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Abstract. The dispersal of individuals within an animal population will

depend upon local properties intrinsic to the environment that di�erentiate

superior from inferior regions as well as properties of the population. Com-

peting concerns can either draw conspeci�cs together in aggregation, such

as collective defence against predators, or promote dispersal that minimizes

local densities, for instance to reduce competition for food. In this paper we

consider a range of models of non-independent movement. We include es-

tablished models, such as the ideal free distribution, but also develop novel

models, such as the wheel. We also develop several ways to combine dif-

ferent models to create a �exible model of addressing a variety of dispersal

mechanisms. We further devise novel measures of movement coordination

and show how to generate a population movement that achieves appropri-

ate values of the measure speci�ed. We �nd the value of these measures for

each of the core models described, as well as discuss their use, and poten-

tial limitations, in discerning the underlying movement mechanisms. The

movement framework that we develop is both of interest as a stand-alone

process to explore movement, but also able to generate a variety of move-

ment patterns that can be embedded into wider evolutionary models where

movement is not the only consideration.

1. Introduction

Most organisms, especially higher order animals, experience a non-sessile

phase during their life history. These periods of movement may represent post-

natal dispersal, active foraging to obtain resources or mating opportunities,

nomadism, or seasonal migrations between distant breeding and non-breeding

sites (Dingle and Drake, 2007). The identi�cation of underlying mechanisms
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for the spatial behavior of properties has been the subject of considerable in-

quiry and musing for decades (Travis et al., 1999; Ford and Swearer, 2013).

Social interactions and communication may in�uence migration of groups of

animals as well as other collective actions particularly when there is evidence

of a high degree of synchrony among individuals (van Noordwijk et al., 2006;

Kappeler, 2011; Petit and Bon, 2010; Pyritz et al., 2011). Here we promote a

general framework of movement that incorporates established and novel con-

cepts of dispersal and patch selection that may be positively or negatively de-

pendent upon the presence of conspeci�cs. This framework is robust and may

be incorporated into general evolutionary modelling approaches, in particular

that of Broom and Rychtář (2012), including systems where movement is only

one factor in�uencing �tness. In this paper we will speci�cally focus on the

modelling of movement.

Migration is present throughout the taxa (Dingle and Drake, 2007); how-

ever, not all relevant species exhibit the traditional round-trip or “two worlds”

movement (Greenberg and Marra, 2005) that is characteristic of large-scale

synchronized migration of e.g. birds (Dingle, 2006). In the literature, the term

movement or migration has been applied to di�erent situations including post-

natal dispersal and other one-phase relocations of organisms (Greenwood and

Harvey, 1982; Bullock et al., 2002), ranging (Kennedy, 1966; Taylor, 1986; Din-

gle, 2014), or nomadism (Dingle and Drake, 2007). For our purposes in this

paper, we will assume a minimal de�nition of movement as the selection of a

next place of residence whether the location is held permanently (settlement)

or in transience (migratory stopovers, ephemeral ponds). Aggregation dur-

ing migration has been observed in neritid snails (Schneider and Frost, 1986),

may�ies (Hayden and Cli�ord, 1974), insect swarms (Buhl et al., 2006), spiny

lobsters (Herrnkind and Cummings, 1964), �sh schools (Ballerini et al., 2008;

Parrish, 1989, 1999; Parrish et al., 2002), bird �ocks (Emlen, 1952; Ballerini et al.,

2008), and primates (Pyritz et al., 2011). Additionally some birds forage collec-

tively in conspec�c groups (Beauchamp, 1998, 2002; Krause and Ruxton, 2002),

and many predator mammals hunt collectively as well (Würsig, 1986; Mech,

1981; Kruuk, 1972; Stander, 1992). The social cohesion of animal groups is sub-

ject to density dependent mechanisms that may be in tension with some pro-

moting dispersive behavior in populations and others facilitating aggregation

(Ford and Swearer, 2013; Matthysen, 2005; Cressman and Garay, 2011; Parrish,

1999). As an example, ducks have been found to assess the local conditions of

sites and are even capable of adaptively adjusting their time in residence at a

stopover in response to conditions (O’Neal et al., 2012), yet they will initially

land in close proximity to one another for safety in novel territory. Resource

limitation is perhaps the most important driver of population regulation that
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promotes dispersal (Murdoch, 1994; Turchin, 1999); however, for species sub-

ject to the social fence hypothesis (Hestbeck, 1982), high densities can inhibit

dispersal and keep groups together. Moreover, conspeci�c attraction (Daniel-

son and Gaines, 1987; Stamps, 1991), Allee e�ects (Kuussaari et al., 1998), and

safety-in-numbers e�ects (Beauchamp, 2008) may also reinforce congregation

within animal populations. The resulting bene�ts of social aggregations in-

clude anti-predator behavior (Ioannou and Krause, 2008; Pitcher et al., 1982;

Cressman and Garay, 2011), increased survival (White et al., 2010; Ford and

Swearer, 2013), social foraging e�ciency (Pitcher et al., 1982; Felleman, 1986),

cues for the availability of resources or mates (Pitcher et al., 1982; Matthysen,

2005; Guttal and Couzin, 2010; Kim et al., 2009), and, crucially for migratory

animals, energetic e�ciencies such as drag reduction (Ward et al., 2001). These

features are of particular importance for colonial breeders who may associate

in obligate fashion (Kim et al., 2009).

The dispersal of a population over a territory, either as a single event or as

a sequence of moves, has been considered in a number of models. The classi-

cal models of animal distribution over a territory consider the distribution of

animals over a number of patches of a resource, such as food or mates. Proba-

bly the most well known model is the ideal free distribution (IFD) of Fretwell

and Lucas (1969). Here individuals choose from a variety of food patches to

maximize their intake, and this leads to an e�ectively deterministic division of

forages with all receiving the same reward. For an explicitly game-theoretical

interpretation of the IFD see Cressman and Křivan (2006); Křivan et al. (2008);

Cressman et al. (2004). For a model including migration see Mariani et al. (2016)

and for one including harvesting see Křivan and Jana (2015).

