It is not uncommon among birds for large numbers
to nest close together. For example there may be
thousands of kittiwakes nesting on a sea-cliff. At the
beginning of a nesting season birds (or more properly
breeding pairs) have to establish themselves on a nest

site. These sites will not all have the same value (as
measured by the expected number of offspring)
because of access by predators, the degree of shelter,
inherent suitability etc. The birds must decide whether
to occupy a free site or contest for an already
occupied one. From the species point of view, the best
strategy would be for the birds to fill the sites in an
orderly fashion without any disputes. However,
selection operates at the individual (or gene copy)
level and it is to be expected that behaviour which is
beneficial for the individual will become prevalent in
the population. Thus, the behaviour which evolves
should be approximately the same as would occur if
the birds could analyse the situation logically and find
the strategy which maximises their pay-off on the
assumption that all birds arriving later will also do the
best for themselves. The resulting strategy will be
referred to as the rational one.

If a bird challenges for a site then it is supposed that
the loser of the contest suffers a cost (which may be
an injury or depletion of energy) and has to depart,
and to settle a vacant site. We have chosen to set the
model up with certain restrictions on the parameters,
assuming for example that the probability of an
occupier defeating a challenge is constant, rather than§Author to whom correspondence should be addressed.
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dependent on the owner’s history and the value of the
site. Moreover, we shall, in the main, only consider
the case where the challenger has a probability less
than one-half of winning, a situation we refer to as
‘‘occupier-advantage’’. This case will be substantially
different from the case where there is occupier-
disadvantage (as we shall see below if there are only
two sites then with owner-advantage the first bird to
arrive must settle on the better site, but with
owner-disadvantage the first bird may settle the
poorer site). The loser of a contest is faced with the
same situation (in terms of occupied nest sites) as the
bird that has just challenged had faced prior to its
challenge, but because of its recent defeat we suppose
that it must go to a vacant site. Having reached a site
it (or the pair) recover and can fight off any
subsequent challenge as successfully as any other
occupier. In the analysis later it will be assumed that
the probability of a challenge being successful is
always the same and is dependent upon neither the
quality of the site nor the past experiences of the
occupiers. However, in the model formulation any
functional form for the probability could be
incorporated. Likewise the model allows for variation
in the cost of injury (perhaps because birds are
prepared to risk more for the better sites) but this will
not be used in the examples. The constancy of the
probability of winning may be partly justified by the
consideration that both challenger and occupier may
contest more vigorously for a better site so that the
question of who wins is not seriously affected by site
value. The most important factor in deciding the
outcome of a challenge is which birds are the
occupiers. We are in the process of applying similar
modelling considerations to the establishment of
hierarchies and there it is certainly necessary to take
the history of the contestants into account but here
the effect is less important. Our aim is to analyse as
simple a model as possible which retains the essential
features of the situation. It will be seen that even for
this (perhaps naive) model the solution is surprisingly
complex and it is quite plausible that the rational
strategy might not actually evolve in its complex
form. We shall return to this point in a later paper
where simpler strategies will be considered.

There has been much work on ESSs and two-player
conflicts, starting with the classic paper by Maynard
Smith & Price (1973). The idea has been extended and
applied to a wide variety of situations (e.g. Bishop &
Cannings, 1976; Haigh, 1975; Vickers & Cannings,
1988), and there are excellent treatments in Maynard
Smith (1982); Hofbauer & Sigmond (1988) and
Cressman (1992). However, little work has been done
in the field of multi-player games in the evolutionary

context. Haigh & Cannings (1989) consider the
n-player war of attrition, Cannings & Whittaker
(1994) consider a finite horizon war of attrition with
sequential conflicts, and Sjerps & Haccou (1994)
apply the War of Attrition to patch-leaving decision
making. In general it is easy to extend the concepts
used in two player games to n players although the
mathematics involved in comparing and evaluating
strategies is more difficult.

In Section 2 we shall describe the model in detail
and in Section 3 demonstrate the existence of a unique
rational strategy, show how this may be calculated (in
Section 4), and how the actual plays required in a
population of such players can be derived in a simple
fashion. It will be shown that, when there is
occupier-advantage, there always exists a k such that
if a bird is among the first k birds to arrive then it
occupies a free site and if it arrives later it challenges
for an occupied site. This is a very natural threshold
result but the complexity of the solution lies in the
specification of which site should be taken or
contested, and, if there is a contest, specifying the
destination of the loser. We include in Section 5 some
examples of the rational strategy for different sets of
parameters of the model. These are simple cases with
a small number of sites designed to show some
interesting features of the solution. Section 6 derives
expressions for the number of possible alternate
strategies. In an attempt to consider cases where there
are a large number of sites we examine (Section 7) the
case where the number of sites tends to infinity and
additionally (in Section 8) where the values of the sites
decrease in a linear fashion. In particular we
determine conditions under which the maximum
number of challenges occuring upon any single site,
takes various small values.

2. The Model

Suppose that a set of n birds (or breeding pairs)
B1, . . ., Bn arrive sequentially at a nesting area which
has n nest sites S1, . . ., Sn. The value of the site Si is
Vi(r0) for the bird occupying that site at the end of
the process, i.e. when all birds are settled on a site,
where the sites have been ordered so that Vi rVj if
iQ j. (If there are more sites than birds we can ignore
the worst sites and if there are more birds than sites
we can create phantom sites with values zero).

When a bird arrives it may choose to go to any
vacant site or to challenge the resident of any
occupied site. A challenge is a contest of the following
form:

the challenger wins with probability pR 0.5,
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otherwise the occupier wins. The winner
becomes the occupier of the contested site, the
loser pays a cost C, C positive, (receives a
pay-off of −C) and must retreat to an
unoccupied site of its choice.

The values p and C are taken to be constant for all
sites for the sake of simplicity (although they might
depend in reality upon many factors; the method of
deriving the rational strategy below would not be
affected). However, this model retains the most
important feature choose a free site or fight and is
amenable to analysis.

Note that we assume that the choice made by a
loser does not depend on whether it had just arrived
and challenged unsuccessfully or just been displaced.
Indeed we suppose that decisions are only ever based
on which sites are currently occupied, and not on any
aspect of the specific history of any of the birds, e.g.
how many times they have previously been displaced.

Only when a bird arrives may it make a challenge.
Birds must remain at a site unless challenged and
defeated by a later arrival. It is possible to extend the
model to one where the loser of a challenge is
permitted to challenge at another site, although we do
not consider this case here. In the class of models
considered here, where an arriving bird’s strategy
depends only on the set of sites occupied (and of
course the site values and the probability of a
challenge being successful) and not on the history of
the process, the number of allowable challenges by
each bird would have to be finite, or probabalistic. If
this were not the case then the displaced bird would
find itself in an identical position to the most recent
arrival and there would follow an infinite sequence of
challenges upon the same site (each of the birds
receiving infinite cost) and so it would never be
sensible to challenge. Since the loser of a contest
incurs a cost, perhaps in the form of an injury or loss
of energy, it is not unreasonable to assume, as here,
that it would avoid another immediate contest.

The contest finishes after the final bird has arrived,
made its choice of action and any subsequent contest
is resolved. The pay-off to a bird is the value of the
site it occupies at the end of the contest minus any
penalties it has received for losing challenges.

3. The Rational and the Best Strategy

We seek to investigate the strategy birds might
employ. A strategy must specify precisely the
behaviour of an individual in every possible situation.
When a bird arrives the situation faced is defined
exactly (assuming costs and site values are known) by

the specification of X, the set of sites which are
occupied (and not by the history of the process). A
strategy is thus a specification of the behaviour to be
used for each X. In our model it is clear that there is
no need to consider probablistic strategies, since each
decision is made by a single bird, and all decisions are
open and unambiguous.