There are both deterministic and stochastic models which build upon the

IFD. The “perceptual limit” model was developed in Abrahams (1986), where

animals moved randomly between patches if the di�erences between the re-

ward on two patches was below a given level (see also Collins et al., 2002; Street

et al., 2018). The IFD was re�ned to allow for unequal or non-identical competi-

tors in Sutherland and Parker (1992). There may also be non-IFD movements

caused by events not linked to the resource value, for example the arrival of a

predator (see Hugie and Grand, 1998; Ruxton and Humphries, 2003). Stochas-

tic models of unequal competitors were considered in Houston and McNamara

(1988) and Yates and Broom (2005).

In Broom and Rychtář (2012) a general framework for the movement of, and

interactions between, members of a population was considered. Most models

using this framework up until now, e.g. Broom et al. (2015), Pattni et al. (2017)

have used the “fully independent” model where each individual has its own

probability distribution over the patches, independent of other individuals and
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past movements. Recent works Pattni et al. (2018) and Erovenko et al. (2019)

have considered movement dependent on the most recent history; but still

here, conditional on the history, all individuals move independently.

The models used in this paper will serve two related purposes; �rstly to rep-

resent particular movement mechanisms, which lead to a given distribution of

individuals over patches, and secondly to model movement distributions with

certain aggregational properties. We consider a series of models where individ-

uals choose their location sequentially, based upon a utility function approach.

These include purely deterministic models where the best utility is selected and

stochastic models where the probability of selecting a location is a function of

the utilities. We also consider a model of simultaneous allocation which does

not represent any speci�c movement mechanism, but is useful in achieving

desirable statistical properties of the population (for instance we may wish to

model a population with a given distribution and mean pairwise correlation

over the patches). We consider some interesting special models, and general

ways of combining models to again achieve desirable statistical outcomes.

The paper is organized as follows. In Section 2 we consider sequential mod-

els of patch selection. These models are classical (such as the Ideal Free Distri-

bution in Section 2.1.3), although they have not always been applied to model-

ing animal movements (such as probabilistic models in Section 2.2). In Section

3 we consider completely novel models and approaches to modeling animal

movement. We also develop a way to compare di�erent models. In Section 4

we introduce and study novel measures of movement coordination. Finally, in

Section 5 we provide and discuss biological examples for our models.

2. Seqential models of correlated patch selection

In this section we introduce several possible models of how N individu-

als I1, I2,… , IN can distribute themselves over M patches P1, P2,… , PM . We will

usually assume that the individuals are identical and have the same move-

ment distributions, i.e. the probability of an individual Ii moving to a patch

Pm will depend only on the patch (and nothing else). We shall use sequential

movement mechanisms where individuals use information on the distribution

of earlier-arriving animals, but then identical distributions over all individu-

als can be obtained by allocating the order sequence of individuals at random.

These mechanisms are “realistic”, in the sense that it is possible for individuals

to use this kind of mechanism in a sequential process. Also, these mechanisms

are based on known models, although as far as we know, the models were not

always applied to or developed for animal movements. For each such model

from Sections 2.1–2.3, we consider an a priori probability distribution {am}, i.e.

without considering any other factors, an individual would select a patch Pm
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with a probability am. This distribution re�ects a natural inclination in location

preference during immigration into the area irrespective of present conditions.

For example, site �delity in migratory species exhibits this phenomenon. The

a priori distribution could also represent the accessibility of sites upon �rst

arrival. The actual probability distribution of an individual’s patch selection

may evolve as the landscape becomes increasingly populated.

We note here that as all individuals are identical, the precise ordering of

individuals is irrelevant. If there was some distinction between the individuals,

the order might be important, and we might need to consider a probability

distribution over the possible orders. As mentioned above, we would then

randomly pick a permutation � of N numbers and then place the individuals

into the patches sequentially in the order dictated by the permutation, i.e. we

�rst place an individual I� (1), then individual I� (2), etc. We could also represent

simultaneous movement by selecting each of the N ! permutations with equal

probability.

In general, when n − 1 ∈ {0, 1,… , N − 1} individuals are already placed, the

ntℎ individual I� (n) will move to a patch Pm with a probability that depends on

the placements of all of the previous individuals I� (1), I� (2),… , I� (n−1) (but it does

not depend on which individuals are actually placed there since all individuals

are assumed identical). After the placements, we calculate pm, the a posteriori
probability that an individual goes to patch Pm as the expected value over all

possible permutations (and consequently, does not depend on the individual).

As we will see below, in some cases (such as follow the majority, random,

Polya urn), the a priori probabilities will agree with the a posteriori probabilities

and we will call such procedures faithful. However, in other cases (such as

competitor avoidance, peak overload and IFD), the a priori and a posteriori
probabilities do not match (except for in some very speci�c cases).

2.1. Deterministic selection models. Here we assume that there is a set of

utility functions {Um} based upon various patch characteristics. The individ-

uals maximize their utility and so the ntℎ individual is placed to Pm if Um is the

unique maximum utility. In circumstances where maximal utility is achieved

at multiple locations, the individual selects its location randomly from among

those locations {Pmk} with probability proportional to the a priori probabilities

{amk}.

For simplicity, we assume that the utility function for patch Pm is potentially

dependent only upon an intrinsic non-negative patch value Vm and the patch’s

current occupancy Ym. In particular, the utility value is independent of condi-

tions in other patches within the landscape. Broom and Rychtář (2018) applied

this local aggregation assumption to structured population models. This as-

sumption is reasonable if there is not some direct in�uence of one patch on
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another, such as if our individuals have a highly mobile predator who can ob-

serve more than one patch, so that its choice to hunt on one patch depends

upon what it observes on another. Additionally, we further assume that utility

increases with the value of the patch. We will distinguish several cases based

upon how the utility depends on the local population size.