We suppose that the reproductive success of a bird
is the value of the site that the bird finally occupies
minus any costs which are incurred when the bird
loses contests. The reproductive success of a strategy
is then taken to be the expected success of a bird
which adopts that strategy, expectation being taken
with respect both to all the possible outcomes of the
fights (should they occur) and to the possible position
of the bird in the order of arrival. Actions should be
based on the expected future pay-off, and a bird
should choose to behave so as to maximize its own
expected future pay-off. There is, of course, a major
biological problem here. How much information can
a bird have about the behaviour of subsequent
arrivals, and how much can it process? In fact we do
not envision the problem in quite this way. Birds are
programmed to adopt certain strategies depending on
some set of cues, but strategies which are evolutionar-
ily successful must mimic the one(s) which match that
(those) which would be rationally deduced if all
relevant information were available, assuming that
the genetic system is capable of coding for this (and
that the costs involved in such coding does not alter
the pay-off structure too much). Thus, in deducing
rational and best strategies, we are not implying that
the birds can carry out an approximation to the
calculations of this paper, but that evolution will
programme them to behave in that manner. Of course
the accuracy of the birds’ perception, of the quality of
sites and of the number of birds likely to arrive at that
area, will affect the nature of the final strategy
produced by natural selection. Here we assume that
the birds know with complete accuracy the par-
ameters of the problem, and the sites occupied when
they arrive.

The issue of what strategies might be available to
the birds and how a population of such birds might
evolve is discussed further in Broom et al. (1996a, b).

We now derive what we shall call the rational
strategy, a unique strategy which is a Nash
equilibrium (i.e. any bird which unilaterally deviates
in a population playing the ‘‘rational’’ strategy will
receive a pay-off which is no larger than it would have
received had it not deviated). One needs to be careful
in interpreting what is meant by a Nash equilibrium
in this context. We shall consider a population of
birds with a large (effectively infinite) set of available
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breeding areas. On each breeding area there are n sites
and so the conflict which occurs on each area
constitutes an n-player game. A Nash equilibrium, U,
then corresponds to the first condition required for an
evolutionarily stable strategy, i.e. that no alternative
strategy does better when playing against (n−1)
U-players than U does against (n−1) U-players
(Haigh & Cannings, 1989).

In order to derive this strategy, we introduce the
notion of a rational individual (hinted at above). An
individual is said to be rational, and to adopt a
rational strategy if, given that sites X are occupied
when it arrives, it chooses the behaviour (from the
permitted repertoire) which maximises its expected
future pay-off under the assumption that all
subsequent arrivals will also act rationally. Note that
such a strategy is well defined since the final bird has
no subsequent arrivals to consider, and so can easily
determine its rational behaviour, and once this choice
is known for all possible X with one free site, the
penultimate bird can determine its choice, and so on.
Note also that the term rational is rather restrictive,
since it presupposes subsequent birds act rationally,
although not preceeding ones. We assert, however,
that our definition of rational is appropriate in the
evolutionary context precisely because this kind of
rationality will be imposed by natural selection. We
should note that we will formally derive the rational
behaviour for every X even though we show that if all
the birds adopt the rational strategy then there is a
unique X appropriate at every stage, and a unique
decision for each of these X, except in certain
non-generic cases where two possible strategies have
the same expected future pay-off, as might happen if
two sites had equal value.

Having established that there is a unique rational
strategy we need to be careful how we interpret this
is the context of some population dynamic. As
pointed out above, when all the members of the
population adopt the rational strategy there is a
specific sequence of X and of decisions by arrivals.
This sequence is the behaviour which would be
observed for such a population and we term this the
best behaviour. Note that the best behaviour is not a
strategy. In fact there is a set of strategies which
match the best behaviour, one of which must be the
rational strategy. If all the birds in a population use
the best behaviour then that population is indistin-
guishable from any other such population. There
would be no necessary tendency for the rational
strategy to increase in frequency, indeed it might be
entirely absent. On the other hand, we might expect
that a population would be subject to frequent, albeit
small, perturbations and that there would therefore

be some pressure to select for the rational strategy,
and against other strategies with best behaviour.

3.1.   

Suppose S is the set of sites S1, S2, . . ., Sn ordered
in decreasing intrinsic value.

We define a triplet of functions f(X,u), F(X,(u,v))
and C(X,v)) where XWS in each case is, as above, the
set of occupied sites, u$X and v$S:X.

Let f(X,u)= expected future pay-off to the
individual occupying site u$X when all subsequent
behaviour is the rational.

F(X,(u,v))= expected future pay-off to an individ-
ual who on arrival finds X, challenges on u$X, the
loser going to v$S:X, when all subsequent behaviour
is rational.

C(X,v)= expected future pay-off to an individual
who on arrival finds X and occupies site v$S:X, when
all subsequent behaviour is rational.

Note the requirement that in each case subsequent
behaviour is required to be rational, though earlier
behaviour need not have been so. This requirement
applies not only to the behaviour of each subsequent
arrival, but also to any bird they might displace, even
if that bird had arrived before the requirement of
rationality was imposed (i.e. had arrived to find a set
of occupied sites which was a subset of X.

We now derive recurrence relations between the
above functions which will allow us to compute
f(X,u), F(X,(u,v)) and C(X,v) for all Xu$X,v$S:X,
and so enable the rational strategy to be found.
Suppose we have evaluated f(Z,u) for all u$Z,ZWS
and =Z=r k then for all X where =X== k−1) we have

F(X,(u,v))= pf(XQ4v5,u)

+(1− p)[f](XQ4v5,v)−C]

where p is the probability that a challenger wins a
contest, u$X,v$S:X. We confine our analysis to the
case where p is a constant. This equation follows by
considering the fate of an individual who arrives to
find X and challenges on u; if it wins, which occurs
with probability p, then it occupies u, if it loses it
occupies v, thus giving r.h.s. of the equation. Note
that p could be made a function of X, u and v, both
here and below.

Now suppose that rX$X,sX$S:X and

F(X,(rX,sX))rF(X,(u,v))

for all u$X, v$S:X and equality only if (u,v)= (rX,sX),
i.e. if the bird is to challenge then it maximises its
pay-off by challenging on rX, and the loser goes to sX.
Note that if a challenge takes place then it must occur
on the site which has maximal expected pay-off after
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the challenge. We note that exceptionally either, or
both, of rX and sX may not be unique, in which case
we would choose some arbitrary rule to resolve the
ambiguity. For convenience we suppose that if a bird
is indifferent, on the basis of future expected pay-off,
between a challenge or settling a vacant site then it
does the latter. If at any stage it is indifferent between
challenging (settling) on two distinct sites then it
challenges (settles) on the one with higher intrinsic
value.

Further

C(X,v)=f(XQ4v5,v)

where v$S:X since the l.h.s. corresponds to a bird
going to an unoccupied site. Suppose tX$X is such that

C(X,tX)rC(X,v)

for all v$S:X with equality if, and only if, v= tX, i.e.
if the bird is to choose an unoccupied site then it
should choose tX (again ambiguities can be resolved
by an arbitrary rule).

Now consider the effect of the arrival of the
=X=+1’th bird on the pay-off of a bird occupying
u$X.

f(X,u)=

=p[f(XQ4sX5,sX)−C]+ (1− p)f(XQ4sX5,u)
if u= rX and F(X,(rX,sX))qC(X,tX);

=f(XQ4sX5,u)g
G

G

G

G

F

f

if u$ rX and F(X, (rX,sX))qC(X,tX);

=f(XQ4tX5,u)
if F (X,(rX,sX))RC(X,tX):

Now we assumed f(Z,u) was defined for all u$Z,
and =Z=r k, so that F(X,(u,v)) and C(X,v) are
defined for =X== k−1, and thus f(X,u) is also
defined for =X== k−1. Defining f(S,u)=Vu, that is
the expected future pay-off of u when all sites are
occupied is just the value of the site u, we have that
f, F, C are specified for all values of their arguments.

Note that for each X the rational behaviour of a
new arrival is defined, and so the rational strategy is
fully specified.

4. Finding the Rational Strategy

In the previous section we demonstrated how one
could find the rational strategy in any particular case.
Our aim in subsequent sections is to demonstrate that
one does not need to calculate every part of the
rational strategy, but can find the best behaviour
more economically. First we give an example of the
calculation of the rational strategy.

Example 1

Suppose that n=4, V1 =20, V2 =19, V3 =18 and
V4 =0, p=0.4 and C=0. We have
f(41,2,3,45,i)=Vi and first consider the rational
behaviour of a bird arriving to find sites 1, 2 and 3
occupied. Then,

C(41,2,35,4)=f(41,2,3,45,4)=0

i.e. reward is zero if the bird settles on the unoccupied
site S4. We examine the three values F(41,2,35,(i,4))
for i=1,2,3. For example

F(41,2,35,(1,4))

= pf(41,2,3,45,1)+ (1−p)(f(41,2,3,45,4)−C)

=8

while F(41,2,35,(2,4)) =7.6 and F(41,2,35,(3,4)) =
7.2. Thus, for X= 41,2,35,sX =4 necessarily, tX =4
necessarily while rX =1. Since,

F(41,2,35,(1,4))qC(41,2,35,4)

the bird challenges on S1 and the loser goes to the only
vacant site S4. We can now calculate the three values
f(41,2,35,i) for i=1,2,3. We have

f(41,2,35,i)=f(41,2,3,45,i) for i=2,3

since S2 and S3 are not affected by the behaviour of
the new arrival. Also

f(41,2,35,1)

= (1− p)f(41,2,3,45,1)+ p(f(41,2,3,45,4)−C)

=12.

Note that if the arrival is to challenge i.e. on rX and
the loser go to sX then since they must share the sites
and incur a cost C we have that

f(X,rX)=f(XQ4sX5,rX)+f(XQ4sX5,sX)

−F(X,(rX,sX))−C

and all the terms on the right are known.
For completeness we give in Table 1 f(X,u) for all

values, and the rational behaviour for each X.
Having evaluated all of the necessary functions,

one can now specify how a rational bird behaves in
any situation which will arise in a population of such
birds, i.e. the best behaviour. We have f(4u5,u)
evalulated for all u and so B1 can pick u to maximize
f(4u5,u), and then if the value of u chosen is u1 say
then B2 picks u to maximize f(4u1,u5,u), and so on.
In this example choosing u=3 maximizes f(4u5,u),
and so the first bird settles on S3. The next bird to
arrive has X= 435 and so challenges on S3 the loser
going to S2. The third bird has X= 42,35 and so
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T 1
The rational behaviour for the case C=0, p=0.4,

V1 =20, V2 =19, V3 =18, V0 =0
X u f Behaviour X u f Behaviour

41, 2, 3, 45 1 20.0 41, 25 1 12.0 CH S2

41, 2, 3, 45 2 19.0 41, 25 2 18.6 Oc S3

41, 2, 3, 45 3 18.0 41, 35 1 12.0
41, 2, 3, 45 4 0.0 41, 35 3 18.0 Oc S2

41, 2, 35 1 12.0 41, 45 1 19.12 Ch S1

41, 2, 35 2 19.0 Ch S1 41, 45 4 0.0 Lo S2

41, 2, 35 3 18.0 Lo S4 42, 35 2 16.2 Ch S2

41, 2, 45 1 19.2 42, 35 3 18.0 Lo S1

41, 2, 45 2 19.0 Ch S1 42, 45 2 19.0 Oc S1

41, 2, 45 4 0.0 Lo S3 42, 45 4 0.0

41, 3, 45 1 19.6 43, 45 3 18.0 Oc S1

41, 2, 45 3 18.0 Ch S1 43, 45 4 0.0
41, 3, 45 4 0.0 Lo S2 415 1 12.0 Oc S2

42, 3, 45 2 19.0 425 2 16.2 Oc S3

42, 3, 45 3 18.0 Oc S1 435 3 17.28 Ch S3

42, 3, 45 4 0.0 Lo S2

445 4 0.0 Oc S1

Key: Ch=challenge; Oc=Occupy; Lo=Loser.

site with the higher expected future pay-off (just V1

here).
We denote f(Zk,Si) by Vk

i for all Si$Zk, and by
V(k

( j)) the jth largest of these, and the corresponding
site by Sk

( j). The notation Sk
( j) will in fact be used both

to denote a site and the index of that site.
Our proof, which is inductive, proceeds in two

parts. We prove in Lemma 1, that if the theorem were
not true, so that the last site occupied were not the one
with the lowest expected future pay-off, then that site
would have been the last occupied one step earlier.
We can then, in the main proof, use this to
demonstrate a specific contradiction to the hypothesis
of the theorem. If the last site occupied at some time
is not that hypothesised in the theorem then that site
was occupied one step earlier, and we can
demonstrate that a superior behaviour would be to
reverse the order of occupation.

5.1.  1

For pR 0.5, if the most recently occupied site after
j arrivals is not Sj

( j) then Sj−1
( j−1) =Sj

( j).

5.1.1. Proof

When a new bird arrives, say the jth, and
challenges, the expected future pay-offs of those birds
not challenged remains unaltered. Thus, Vj−1

i =Vj
i for

unchallenged sites, while the bird challenged, the one
on Sj

(1) (see Section 3.1), has

Vj−1
Sj

(1)
= (1− p)Vj

(1) + p(Vj
m −C)

(note the use of Sk
( j) as an index in the equation

above) where Sm is the site to be occupied by the loser.
Since a challenge is only made when Vj

m Q pVj
(1) +

(1− p)(Vj
m −C) we have that

Vj
m Q pVj

(1) + (1− p)(Vj
m −C)R (1− p)Vj

(1)

+ p(Vj
m −C)=Vj−1

Sj
(1)

(recall pQ 0.5). Thus, a site which is challenged for by
the jth bird has a higher expected pay-off before the
challenge than the new site to be occupied i.e.
Vj−1

Sj
(1)

qVj
m. When the jth bird challenges and the new

site to be occupied is not the one with the smallest
expected future pay-off in Zj, then Vj−1

Sj
(1)

qVj
m q

Vj
( j) =Vj−1

Sj
( j )

. Since for i(41,m5Vj−1
Sj

i
=Vj

Sj
i
rVj

Sj
( j )

and
Vj−1

Sj
(1)

qVj−1
Sj

( j )
, the minimal value for Vj−1

u occurs for
u=Sj

( j). On the other hand if there is no challenge by
the jth bird we have Vj−1

i =Vj
i for all i$Zj−1 so a

similar result holds.

5.2.  1

When the population follows the rational strategy
and pR 0.5, the most recently occupied site after k

challenges on S3 the loser going to S2. The third bird
has X= 42,35 so challenges on S2 with the loser going
to S1. The final bird has X= 41,2,35 so challenges on
S1 with the loser necessarily going to S4.

More generally we find the best behaviour as
follows. Define ZiWS, for =1, . . ., n recursively;
Z0 =f (f is the empty set) and Zk =Zk−1Q4u5 where
u is such that f(Zk−1Q4v5,v) is maximized over
v$S:Zk−1 by v= u.