2.1.1. Utility is independent of patch occupancy. Here the utility is simply Um =
Vm, the intrinsic value of the patch Pm. In this case, the individuals will all

aggregate at a patch of the highest value. We will refer to this model as peak
overload.

If M = {m1,… , mK} is the set of indices for those patches which support

maximal utility, then for all m ∈ M , the expected number of individuals at

patch Pm is given by

E[Xm] =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

am
∑
mk∈M

amk

N , if m ∈ M ,

0, otherwise.

(1)

In the non-generic case where one patch is of higher value than the others, all

individuals will go to this patch, i.e. the expected number of individuals will

be N on this patch and 0 elsewhere, with a variance of 0 on all patches. With

K equal patches, we can simply ignore all other patches (which will be empty)

and otherwise this case will be the same as for the random allocation method,

which we see in Section 2.2.1, over these K patches.

Biologically, settlement without respect to population pressures is appro-

priate when locations provide non-depletable resources or when they have an

ideal environmental feature. Examples of this include temperature, water pH,

salinity, sunlight exposure, etc. These conditions may make locations suit-

able for a nursery or nesting site. Furthermore, as noted in Broom and Rychtář

(2018), the concept of “place” or “patch” can be quite general. Thus if “patches”

represent migration routes or layover territories, one route may be better than

others for causes beyond the presence of conspeci�cs using the same transient

location or route.

We see here that all individuals end up on the best patch, if that is unique,

and they can be thought of as forming a “herd”. We note, however, that the herd

is formed simply because all individuals choose the best patch independently,

and not through any wish of individuals to be with others. We will use the

term herding for any procedure that will result in all individuals aggregating

in one patch when this is caused by some inherent desire to be with others.

We will see examples of herding models below in Section 2.1.2 and Section 2.3.
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2.1.2. Utility positively correlates with occupancy. When the utility functions

increase with local population size, individuals prefer to stay in large conspe-

ci�c groups or herds. In principle we could consider any increasing function.

However, we shall only consider the simplest example utility function, namely

Um = Ym + 1, (2)

where Ym is the number of current occupants at the patch Pm. We will refer to

this model as follow the majority model.

In accordance with our methodology, the �rst individual is placed randomly

using the a priori probability distribution {am} as all sites are of maximal util-

ity. All subsequent individuals will then move to the same patch as the initial

settler. Consequently, this is an example of a herding procedure.

The expected number of individuals at patch Pm is given by E[Xm] = amN ,

thus pm = am and the procedure is faithful. Moreover

Var(Xm) = E[Xm − E(Xm)]2 = pm(N − Npm)2 + (0 − Npm)2(1 − pm) (3)

= N 2pm(1 − pm). (4)

2.1.3. Utility negatively correlates with occupancy. Conspeci�c pressures com-

monly reduce the utility of a location as limited resources must be shared

among all of those present or as internal con�icts arise within the local popu-

lation, and, as above, any decreasing function could be considered as a utility

function. The ideal free distribution is a natural example of populations dis-

persing to balance these pressures against the value of various locations. In a

discrete sequential population, the utility functions are given by

Um =
Vm

Ym + 1
, (5)

where Vm is the intrinsic value of the patch Pm and Ym is the number of its

current occupants. Here the utility is calculating the post-settlement �tness of

the individual rather than the current per capita utilization of the patch. The

sequence of settlement follows a predictable outcome, but in those instances

where multiple patches predict maximal utility, the individual randomly se-

lects from those patches in proportion to their a priori �tness (see above in

Section 2.1.1).

As the total population size N grows large, the expected proportion of indi-

viduals on patch Pm approaches

E[Xm]
N

=
Vm

∑M
k=1 Vk

, (6)

i.e. we have an a posteriori probability distribution pm = Vm
∑M
k=1 Vk

(with the sum-

mation taken over all patches with nontrivial occupancy). This is Parker’s
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matching principle (Parker, 1978). For smaller discretized populations, expec-

tations deviate to a limited degree from (6). When patch value is proportional

to the a priori probability, Vm = cam, then the posterior and a priori probability

distributions are again the same pm = am (up to discretization e�ects).

In the generic case, where the sequential process is decided without any

ties, there is a deterministic allocation, and so the variance of the total on each

patch is 0. With ties, some or all variances will be non-zero (e.g., see Figure 1).

Competitor avoidance follows a similar behavior. Here we assume that the

utility functions are given by

Um =
V

Ym + 1
(7)

where Ym is the number of current occupants and V is the common value of

all patches. In essence the population disperses uniformly over the locations

(or as uniformly as discretization permits). If N = kM for some integer k, then

each patch will be occupied by exactly k individuals and the probability of a

given individual going to a given patch is 1/M . Moreover, if kM < N < (k+1)N
for some non-negative integer k, then all patches will have at least k = ⌊N /M⌋
individuals and a patch Pm will have k + 1 individuals with probability N /M −
⌊N /M⌋. Here ⌊⋅⌋ is the lowest integer value function. It follows that

E[Xm] =
N
M

(8)

Var(Xm) = (
N
M

− ⌊
N
M ⌋)(

M − N
M

+ ⌊
N
M ⌋) (9)

We note that here there are many ties in the sequential allocation process, so

that the variances for all patches are non-zero, as we discussed regarding the

ideal free distribution above.

2.1.4. General utility function. There are potentially many more plausible util-

ity functions. For example, individuals may prefer to be in groups of reason-

able size (for example wolves prefer to be in groups that are not to small so

that they can catch prey, but not too large so that they do not have to share

with too many individuals). Moreover, if we have K ≥ 1 optimizing procedures

with utility functions U (k)
m and K non-negative numbers s1, s2,… sK (potentially

with ∑k sk ≠ 1), we can easily combine them into a utility function

Um = ∑
k
skU (k)

m . (10)

The utility function considered in (10) re�ects the trade-o� costs in trying to

achieve competing objectives such as social cohesion, maximization of individ-

ual space or resource usage, and site �delity. The weighting terms sk represent

the relative strength of response for each goal’s stimulus.
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We should note that when combining utility functions, the speci�c functions

need to be considered carefully. For example consider two patches, with pos-

sible utility functions U (1)
1 = 3, U (1)

2 = 0, U (2)
1 = 1, U (2)

2 = 0 and U (3)
1 = 0, U (3)

2 = 2.