5. Finding the Best Behaviour

The previous section demonstrated how one can
find the rational strategy. However, when pR 0.5, it
is possible to shortcut some of the work if one only
wishes to find the best behaviour. In particular
Theorem 1 demonstrates that, when pR 0.5, given the
complete set of f(X,u)’s for given Zk, the set of sites
occupied after k birds have arrived if birds are
adopting best behaviour, one can infer which was the
last site to be occupied. Indeed it is the site with the
least expected future pay-off. Thus, if Zk−1 is defined,
one can then calculate the f(Zk−1,u)’s for this new set,
infer Zk−2, and so on. This enables one to find the best
behaviour while only evaluating the pay-offs for those
sets of sites which are actually occupied at each stage,
rather than, as in the example above, for all possible
sets of sites.

In the case where pq 0.5, the above scheme fails.
For example, if p=0.6, V1 =1, V2 =0, and C=1
then B1 settles on S2, and B2 settles on S1. Thus, after
both have settled the most recent arrival is on the
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arrivals, i.e. site Zk:Zk−1, has the lowest expected
future pay-offs amongst the sites of Zk.

5.2.1. Proof

The proof is by induction. Suppose all birds are
playing the rational strategy. The hypothesis of the
theorem is clearly true when k=1, there being only
one occupied site. Suppose it is true for all kR l.

Suppose that l+1 birds have settled and the set of
sites occupied is Zl+1, and thus the expected future
pay-offs are Vl+1

(i) for i=1, . . ., l+1. Suppose that
the most recently settled site is Sl+1

(r) . If r= l+1 then
there is no more to prove. Suppose that r$ l+1 then
Zl =Zl+1:{r5 and, by assumption, Zl:Zl−1, i.e. the site
settled last of the l, is Sl

(l). We proved in Lemma 1 that
Sl

(l) =Sl+1
(l+1).

Thus we have that, in the case where r$ l+1,
Sl

(l) =Sl+1
(l+1) and under the assumption that the

statement of the theorem holds for kR l we can infer
that Sl+1

(l+1) =Zl/Zl−1. We now compare the given Zl

and Zl+1 and the corresponding pay-offs with those
which would accrue if the order of the last two new
sites was reversed, i.e. if Zl−1 was unchanged, Sl+1

(r)

was chosen by the lth bird and Sl+1
(l+1) by the l+1th.

In this case if the l+1th bird goes to Sl+1
(l+1) without

a challenge, or there is a challenge to Sl+1
(1) but r$ 1,

then the expected future pay-off on Sl+1
(r) when the lth

bird arrives will be Vl+1
(r) which exceeds Vl

Sl+1
(l+1)

=Vl+1
(l+1).

Thus the lth bird to arrive should choose to occupy
Sl+1

(r) rather than Sl+1
(l+1), with or without a challenge.

On the otherhand if r=1 then the l+1th bird might
challenge on r but, as established above, a site on
which a challenge takes place has a higher expected
pay-off before the challenge than the site settled
subsequently. Thus, we have established that the lth
bird will do better by settling Sl+1

(r) than Sl+1
(l+1). Thus,

the assumption that r$ l+1 is not possible given
that the rational strategy has the specified Zj’s, and so
under the rational strategy the newly occupied site
after l+1 birds have arrived is precisely Sl+1

(l+1). The
theorem follows by induction on l.

We can now easily compute the best behaviour for
any given set of Vi’s, pR 0.5 and C. First we have that
when Bn arrives the vacant site must be Sn, so
Zn−1 = 41,2, . . .,n−15 and we can evaluate
f(Zn−1,u), infer which is the newly occupied site, and
so on.

5.3.  1 ()

For the example given earlier we begin with
Z4 = 41,2,3,45 for which the expected future pay-offs
are the original V4

i ’s 20, 19, 18 and 0. Thus, the last
site occupied is S4 so Z3 = 41,2,35. As calculated

earlier the fourth bird will challenge on S1 so V3
1 =12,

the V3
i ’s are 12, 19, and 18 for sites S1, S2 and S3

respectively, so S1 is the newly occupied one. Thus, we
infer that the third bird will challenge on S2, and a
similar process allows us to infer that the second bird
would challenge on S3, so the first bird settled on S3.

5.4.   

Theorem 1 allows a fairly straightforward calcu-
lation to determine the best strategy. It does still
require, however, that one decides at every stage
whether a challenge should occur or not. The
following theorem allows a simplification of this
process since it is demonstrated that if at some stage,
in the backward recursion, it is found that a bird
should settle an unoccupied site rather than challenge,
then all earlier birds should settle rather than
challenge. Thus, at this stage no further calculations
are required, and we infer that if we know Bj settles
rather than challenges and we have Vj

(i) then Bi settles
Sj

(i) for all iR j.

5.5.  2

For the best behaviour when pR 0.5, there exists a
threshold k s.t. the first k birds do not challenge and
afterwards all birds challenge.

5.5.1. Proof

It follows from Theorem 1 that if
Vi

(1) −Vi
(i) QC(1− p)/p, then Bi does not challenge

and so it goes to the best (future) free site Si
(i).

Otherwise it challenges Si
(1) and the loser of the

challenge goes to Si
(i).

The bird Bi challenges if Vi
(1) −Vi

(i) qC(1− p)/p. It
is clear that

(i) Vi
(1) is a non-decreasing function of i, since as

each bird arrives the only change in the
situation is that there will be one less challenge
in the future at one of the sites, so that the
future payoff cannot decrease,

and
(ii) Vi

(i) is a non-increasing function of i. We proved
in Lemma 1 that a site which is challenged for
by the jth bird has a higher pay-off before the
challenge than the new site, Sm to be occupied,
i.e. Vj−1

Sj
(1)

qVj
Sm, thus Vj−1

Sj
(1)

qVj
( j). For any other

occupied site Vj−1
Sj

(i )
=Vj

Sj
(i )
rVj

( j). We have
therefore that Vj

( j) RVj−1
j−1.

It follows that Vi
(1) −Vi

(i) is non-decreasing with i, so
that once it becomes larger than C(1− p)/p it remains
larger than it, i.e. the first such term is when i= k+1
and the theorem is proved.
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Note that when C=0 every bird after the first
should challenge. Our example above is of this type.

Define E[Bi] as the expected pay-off to the ith bird
to arrive. Then, if Bi does not challenge

E[Bi]=Vi
(i)

and if Bi does challenge

E[Bi]= pVi
(1) + (1− p)(Vi

(i) −C)

5.6. 

(a) Up to the threshold the pay-offs to the Bi are
non-increasing.

(b) If a challenged bird is involved in its first
contest, then its expected pay-off is greater than
or equal to the challenger’s.

(c) (a) and (b) together imply that E[B1]rE[B2].

5.6.1. Proof

(a) follows directly from (ii) in Theorem 2.
(b) If a bird has not been involved in a contest then

its expected future pay-off is the same as the
expected future pay-off of its site before Bi

challenges (this has remained constant since the
bird occupied that site) and this value is

Vi
(1)(1− p)+ p(Vi

(i) −C)rE[Bi], since pR 1/2

For Bi to challenge we need Vi
(1) −Vi

(i) qC(1− p)/p.
The challenge will be on Si

(1), the loser going to Si
(i) (this

is also the site Bi will go to if there is no challenge).
See the explanatory paragraph after the proof of
theorem 1.

To find the (future) values of all the sites after the
arrival of Bi, we must know the behaviour of
Bi+1, . . ., Bn. Thus we must start with the last bird,
in this case B4, and work backwards.

If Bi challenges on site Sj and the loser goes to site
Sl we write BiChSj(Sl) and if it simply occupies Sl we
write Bi : Sl.

5.7. 

Example 1 (again)

n=4, V1 =20, V2 =19, V3 =18, V4 =0, C=0,
p=0.4.