A population using U (1)
will have all individuals go to patch P1, as will a pop-

ulation using U (2)
. A population using U (3)

will all go to patch P2. An equal

weighting of U (1)
and U (3)

will have all individuals going to patch P1, whereas

an equal weighting of U (2)
and U (3)

will have all going to patch P2. Thus the

�nal outcomes of the mixed cases are completely di�erent, even though they

used the same weighting of pure cases with identical outcomes.

2.2. Probabilistic selection models. In Section 2.1 we considered a range

of models where individuals had a utility function and simply made the move-

ment which maximized their utility at the time. Here we consider a stochas-

tic version of these models, where individuals pick a patch with probability

proportional to the utility function, i.e. a patch Pm is picked with probability

Um/∑k Uk .

We note that this mechanism is related to reinforcement learning (Sutton

and Barto, 2018). In reinforcement learning, an individual has an assessment

of the quality of di�erent choices and updates this assessment through expe-

rience rather than simply picking what appears to be the best. As more data is

accrued, an individual chooses the better options with higher probability.

As in Section 2.1, we distinguish several cases based on how the utility func-

tions depend on the patch occupancy. We can visualize the probabilistic selec-

tion models in this section as urn models (Johnson and Kotz, 1977). Balls with

numbers 1, 2,… , M are put in an urn and the balls are then sequentially drawn

from the urn at random. The number of balls with the number m in the urn

just before the ntℎ ball is drawn corresponds to the utility function Um. If, the

ntℎ ball drawn from the urn has a number m, the ntℎ individual moves into

patch Pm. After the draw any of the following can happen:

1. The selected ball is returned to the urn (corresponding to the utility

function independent of the occupancy).

2. The selected ball is returned to the urn and one extra ball with the

same number is added to the urn (corresponding to the utility function

positively correlating with the occupancy).

3. The selected ball is not returned to the urn (corresponding to the utility

function negatively correlating with the occupancy).

We will see below that the above three are only the simplest examples and

many more scenarios can be considered.

Finally, for any set of utility functions Um, we can consider a family of utility

functions

Ũ (s)
m = exp (sUm) − 1 (11)
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parametrized by a sensitivity parameter s ∈ (0,∞) and place individuals pro-

portional to Ũ (s)
m . As s → 0+, we have Ũ (s)

m ≈ sUm and thus our process would be

the same as if we used functions Um. As s grows, individuals prefer more and

more the patch with maximal utility. In the limit of s → ∞, we thus recover

the deterministic processes discussed in Section 2.1.

2.2.1. Random selection—utility independent of the patch occupancy. The most

fundamental approach to patch selection is the assumption that each individ-

ual independently selects one location in accordance with a �xed probability

distribution that applies to all members of the population. In this fully in-

dependent model (Broom and Rychtář, 2012), the probability that individual In
moves to patch Pm is independent of the local population levels. Consequently,

there is no distinction in outcomes whether settlement occurs simultaneously

or sequentially.

We can achieve this distribution with utility functions

Um = am (12)

or by assuming a simple urn model with replacement with the urn having B
balls in total and amB balls with the number m.

The statistical analysis of identical independent random selection is straight-

forward: the expected number of individuals in patch Pm equals E[Xm] = amN
while the variance is Var(Xm) = am(1 − am)N . Note that this means that

pm = E[Xm]/N , the posterior probability of a given individual being on patch

Pm, is equal to am, i.e. this procedure is faithful. See Figure 1 for the illustration

of the random process.

2.2.2. The Polya urn—utility positively correlates with the patch occupancy. In

the classical Polya urn model, the selected ball is returned to the urn and one

extra ball with the same number is added to the urn.

Here, we will consider a family of these models. For a parameter B ∈ (0,∞)
corresponding to the initial number of the balls in the urn, we de�ne utility

functions

Um = Bam + Ym (13)

where Ym is the current occupancy at the patch Pm. Bam is the inherent site

preference individuals have for locationm, while the scaling parameter Bmod-

erates the population level at which density dependent social aggregation emerges.

This is thus the stochastic model using the utility function similar to the follow

the majority model.

If seen as an urn model, Bam corresponds to the initial count of balls with

number m. It is known (Johnson and Kotz, 1977) that the distribution of the

number of individuals at each patch follows the Dirichlet multinomial distribu-

tion with parameters (N , Ba1,… , BaM ). The expected value for Xm, the number
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Figure 1. Example of 100 observations of movements of 10 individuals on 3 patches
with a1 = 1/2, a2 = 1/3, a3 = 1/6. The black disc is the predicted expected distribution,
the red star is the simulated expected distribution. The procedure is faithful if the
black disc and red star coincide. Every gray circle means one distribution from one
simulation. Note that here we use a “shaky hand” method of drawing the points,
so that rather than plo�ing the exact point, a small random error is added. This is
because there are in fact a finite number of distinct possible values, and if the exact
values were plo�ed it would not be possible to see the frequency of the occurrence of
each. For every patch Pm we also provide the average number of occupants, E(Xm),
its variance, Var(Xm), and movement coordination measures T and TN (given by (25)

and (27) as discussed later in Section 4) realized in the simulations.

of individuals in patch Pm, is given by

E[Xm] = N
Bam

∑k Bak
= Nam. (14)

Note that this means that pm = E[Xm]/N = am, i.e. this procedure is faithful.

Similarly, the variance of the number of individuals in a patch Pm is given by

Var(Xm) = N
Bam

∑k Bak (1 −
Bam

∑k Bak)
N +∑k Bak
1 +∑k Bak

(15)

= Npm(1 − pm)
N + B
1 + B

. (16)
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There is a nice closed form for the probability distribution as well (which we

omit), which means that we can simulate the outcome of this distribution eas-

ily.

We note that although we have discussed this Section in terms of drawing

balls from an urn, Bam does not have to be integer-valued for this process or

the formulae to hold. For example, to keep B as a ball count, the expression

B → 0+ should be interpreted as adding a large number of balls (in the order

of 1/B) after each draw. This can be seen from the fact that utility functions

Um = Bam + Ym produce the same mechanism as U ′
m = am + Ym/B.

See Figure 1 for the illustration of this model.

2.2.3. Drawing without replacement—utility negatively correlates with the patch
occupancy. In the classical urn model without replacement, the selected ball is

discarded. Here, we will consider a family of these models. Consider a param-

eter B ∈ (0,∞) and de�ne the utility function as

Um = max{Bam − Ym, 0}. (17)

If seen as an urn model, Bam corresponds to the initial count of balls with

number m. We note again that although Bam represents a number of balls, it

does not have to be integer-valued for this process or the formulae below to

hold. We must ensure that Um above does not become negative, however.

It is known (Johnson and Kotz, 1977) that the distribution of the number of

individuals at each patch follows the multivariate hypergeometric distribution

with parameters (N , Bam,… , Bam). The expected value for Xm, the number of

individuals in patch Pm, is given by

E[Xm] = N
Bam

∑k Bak
= Nam. (18)

Note that this means that pm = E[Xm]/N = am, i.e. this procedure is faithful.

Similarly, the variance of the number of individuals in a patch Pm is given by

Var(Xm) = N
Bam

∑k Bak (1 −
Bam

∑k Bak)
∑k Bak − N
∑k Bak − 1

(19)

= Npm(1 − pm)
B − N
B − 1

. (20)

See Figure 1 for the illustration of this model.

2.2.4. General utility function. As already brie�y discussed in Section 2.2.2, the

Polya urn model from can easily be modi�ed by adding more than one ball

with the replacement. The more balls we add, the more we “reinforce behav-

ior” (Johnson and Kotz, 1977). We can also envision an urn model for which

di�erent patches reinforce di�erently. The Polya urn utility Um = Bam+Ym can

be adapted toUm = Bam+rmYm for some rm > 0; i.e. we generalize the Polya urn
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to the case when di�erent patches reinforce their occupation at di�erent rates.

For example add 2 balls if patch 1 is selected and add just 1 ball for every other

patch. How many balls are added may also depend not only on the “value” of

the patch but also on how many individuals are already there, similarly to the

optimizing models above, almost literally as animals (such as ants) mark their

paths. There may be a threshold at which the balls are not added and perhaps

not even replaced.

Similarly to Section 2.1.4, the utility functions do not have to be strictly

decreasing or strictly increasing functions of the patch occupancy but can have

(local) maxima and minima for intermediate occupancy levels.

Moreover, if we haveK ≥ 1 optimizing procedures with utility functionsU (k)
m

and K non-negative numbers s1, s2,… sK (potentially with ∑k sk ≠ 1), we can

easily combine them into a utility function, as shown in equation (10). Note

that combining utilities as in (10) is equivalent to considering the individual In
going to patch Pm with probability proportional to ∑k skU (k)

m .

Finally, we can create a whole family of di�erent models by appropriate

combination of utility functions. For example, by setting

Um(r , �) = exp(
r cos(�)

1 − r cos(�)
(Ym + 1)) + exp(

−r cos(�)
1 + r cos(�)

1
Ym + 1)

…

… + exp(
r sin(�)

1 − r sin(�)
am

Ym + 1)
+ exp(

−r sin(�)
1 + r sin(�)

am) + am. (21)

with parameters r and � , we can recover many of the models mentioned so far,

see Figure 2 and Figure 3.

2.3. Other sequential models. In the previous sections, we assumed that

individuals are trying to optimize the utility function either in some determin-

istic or probabilistic fashion. Here, we assume that individuals are selecting

the patches sequentially and potentially in a random order, but individuals

can observe the moves of their predecessors and then make their selection ac-

cordingly.

There are many possible scenarios, but we will consider only two. In the

follow the leader model, the �rst individual will pick a patch based on the a
priori probabilities am’s and every other individual will pick the same patch.

In the follow your predecessor model, the �rst individual will pick a patch

based on the a priori probabilities am’s and every other individual will pick the

same patch as its direct predecessor.

Note that under both of these models, all individuals will settle on patch

Pm with probability am. This means both processes are examples of a herding

process. Clearly, E[Xm] = amN , i.e. the procedures are faithful, and Var(Xm) =
N 2pm(1 − pm), i.e. the values are the same as in the follow the majority model
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Figure 2. The utility function is parametrized by r and � . Here, r represents the dis-
tance from the center, � is the angle from the x-axis. For r = 0, we get the random
distribution. For r → 1− we recover follow the majority (for � = 0), ideal free distribu-
tion (for � = �/2), competitor avoidance (for � = � ), and peak overload (for � = 3�/2).
See also Figure (3). Each point in the circle, (r , �), represents a di�erent model with a
unique optimization goal (�) and intensity in pursuit of that goal (r ). See equation 21
for an example way of generating these (see also Section 3.2 below).

Figure 3. Illustration of combinations of di�erent utility functions. Each panel rep-
resents 100 simulations of 10 individuals on 3 patches with a1 = 1/2, a2 = 1/3, a3 = 1/6.
(a) Tracing the outer circle of Figure 2 with utility functions given by equation (21)

with r = 0.99 and varying � . Starting at follow the majority (dark blue) for � = 0 and
going counter-clockwise, we get ideal free distribution (green) for � = �/2, competitor
avoidance (dark red) for � = � , and peak overload (green) for � = 3�/2. (b) Tracing
the x-axis of Figure 2. competitor avoidance (dark red), random (green), follow the
majority (dark blue) and everything in between.