Since the cost C=0, as demonstrated above, Bi will
challenge unless the Vi

j are constant, which does not
occur here. Clearly B4 will challenge on S1, i.e.

B4ChS1(S4) and E[B4]=0.4×20=8
V3

1 =0.6×20=12, V3
2 =19, V3

3 =18
B3ChS2(S1), E[B3]=0.4×19+0.6×12=14.8
V2

2 =0.6×19+0.4×12=16.2, V2
3 =18

B2ChS3(S2), E[B2]=0.4×18+0.6×16.2=16.92
V1

3 =0.6×18+0.4×16.2=17.28c E[B1]=17.28

These results are summarised in the following table:
Bird B1 B2 B3 B4

Site S3 ChS3(S2) ChS2(S1) ChS1(S4)
Pay-off 17.28 16.92 14.8 8

The first three sites have similar values, the fourth is much worse,
so the birds are playing the policy which minimises their chances
of ending up with the bottom site, the last bird has a very low
expected pay-off which is maximised by challenging the top site,
consequently the top site is the second worst to be in occupation
of before the last bird arrives. Filling up from the lowest of the
‘‘good’’ sites is the best thing to do in such a situation.

Example 2

n=5, V1 =5, V2 =4, V3 =3, V4 =2, V5 =1,
C=0.4, p=0.4

V1 −V5 =4q 0.4×0.6/0.4=0.6c B5ChS1 (B5

challenges on S1), E[B5]=0.4×5+0.6×
(1−0.4)=2.36.

V4
1 =0.6×5+0.4× (1−0.4)=3.24. V4

2 =4,
V4

3 =3, V4
4 =2c S4

(1) =S2, S4
(4) =S4.

V4
2 −V4

4 =4−2=2q 0.6c B4ChS2, E[B4]=
0.4×4+0.6× (1−0.4)=2.56

V3
1 =3.24, V3

2 =0.6×4+0.4× (2−0.4)=3.04,
V3

3 =3c S3
(1) =S1, S3

(3) =S3.
V3

1 −V3
3 =3.24−3R 0.6 so there are no more

challenges and B1 : S1 E[B1]=3.24, B2 : S2

E[B2]=3.04, B3 : S3 E[B3]=3.

These results are summarised in the following table:
Bird B1 B2 B3 B4 B5

Site S1 S2 S3 ChS2(S4) ChS1(S5)
Pay-off 3.24 3.04 3 2.56 2.36

The top two lines of the above table, listing each bird and which
site it occupies/challenges for (as well as which site the loser of a
challenge occupies) will be referred to as an arrival profile.

Example 2 shows the type of profile associated with a set of Vi’s
which decrease steadily and p not too large, C not too small, a fairly
frequent situation (perhaps) in the field. The first birds tend to do
better than the last, they fill up the first few sites, the last birds
challenge the top sites.

Example 3

n=6, V1 =60, V2 =4, V3 =3, V4 =2, V5 =1,
V6 =0, C=0, p=0.4

As above all birds will challenge because C=0.
B6ChS1(: S6), E[B6]=0.4×60=24. V5

1 =0.6×
60=36

B5ChS1(: S5), E[B5]=0.4×36+0.6×1=15.
V4

1 =0.6×36+0.4×1=22
B4ChS1(: S4), E[B4]=0.4×22+0.6×2=10.

V3
1 =0.6×22+0.4×2=14

B3ChS1(: S3), E[B3]=0.4×14+0.6×3=7.4.
V2

1 =0.6×14+0.4×3=9.6
B2ChS1(: S2), E[B2]=0.4×9.6+0.6×4=6.24.

V1
1 =0.6×9.6+0.4×4=7.36
B1 : S1, E[B1]=7.36
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The above results are summarised in the following
table:

Bird B1 B2 B3 B4 B5 B5

Site S1 ChS1(S2) ChS1(S3) ChS1(S4) ChS1(S5) ChS1(S6)
Pay-off 7.36 6.24 7.4 10 15 24

Here it is all important to occupy S1 and it does not matter that
much which other site a bird occupies if it does not occupy S1. The
last birds do better because there is only one good site, the earlier
a bird arrives the less chance it has of keeping S1 if it has it (note
that B1 does better than B2 as it must always do from 3.4).

Example 4

n=10, Vi =11− i; i=1, . . ., 10; p=0.4,
C=0.11

The working is longer than for the other examples
and is omitted. The results are given in the following
table:

6. The Number of Different Arrival Profiles

Suppose that C, p and the Vi’s are variables (s.t. the
Vi’s are ordered), then what is the number of possible
arrival profiles for (a) any strategy and (b) the best
behaviour?

We find that the ratio of the number of possible
best behaviour profiles to the total number of profiles
is of order 1/n!, so that for a population if we know
the ordering of the sites in terms of their intrinsic
values (though not the actual values) then the set of
different profiles that could occur if the birds were
playing the best behaviour strategy is relatively small
compared to the total number of profiles.

(a) There are n possible sites for the first bird to
choose, the second then has n−1 free sites to
choose from or it can challenge on the occupied
site and then go to any of the free sites. In
general after i birds have arrived the next can
go to any of n− i free sites or can challenge on
any of the i occupied sites and then go to any
of the free sites. This gives
(n− i)+ i(n− i)= (n− i)(i+1) different
possibilities for the i+1th bird. The total
number of profiles is thus

P
i= n−1

i=0
4(n− i)(i+1)5=(n!)2.

On the other hand if we take into account the
threshold result, so that the first i sites are settled

without challenge, and the last n− i involve
challenges the number of ways is

n!+ n!(n−1)! s
i= n−1

i=1

1/4i!5.

(b) Suppose we have k birds, C and p fixed, and
corresponding expected future values Vk

(i).
Now we know that the kth bird either settled
on Sk

(k) so Vk
(i) =Vk−1

(i) for i=1, k−1, or
challenged on Sk

(1) the loser going to Sk
(k). In

this latter case we have, for some
j,1R jR k−1,

Vk
(i+1) =Vk−1

(i) ,1R iR j−1,

Vk
(i) =Vk−1

(i) ,j+1R iR k−1,

(1−p)Vk
(1) +p(Vk

(k) − c)=Vk−1
( j)

Vk
(k) QVk

(k−1).

If the kth bird settled then there is no choice for the
earlier birds but to settle without challenge, by the
threshold result, and the order is determined by the
Vk−1

(i) , the lth bird settling on Sk−1
(l) for lR k−1. If

there is a challenge then there are k−1 possible
values of j, i.e. orders of the Vk

(i) relative to the Vk−1
(i) .

Thus if we define the number of possible arrival
profiles under optimal play for k sites as Ak, then

Ak R 1+ (k−1)Ak−1.

In fact we can show that Ak =1+(k−1)Ak−1. To
achieve this we observe that given the Vk−1

(i)

corresponding to some specific profile for the first
k−1 we can easily construct a set of Vk

(i) which satisfy
the above equations for each possible value of j. Vk

(i)

is defined for 2R iR k−1. We only need to define
appropriate values for i=1 and i= k. This can be
readily achieved by picking a sufficiently small value
for Vk

(k) and a sufficiently large value for Vk
(1), with

(1− p)Vk
(1) + p(Vk

(k) − c)=Vk−1
( j) .

Thus,
An =1+(n−1)Ank−1c An

=(n−1)! s
n−1

j=0

1/j!1 e(n−1)!

Bird B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Site S3 S2 S5 ChS5(S1) ChS2(S4) ChS1(S6) ChS4(S7) ChS3(S8) ChS2(S9) ChS1(S10)
Pay-off 5.956 5.952 5.864 5.796 5.850 5.476 5.134 4.934 4.734 4.534

This example shows that even for linearly spaced rewards the pay-offs do not necessarily decrease with arrival
position (B5 receives a larger pay-off than B4).
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We illustrate the above by considering the case
where n=4, all the possible profiles are given in
Table 2.