MODELS AND MEASURES OF ANIMAL AGGREGATION AND DISPERSAL 15

from Section 2.1.2. We will see the di�erences between the three models in

Section 3.2.2 when we will consider all these herding models in combination

with other models; see also Figure 7 .

3. Novel models

The mechanisms considered in Sections 2.1–2.3 were generally known al-

though perhaps not always applied to modelling of animal movement (such

as the Polya Urn models). In contrast, the models presented here, in partic-

ular the “wheel” model described in Section 3.1, are novel models and new

approaches to modeling animal movements. We also note that the wheel is a

theoretical abstraction rather than a mechanistic model that simultaneously

allocates individuals to patches in a way that satis�es desirable distributional

properties.

3.1. The wheel and base model. Here, in contrast to the previous sections,

we will not suppose any sequential underlying mechanism of animal patch se-

lections, and instead we describe a procedure of simultaneous allocation of all

individuals to patches. The methodology is easy to apply, and to visualize, and

achieves the prescribed expected occupancy (i.e. is faithful) whilst allowing

for varying degrees of randomness.

We visualize the procedure as follows, see Figure 4. A base disc of perimeter

1 is divided into M patches P1,… , PM in the shape of wedges. The patch Pm
corresponds to a wedge of circular length pm = am (i.e. a sector of angle 2�pm)

so that ∑m pm = 1. The patches are ordered at random (see Figure 4(a)) to

prevent any bias.

On top of the base disc is an upper disc, the wheel, comprising the N in-

dividuals represented by N spikes. The angle between individual Ii and Ij is

2��ij where �ij ∈ [−1/2, 1/2] is potentially drawn from a probability distribu-

tion (although of course not all angles between pairs can be independent; in

fact once �1j are �xed for 1 < j ≤ N , all other �ij are determined) and the signs

correspond to a clockwise or anti-clockwise direction from Ii to Ij . Note that

�ij = −�ji; see Figure 4(b).

Once the angles between the spikes are �xed, the wheel rotates by an angle

' chosen uniformly at random. The individual Ii then moves to patch Pm if and

only if the corresponding spike �nishes up on top of the corresponding patch;

see Figure 4(c).

Using the wheel model, we can emulate outcomes of many of the procedures

discussed above. For example, if, for all 1 < j ≤ N , the angles �1j are chosen

uniformly at random, we will recover random model from Section 2.2.1. By

setting �1j = 0, for all i, j, we recover the herding models from Section 2.1.2
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p2
p3
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I3

Figure 4. (a) Representing M = 3 patches with probabilities p1 = 1/2, p2 = 1/3, p3 =
1/6. In general ∑m pm = 1. (b) Representing N = 6 individuals as spikes. The angle
between individuals Ii and Ij is 2��ij . In this case, �12 = 1/4 = −�21. (c) A�er the upper
disc with individuals is turned at a random angle over the base disc, the individuals
land on patches. In this case, I1, I4, I5 and I6 will go to P1, I2 and I3 will go to P2, nobody
will go to P3.

and Section 2.3. By setting �1j = j−1
N we recover the competitor avoidance

distribution from Section 2.1.3

By setting �1j ∼ N (�j , � 2) to be a normally distributed random variable with

mean �j and variance � 2
, we get a whole family of models. For �j = 0 and

small � 2
, we get models similar to herding, where almost all individuals are

likely to end up at the same patch. As � 2
grows, the tendency to go to the

same patch is weakened as stochasticity has a signi�cant e�ect, much as in

the Polya urn. For large � 2
, the outcome resembles that of the random model;

see Figure 5. Similarly, for �j = j−1
N and small � 2

, the model is close to the

competitor avoidance distribution; as � 2
grows, the increasing stochasticity

leads to an outcome similar to drawing without replacement, with large � 2

leading e�ectively again to the random distribution. See Figure 6.

3.2. Hybridmodels. We saw in Section 2.1.4 a way to combine several utility

functions into one, and then in Section 2.2.4 how to combine several di�erent

procedures into a probabilistic one. In this section we investigate two more

ways to combine the procedures discussed above.

3.2.1. Hybrid type I. Assume we have K procedures and K non-negative num-

bers s1, s2,… sK with ∑k sk = 1. We can now consider a procedure de�ned as

follows: with probability sk , all individuals will follow the ktℎ procedure.

For example, di�erent groups of individuals may use one of a repertoire

of di�erent movements, with the choice depending upon external factors not

governed by the group (e.g., weather, the presence of predators).

This procedure allows for simple calculations. If E[X (k)
m ] is the expected num-

ber of individuals in the patch Pm under the ktℎ procedure, and Var(X (k)
m ) is the
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Figure 5. Simulation for the wheel with �1j ∼ N (0, �2), N = 10, 100 observations,
a1 = 1/2, a2 = 1/3, a3 = 1/6. In the first figure, the comparison is done with the Polya
urn model with B = 10. The other three figures show population distributions for the
wheel with di�erent values of �2.

variance of that quantity, we get

E[Xm] = ∑
k
skE[X (k)

m ], (22)

Var(Xm) = ∑
k
skVar(X (k)

m ) +∑
j<k

sjsk(E[X (j)
m ] − E[X (k)

m ])2 (23)

In particular, when our original procedures are all faithful, the hybrid proce-

dure will be faithful as well and (23) becomes Var(Xm) = ∑k skVar(X (k)
m ).

3.2.2. Hybrid type II. Assume we have K sequential procedures and K non-

negative numbers s1, s2,… sK with ∑k sk = 1. We can now consider a procedure

de�ned as follows: each individual will follow the ktℎ procedure with proba-

bility sk .
As seen from Figure 7, type I and type II hybrid methods lead to di�erent

combinations. Moreover, whilst the type I method is a probabilistic choice of

which pure method to use, the type II method leads to a mixing of the indi-

viduals involved. This allows us to distinguish mechanisms that may look the

same at �rst sight such as the three herding procedures. We also discuss this

below in Section 3.3. Finally, we note that, in contrast to type I, a type II combi-

nation of faithful models does not have to be faithful, see Figure 7 showing the
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Figure 6. Simulation for the wheel with �1j ∼ N ( j−1N , �2), N = 10, 100 observations,
a1 = 1/2, a2 = 1/3, a3 = 1/6. In the first figure, the comparison is done with the urn
model with drawing without replacement for B = 20. The other three figures show
population distributions for the wheel with di�erent values of �2. The values of TN
are almost 0 for these parameters.

combination of random and follow the majority models. The fact that the hy-

brid type I and hybrid type II are di�erent procedures is further demonstrated

analytically in Section 4.4.2.

3.3. Comparingmodels and outcomes. We may be interested in determin-

ing if two models are e�ectively the same or not. We shall say that two models

are equivalent if for any k-tuple of individuals and any patch, the probability

of the k-tuple being on the given patch is the same under both models. In par-

ticular, as seen from the calculations in Section 4, two models are di�erent if

they produce di�erent variances in the number of occupants on the patch.

Nevertheless, the above equivalence may not be strong enough as already

seen for the example of herding models such as the follow the majority, follow

the leader or follow the predecessor models. When these models are consid-

ered on their own, they yield completely identical outcomes. However, when

considered in combination with a random movement under hybrid type II, they

yield di�erent outcomes; see Figure 7.
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Figure 7. An example of 100 observations of movements of N = 10 individuals on 3
patches with a1 = 1/2, a2 = 1/3, a3 = 1/6. The hybrid type I combinations, s1 = s2 = 0.5,
of the random model with herding (follow the majority, follow the leader or follow
the predecessor - give the same). Hybrid type II combinations, s1 = s2 = 0.5, of the
same models di�er. The combination with follow the majority will give bias towards
patch P1 (using random, most individuals will accumulate there and following the
majority will only make the group bigger). The other two combination are faithful:
the combination with follow the leader usually having most individuals at one or two
patches, whilst that with follow the predecessor o�en has significant groups in all
patches.

Note that we saw that in Section 2.1.4 a di�erent way in which combining

models that appear the same can lead to di�erent results, when considering

utility functions even in deterministic optimization models from Section 2.1.

3.3.1. A fan and basemodel. Here we show a movement that cannot be achieved

by any of the above procedures. We can visualize the mechanism as in Section

3.1 but we will replace the wheel of spikes with �xed angles �ij by an expanding

“fan” of spikes.

Consider two individuals on three patches with a1 = a2 = a3 = 1/3. As in

the wheel procedure, patches are represented as wedges on the disc (P1 corre-

sponding to a wedge from noon to 4 o’clock, P2 from 4 to 8 and P3 to a wedge

from 8 to noon) and individuals as spikes. However, to describe a movement of

the individuals, choose ' uniformly at random from [0, 12) and move individual
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I1 to a corresponding hour while moving individual I2 to an hour correspond-

ing to 2'. Then we have the following cases, each happening with probability

1/6:

∙ for ' ∈ [0, 2), I1 and I2 will meet on patch P1
∙ for ' ∈ [2, 4), I1 will be on P1 and I2 will be on P2
∙ for ' ∈ [4, 6), I1 will be on P2 and I2 will be on P3
∙ for ' ∈ [6, 8), I1 will be on P2 and I2 will be on P1
∙ for ' ∈ [8, 10), I1 will be on P3 and I2 will be on P2
∙ for ' ∈ [10, 12), I1 will be on P3 and I2 will be on P3

So, individuals can meet on patch P1 or P3, but not on patch P2. Such a

situation is not possible under the wheel mechanism from Section 3.1. Indeed,

under such a mechanism, if two individuals meet on patch Pm with probability

�m and, if for some m′
we have am′ ≥ am, then the same individuals have to

meet on patch Pm′ with probability �m′ ≥ �m.

To show that this movement is not possible even for deterministic optimiz-

ing procedures from Section 2.1, realize that when there is an individual on

patch P1, the other is never on P3 and vice versa. If there are some utility

functions describing this kind of movement, we would need an empty patch

P2 being worth more than an empty patch P1 or P3 (so that when there is an

individual on P1, the other will end up on P2 and not P3). Consequently, when

the �rst individual is to be placed, it will end up on patch P2 and the second

will end up on either P1 or P3. That is, they will never meet in P1 nor P3.
It is not possible to achieve this distribution under the probabilistic models

from Section 2.2. There must be a nonzero probability for the �rst individual

to move to patch P1 or P3 (otherwise, the individuals would never be able to

meet at P1 or P3). Consequently, no matter how the utility depends on the

occupancy, when the �rst individual moves to P1, there is still a nonzero chance

for the second individual to move to patch P3. Consequently, there is a nonzero

chance that the individuals will end up in patches P1 and P3 at the same time.

We can still describe this mechanism in terms of deterministic or proba-

bilistic optimizing of the utility functions similarly to what is done in Sections

2.1 and 2.2. Nevertheless, we will have to allow for the utility functions to

depend on the occupancy of other patches (e.g., when a predator of our pop-

ulation can observe all patches and choose which to attack depending upon

occupancy). One possible mechanism is as follows. If all patches are empty,

the utility of each patch is 1/3. If the patch P1 is occupied, the utilities are given

by U1 = 1/2, U2 = 1/2, U3 = 0. If the patch P2 is occupied, the utilities are given

by U1 = 1/2, U2 = 0, U3 = 1/2. Finally, if patch P3 is occupied, utilities are given

by U1 = 0, U2 = 1/2, U3 = 1/2. With the utility functions de�ned this way, we
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can then follow the methods in Section 2.1 or Section 2.2 to achieve the desired

movement.

4. Novel measures of movement coordination

We consider a group of individuals making a single movement following

a process described above. We shall de�ne the following novel measures of

movement coordination. Let Tij denote the probability that individuals Ii and

Ij are on the same patch as each other. The probability of a randomly selected

pair of individuals being on the same patch is then

T2 =
1

(N2)

N

∑
i<j

Tij (24)

=
1

N (N − 1)

M

∑
m=1

E[Xm(Xm − 1)]. (25)

where Xm denotes the number of individuals on patch Pm.