The entry in the first column represents the only
profile with no challenges, 1234. If there is at least one
challenge then this must be on S1 with the loser going
to S4, which yields three possible orders for the sites
before B4 arrives. If there are no more challenges, then
each of these represents an arrival profile (column
two). If there is another challenge it is upon the
highest of these sites, with the loser going to the
lowest site, which then yields two possible profiles
each and so on. The top entry in the final column,
represents the profile S1, ChS1(S2), ChS1(S3), ChS1(S4).

Figure 1 represents the different arrival profiles for
four birds when the values of the sites are V1 =4,
V2 =3, V3 =2, V4 =1 and C and p vary over all
possible values; only 10 strategies are possible for
these values of the Vi’s. On the other hand if the
values of the sites are V1 =5, V2 =4.5, V3 =4,
V4 =1, then all 16 of the profiles are possible.

7. The Asymptotic Case

We now turn our attention to the case where a
nesting area has a large number of nest sites. We allow
n : a and suppose that the intrinsic value of the
sites has a density function f(x) defined on [0,1].
Suppose we linearly transform the site values to lie
between 0 and 1, and similarly transform the cost C.
Birds are supposed to arrive at a fixed rate of unity,
so that all the birds arrive in total time 1. The methods
developed earlier for the finite case generalise
straightforwardly, in particular Theorems 1 and 2.
These generalisations will be used (proofs are similar
to the finite versions) and we investigate Mch, the
maximum number of challenges which occurs on any
one site, as a function of C and p. This is of interest
as a measure of how many challenges are taking place

F. 1. Profile regions for n=4. Correspondence of regions to
optimal strategies for V1 =4, V2 =3, V3 =2 and V4 =1.
Correspondence of regions to optimal strategies [i(j) means
challenge upon Si and the loser goes to Sj.
Region B1 B2 B3 B4

1 1 2 3 4
2 1 2 3 1(4)
3 2 1 3 1(4)
4 2 3 1 1(4)
5 1 2 1(3) 1(4)
6 2 1 1(3) 1(4)
7 1 2 2(3) 1(4)
8 1 1(2) 1(3) 1(4)
9 2 2(1) 1(3) 1(4)

10 1 1(2) 2(3) 1(4)

T 2
Arrival profiles for four birds when site values are

V1 =5, V2 =4,5, V3 =1 and V1 =1
No

challenges One challenge Two challenges Three challenges

41, 2, 1(3), 1(4)5 41, 1(2), 1(3), 1(4)5
41, 2, 3, 1(4)5

42, 1, 1(3), 1(4)5 42, 2(1), 1(3), 1(4)5
41, 2, 2(3), 1(4)5 41, 1(2), 2(3), 1(4)5

41, 2, 3, 45 42, 1, 3, 1(4)5
42, 1, 2(3), 1(4)5 42, 2(1), 2(3), 1(4)5
42, 3, 2(1), 1(4)5 42, 2(3), 2(1), 1(4)5

42, 3, 1, 1(4)5
43, 2, 2(1), 1(4)5 43, 3(2), 2(1), 1(4)5

generally and how much they are concentrated on
particular sites (note that the top site does not
necessarily receive the most challenges).

Suppose the birds play rationally. We introduce
two sets and two functions to describe the situation
at time t, i.e. after a proportion t of the birds have
arrived and settled. Let Zt be the set of sites (indexed
by their intrinsic values) settled at time t (note
=Zt== t), V(x,t)= expected future pay-off at time t of
the site whose intrinsic value is x (so V(x,t) is only
defined for x$Zt), Wt is the set of future expected
values at time t [i.e. the range of V(x,t)] and g(x,t) is
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the density of future pay-offs at time t (g,(x,t) is
defined for x$Wt). Also we define B(t)=
maxx$ZtV(x,t), W(t)=minx$ZtV(x,t), D(t)=B(t)−
W(t), and T(t,[u,v))= fu

ug(x,t)dx. Note that the total
density at time t, T(t,[W(t),B(t)))= t.

Now, as in the finite case, we work backwards in
time. At t=1 all the birds have settled so
Z1 =W1 = [0,1], V(x,1)= x and g(x,1)= f(x). Con-
sider the situation at time t and the change that has
taken place in (t− dt,t) during which time dt birds
have arrived. Analogously to the behaviour demon-
strated in Theorem 1, if D(t)qC(1− p)/p the new
arrivals in (t− dt,t) will have challenged with losers
going to the sites which had the lowest values among
V(x,t) or if D(t)RC(1− p)/p will simply have settled
those latter sites. This implies that Wt is a closed
interval which justifies the use of maximum and
minimum in the definitions of B(t) and W(t) above.
More precisely, suppose we have Zt, V(x,t), Wt and
g(x,t).

If D(t)RC(1− p)/p, then the arriving birds settle
sites without challenging, so Wt− dt =Wt:(W(t),
W(t)+ e) where

T(t,[W(t),W(t)+ e))= dt

g(x,t− dt)= g(x,t) for x$Wt− dt

V(x,t− dt)=V(x,t) for x$Wt− dt

e being the range of values of sites settled by the dt
birds.

If D(t)qC(1− p)/p so that arriving birds chal-
lenge, then, provided dt is small enough,
Wt− dt =Wt :(W(t),W(t)+ e) and we have

T(t,[W(t),W(t)+ e))=T(t,[B(t)− e*,B(t)))

= dt

= g(t,W(t))e

= g(t,B(t))e*

where e* is the range of values of sites challenged by
the dt birds.

Thus,

V(x,t)
for x$[W(t)+ e,B(t)− e*)

V(x,t− dt)=g
G

G

F

f
V(x,t)(1− p)+ (V(x*,t)−C)p
for x$[B(t)− e*,B(t)]

where x* is such that

T(t,[W(t),x*))=T(t,[x,B(t)))

= g(t,W(t))(x*−W(t))

= g(t,B(t))(B(t)− x).

Therefore,
x−W(t)
B(t)− e

=
e

e*

and so

x*=
e(B(t)− x)

e*
+W(t)

=
g(t,B(t))
g(t,W(t))

(B(t)− x)+W(t).

We can thus derive the length over which density
dt is added from the above expressions as

=(ep− e*(1− p)=

so we have

g(x,t)+
dt

=e*(1− p)− ep=
for x$[B(t)− e*,B(t)]g(x,t− dt)=g

G

G

F

f
g(x,t)
for x$[W(t)+ e,B(t)− e*).

One could determine the complete behaviour by
this backward recursion, as for the discrete case to
any required degree of approximation and for any
f(x). However, the consideration of a specific ‘‘linear’’
case is more illuminating, and this is addressed in the
next section.

8. The Asymptotic Linear Case

A particular case which is reasonably amenable to
analysis and generates some interesting examples is
that where f(x)=1 i.e. the density of intrinsic values
is uniform so site value drops off linearly. This case
is made easier by virtue of the fact that at every stage
the density function g(x,t) is piecewise uniform, that
is Wt can be divided into l(t) sub-intervals
[xi(t),xi+1(t)), i=1, l(t) where g(x,t)= ci if
x$[xi(t),xi+1(t)). It is then possible to, in theory,
specify the values of t at which changes occur in the
sub-intervals, other than via changes in x1(t) which
occurs at all t as, in reverse time, sites are removed.

Specifically, suppose we take a collection of nest
sites with values a− b(i−1) i=1, . . ., n, i.e. the
pay-off of a site is a linear function of the number of
that site. Under the rational, or the best, strategy the
decision to challenge or not depends on the sign of
(Vi

(1) −Vi
i )− (1− p)C/p. Thus the rational strategy is

independent of a. We fix a to be one and b to be
1/(n−1), so that the values of the sites vary from one
to zero. The situation with large n can thus be
approximated by taking a continuous set of sites with
a uniform density for the values (0,1], as in the
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F. 2. Situation before final set of challenges. The values of
V(x,t) and g(x,t) at time 0.8 for the case where p=0.4 and
C=0.2. After 0.8 the situation is that the occupied sites are those
with intrinsic values from 0.2 to 1.0. Challenges will occur during
the remains of the contest on sites value 0.8 up to 1.0 the loser
settling on the sites from 0.2 to 00.

F. 4. Penultimate set of challenges. The form of V(x,t) and
g(x,t) during the period when second challenges are occurring (in
reverse time) when p R 0.25.

The import of Table 5 is that it emphasizes the
critical effect of discreteness and that one needs to be
careful in approximating the asymptotic result from
even fairly large values of the number of sites.

    , M

We investigate the value of the maximum number
of challenges which occurs on any one site Mch as a
function of C and p.

The values of C and p which yield Mch =0, 1, 2
have been found analytically.

In addition to the analytical approach above, a
numerical approach was used to find the regions
where Mch held values between 3 and 8, using linear
site values and varying C and p for 1000 birds. These
are shown in Figs 6(a) and (b).

examples shown in Figs 2 to 5 which are discussed in
detail below.

We begin with an example for the discrete, linear
case with a relatively large number of sites.

Example 5

Suppose we have 100 sites which have intrinsic
values 1 to 100, when C=0 and p=0.4. We have
proved earlier that in this case every arrival results in
a challenge. Tables 3 and 4 give the details of the sites
settled, challenged for, and the number of challenges
per site. Table 5 gives the number of challenges on the
top sites for various values of p near 0.4 with C=0.

As can be seen from Table 4 a single site (here that
with intrinsic value 82) may have up to eight
challenges and the pattern is fairly complex.

F. 5. Penultimate set of challanges. The form of V(x,t) and
g(x,t) during the period when second challenges are occurring (in
reverse time) when pr 0.25.

F. 3. Critical point at start of final set of challenges. The form
of V(x,t) and g(x,t) at the value t=1− p− pC when challenges
can occur prior to this, and for all subsequent t.
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T 3
The sequence of sites challenged and settled for C=0
and p=0.4 for the 100-site linear case, site i has value

Vi =101− i
82 82(76) 82(86) 82(84) 82(83) 83(87) 84(81) 84(77)
83(57) 86(88) 83(92) 84(85) 76(91) 77(75) 81(59) 57(80)
92(58) 82(90) 83(79) 76(56) 84(78) 57(90) 92(74) 85(93)
86(73) 77(55) 87(72) 88(94) 91(71) 58(95) 89(70) 56(69)
78(96) 90(68) 79(54) 80(97) 81(67) 82(66) 57(60) 83(65)
84(98) 85(64) 86(63) 87(53) 58(99) 88(62) 89(100) 90(61)
91(52) 92(51) 59(50) 93(49) 91(18) 95(17) 96(16) 97(15)
60(44) 98(43) 99(42) 100(41) 61(40) 62(39) 63(38) 64(37)
65(36) 66(35) 67(34) 68(33) 69(32) 70(31) 71(30) 72(29)
73(28) 74(27) 75(26) 76(25) 77(24) 78(23) 79(22) 80(21)
81(20) 82(19) 83(18) 84(17) 85(16) 86(15) 87(14) 88(13)
89(12) 90(11) 91(10) 92(9) 93(8) 94(7) 95(6) 96(5)
97(4) 98(3) 99(2) 100(1)

T 5
Each row specifies the number of challenges on sites 81

through 100 for the appropriate values of p
p=0.3999 3 4 7 6 3 7 3 3 3 3 3 4 2 2 2 2 2 2 2 2
p=0.4 3 8 6 6 3 4 3 3 3 3 3 4 2 2 2 2 2 2 2 2
p=0.4001 3 3 4 6 3 8 3 3 3 3 3 4 2 2 2 2 2 2 2 2

Note that the number of challenges on other sites is as per Table
4 with the exception of site 57 which has six challenges when
p=0.4001.

t=(1− p)1+ p(−C)=1− p(1+C), the value of
the site with the highest intrinsic value just before the
challenge at time t=1, when the best sites are that
with index 1 and that with index (1− p)− pC, so that
a second challenge on the former would occur. Thus,
if only one challenge is to occur we require that
D(t)=C(1− p)/p occurs for a t no smaller than
1− p(1+C) i.e. that D(1− p(1+C))=
(2(1− p(1+C))−1)=1−2p−2pCRC(1− p)/p
so Mch R 1 if Cr p(1−2p)/(1− p+2p2).

In the example shown in Fig. 3 p=0.4, C=0.2
and t=0.8. We have that

(1−p)x+p(1−p−C) if xq t
V(x,t)=

~
_x if (1−t)RxRt.

As t is decreased the density is changed as indicated
by the arrows. For t=0.8, as in diagram, a challenge
is about to occur (in [t,t− dt]), on the site with
intrinsic value 0.8, so that the value of V(0.8,t) will
switch from 0.8 to 0.48, while the site with intrinsic
value 0.2 will no longer be occupied. Thus, g(x,t) has
a range which reduces at a and i, and is built up below
d, as shown by the arrows in the figure. If this process
could continue until a ‘‘reached’’ c then d would have
reached f, where x=0.424. However, when a
‘‘reaches’’ b (where x=0.65), and d has ‘reached’’ e
the range of site values is equal to 0.3 (=(1− p)C/p)
so no challenge can occur prior to the corresponding
value of t, (=0.65). Best behaviour is therefore
specified as follows for this case:-

for t$[0.0, 0.13) settle site with intrinsic value
(0.65− t),

for t$[0.13, 0.55) settle sites (0.52− dt) and
(1.00−5dt) where dt=(t−0.13)/6,

for t$[0.55, 0.65) settle site (1− t),
for t$[0.65 1.00] challenge on site t, the loser going

to (1− t).

Figure 3 illustrates the situation which occurs when
t is such that t=(1− p)− pC so that for the first
time (in reverse) there are two sites which have
V(x,t)=maxx[V(x,t)] (e.g. in the example considered
here this would correspond to t=0.52 and then for
x=1.00 and x=0.52 one would have V(x,t)=0.52;

Even for small values of n the pictures are
approximately the same as the above figures, as can
be seen from the following diagrams. These represent
the values of Mch for 10 birds [Fig. 7(a)] and for 30
birds [Fig. 7(b)].

Note that the boundary lines in Figs 6 and 7
correspond to non-generic cases, i.e. Vj

k =Vj
l for some

j and k$ l.
We now derive conditions on C in terms of p under

which Mch takes the values 0, 1 and 2.

Mch =0

If we have D(t)RC(1− p)/p at any stage then
there are no challenges before t. In particular, since
for t=1 we have D(t)=1 there are no challenges, so
Mch =0, if and only if, 1 RC(1− p)/p i.e. Cr p/
(1− p).

Mch =1

Suppose that CQ p/(1− p) so that the later birds
must challenge, then Mch r 1. Thus, Wt =[1− t,t]
and V(t,t)= (1− p)t+ p((1− t)−C) for t suffi-
ciently close to 1. The function V(x,t) and the density
g(x,t) are shown for such a t in Fig. 2 where the
parameter values are p=0.4 and C=0.2. As t
decreases the set Wt reduces being of ‘‘length’’
D(t)= (2t−1) at time t. This phase of the process
continues either until D(t)=C(1− p)/p, when no
earlier challenges would occur, or until

T 4
Number of challenges by site for C=0 and p=0.4 for
the 100-site linear case, site i has value Vi =101− i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 2 2 2
3 8 6 6 3 4 3 3 3 3 3 4 2 2 2 2 2 2 2 2
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F. 6. Maximum number of challenges for large n. Maximum number of challenges by any bird for large n(=1000) for various p and
C showing (a) regions for 0, 1, 2, 3,r 4 and (b) regions for R3, 4, 5, 6,r 7 as maximum.

though as pointed out above this situation is not
reached in this case).

Mch =2

Suppose CQ p(1−2p)/(1− p+2p2) so that there
will be at least two challenges. When
t=(1− p(1+C)) we reach the situation shown in
Fig. 3 where

1
for x$[p(1+C),1−2p(1− p)(1+C)]

fx,t=g
G

G

F

f
2(1− p)/(1−2p)
for x$[1−2p(1−p)(1+C(,1−p(1+C))

This is easily derived since, taking the range of site
values as [y2,y1], we have y1 =1− p(1+C) and
y2 = p(1+C), and the total density from [y1,1], i.e.
p(1+C) has been reallocated to the range
[y1(1− p)+ (y2 −C)p,y1].

Now at this point there are two possible types of
behaviour. We know that if at any stage there is to
be a challenge when the value of the currently best site
before that challenge was (1− p)B(t)+ p(W(t)−
C)=P(t) say. Then, dP(t)/dt=(1− p)dB(t)/
dt+ pdW(t)/dt and since the densities functions are

piecewise uniform we have dB(t)/dW(t)=
−f(W(t),t)/f(B(t),t) so dP(t)/dt=[(1− p)−
pf(B(t),t)/f(W(t),t)]dB(t)/dt so since dB(t)/dt is
necessarily negative we have that dP(t)/dtq 0 if, and
only if, [(1− p)− pf(B(t),t)/f(W(t),t)]Q 0, or equiv-
alently f(B(t),t)/f(W(t),t)q (1− p)/p.

Thus at the current stage we have f(W(t),t)=1 and
f(B(t),t)=2(1− p)/(1−2p) so dP(t)/dtq 0 if, and
only if 2(1− p)/(1−2p)q (1− p)/p i.e. if, and only
if, pq 0.25.

Case 1. pQ 0.25. In this case we have a similar
situation to that of the analysis for Mch =1. We
require that y2 − x2 RC(1− p)/p. Now x2 is deter-
mined by requiring that the density in [x1,x2) equals
that in [y2,y1) which is 1− y2. Thus we have
x2 = x1 + 1 − y2 = 1 − 1 + 2p(1 − p)(1 + C) =
p(3−2p)(1+C) and so y2 − x2 =1−2p(1− p)
(1+C)− p(3−2p)(1+C)=1− p(5−4p)(1+C)
so that there will be two challenges provided
1−p(5−4p)(1+C)RC(1− p)/p c Cr p(1−4p)
(1− p)/(1− p(1−4p)(1− p)). This is illustrated in
Fig. 4.

Having reached the situation shown in Fig. 3,
challenges continue (in reverse time) on sites with
intrinsic values 1.00 and 1− p− pC, and Figure 4
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F. 7. Maximum number of challenges by birds. Maximum number of challenges by any bird for (a) n=10 and (b) n=30 for various
p and C showing regions for 0, 1, 2, 3r 4 as maximum.

shows the position reached where challenges has just
occurred on sites with intrinsic values a and b, and
current value a.

Case 2. pq 0.25. This case is considerably more
difficult and we omit the details. The situation is
illustrated in Fig. 5, details are similar to those of
Fig. 4. The condition under which there are two
challenges when pq 0.25 is

pq 0.25:

32p6 −104p5 +128p4 −74p3 +20p22p
−32p6 +104p5 −112p4 +38p3 +10p2 −11p+3

RCQ p(1−2p)
2p2 − p+1

9. Discussion

In nature many, perhaps most, conflicts will involve
more than two players, yet almost all of the theory of
evolutionary conflicts is for pairwise conflicts.
Exceptions to this are the ‘‘play the field’’ models
where an individual’s strategy is tested against the
whole of the population at each stage (Maynard
Smith, 1982), and variants of the War of Attrition
(Haigh & Cannings, 1989; Sjerps & Haccou, 1994;

Cannings & Whittaker, 1994). There are various ways
in which one can approach multi-player games. One
is simply to specify in complete generality the pay-off
an individual playing i receives against each possible
set of opponents. Unsurprisingly such models are
intractable. A second approach is to consider a
specific class of pay-offs. It is this approach that
Broom et al. (1997) have adopted, introducing certain
symmetries. A third possibility is to construct a
multi-player conflict in such a way that it is composed
of a system of pairwise trials. One can for example
have knockout or round-robbin tournaments, as is
common in humans (e.g. chess, tennis) in which
players rewards are determined by how far, or how
well, they progress. Alternatively, as here, one can
assume a sequential structure, which leads naturally
to a dynamic programming problem.

The particular problem discussed here was that of
birds arriving at a nesting area and competing over
nest sites. This is clearly a problem that birds face
regularly and appropriate behaviour must have
evolved. However, we are unaware of any attempt to
model the process; hence the current attempt. We
should make clear that we are not claiming that our
model will realistically represent the behaviour of any
specific species. We would argue that to criticise
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modelling, such as carried out here, on grounds
of lack of realism is misplaced; missing the point
of the exercise. The purpose of the model presented
is not to model any specific situation in any specific
species (or group of species) but to focus attention
on some of the issues, assumptions and difficulties
in attempting to model such a complex behaviour,
and also hopefully to suggest possible questions
which might be examined in the labortory or
field.

Our model makes various assumptions. Firstly, we
assume that the birds have a complete knowledge of
their situation, knowing how many birds have arrived
before them and how many will arrive after, knowing
which sites are currently occupied and the values of
all sites, and the probability of displacing an occupier
and the cost of losing. In practice they will,
presumably, have a rough estimate of each of these
values, though not in a numerical form, or may spend
time exploring the area to assess these values (perhaps
an additional sequential process). Secondly, there are
assumptions about the behaviour which is prepro-
grammed into the birds. We assume that the birds
arrive in a random order and challenge an occupier
or settle immediately (i.e. before another bird arrives),
while losers settle rather than challenge again. Thus
the behaviour which controls arrival time is not
subject here to evolution. It is clear in some of our
results that it would be advantageous for individuals
on occasion to hide when they arrive and thus alter
their position in the order. We do not allow this. On
the other hand our model predicts that this type of
behaviour might be advantageous under certain
circumstances, and allow one to check when this
would be the case.

The other main assumption is that the probability
p that a challenger will displace an occupier is
independent of the value of the site, and of the history
of the occupier (who may have fought several contest
already). This assumption is not vital for the method
of deriving the rational strategy, that carries through
as per the theory and example given, but is crucial
(together with the assumption that pR 0.5) for the
theorems which then allow simpler derivation of the
best behaviour. The examples thus considered are
easier to interpret and still provide good evidence of

the types of behaviours and the complexity of those
behaviours.

We have argued in the text that evolution might be
expected to programme bird to behave in a manner
which approximated to the rational, at least in
aggregate if not at the individual level. One way this
might happen is if birds individually adopted
strategies based on a limited number of cues rather
than on complete knowledge. For example if they
classified sites as good, moderate or poor then they
could develop simpler decision rules. We have
addressing this possibility via the development of a
simulation model, and have reported some prelimi-
nary results in Broom & Cannings (in preparation).
Further results will be reported elsewhere.

MB was supported by BBSRC grant GR/J31520.
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