Similarly, let Ti1…ik denote the probability that the k individuals Ii1 ,… , Iik are

all on the same patch. The probability of a randomly selected group of k indi-

viduals being on the same patch is then

Tk =
1

(Nk)

N

∑
i1<i2<…<ik

Ti1…ik (26)

=
1

(Nk)

1
k!

M

∑
m=1

E[Xm(Xm − 1)⋯ (Xm − k + 1)]. (27)

In the following, we will simply denote T2 as T .

Using E[Xm] = pmN , we get

T =
1

N (N − 1)
∑
m
E[Xm(Xm − 1)] (28)

=
1

N (N − 1)
∑
m
(Var(Xm)) + (E[Xm])

2
− E[Xm]) (29)

=
1

N (N − 1)
∑
m
((Npm)

2
− Npm) +

1
N (N − 1)

∑
m

Var(Xm) (30)

= (N ∑m p2m) − 1
N − 1

+
1

N (N − 1)
∑
m

Var(Xm) (31)

Consequently, T is simply a function of N , pm = E[Xm]/N , and Var(Xm).
These are perhaps the most fundamental properties of any movement process.

However, it is useful to have a single measure of aggregation, and T is the most

natural one if the relationship between the individuals is the focus. We saw in
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Section 2 a number of distinct mechanisms. The values of T and TN for these

mechanisms are shown in Table 1.

4.1. Random movement—no coordination. We now evaluate Tk for the

random model of Section 2.2.1. We will use this, and especially the result for

T2, for comparison with other models. For random movement, where individ-

uals move to patch Pm with probability pm independently of each other, we will

denote the probability of a randomly selected group of k individuals being on

the same patch by Rk , and we denote R2 simply by R. The individuals meet at

a patch Pm with probability pkm (note that there can be other individuals there

too) and so

Rk =
M

∑
m=1

pkm. (32)

Thus we have R = ∑M
m=1 p2m. Alternatively, we can derive the above from (31)

and the fact that Var(Xm) = Npm(1 − pm).

4.2. Bounds on T . It is clear that for any k, Tk ≤ 1. To �nd the lower bound

on T , note that it follows from (31) that

T =
NR − 1
N − 1

+
1

N (N − 1)
∑
m

Var(Xm). (33)

To minimize T is thus the same as to minimize ∑m Var(Xm).
Assume that Npm = E[Xm] is not an integer for all m. Denote

fm = Npm − ⌊Npm⌋ (and so ⌈Npm⌉ − Npm = 1 − fm).

Let (X̃m)m=1,…,M denote the multivariate distribution that minimizes∑m Var(Xm)
while satisfying E[X̃m] = pmN . We show in Appendix A that all of the M uni-

variate distributions X̃m must take only values Npm (if this is an integer), or

only values ⌊Npm⌋ and ⌈Npm⌉ (if Npm is not an integer). Moreover, in the lat-

ter case, the probability X̃m being ⌊Npm⌋ is given by
⌈Npm⌉−Npm
⌈Npm⌉−⌊Npm⌋

which equals

⌈Npm⌉ − Npm = 1 − fm, because if Npm is not an integer, ⌈Npm⌉ = ⌊Npm⌋ + 1.

The above distributions will be referred to as the minimal range distribution

(for the given mean Npm).

When the X̃m are as above, we get

E[X̃m(X̃m − 1)] = ((1 − fm)⌊Npm⌋(⌊Npm⌋ − 1) + fm⌈Npm⌉(⌈Npm⌉ − 1)) (34)

= 2Npm⌊Npm⌋ − ⌊Npm⌋(⌊Npm⌋ + 1)) (35)

= ⌊Npm⌋(Npm − ⌈Npm⌉) (36)

= N 2p2m − Npm + fm(1 − fm) (37)



MODELS AND MEASURES OF ANIMAL AGGREGATION AND DISPERSAL 23

and consequently

T =
∑m E[Xm(Xm − 1)]

N (N − 1)
≥

∑m E[X̃m(X̃m − 1)]
N (N − 1)

(38)

=
∑m N 2p2m − Npm + fm(1 − fm)

N (N − 1)
=
RN 2 − N +∑m fm(1 − fm)

N (N − 1)
(39)

We will denote the minimal value
RN 2−N+∑m fm(1−fm)

N (N−1) of T by Tmin.

4.3. Maximal and minimal values of T . The certainty for a random pair

of individuals to meet can be achieved if (and only if) all individuals move

together in one big group (such as in the herding model), i.e. when there is

maximal coordination between the individuals.

The minimal value of T , Tmin, can be achieved if individuals want to avoid

each other. This can be modeled as a wheel with uniformly distributed spikes,

the regular wheel. That we can achieve this distribution is demonstrated in

Appendix B. We note that the regular wheel distribution is not the only one

that gives this lower bound, as we also show in Appendix B.

We note that both large and small T values can be considered as a sign of a

high degree of coordination, either high aggregation or high dispersal, respec-

tively. Minimal coordination is associated with random movement and T = R,

although there are cases with T = R where there is coordination. This is sim-

ilar to the connection between independence and correlation. Independence

implies no correlation, but not vice versa.

4.4. Intermediate values of T . Using the hybrid type I model from Section

3.2.1, we can easily see that any value of T between Tmin and 1 can be achieved.

Indeed, pick s ∈ [0, 1] and let all individuals move like a herd with probability

s and use the regular wheel with probability 1− s. Under such a model, we will

get T = s + (1 − s)Tmin, i.e. we can choose the parameter s so that T attains any

value in [Tmin, 1].
It is interesting that any value of T can be achieved through such a simple

averaging mechanism of two of the most extremely coordinated systems. This

should act as a reminder that T will not tell us everything, and to fully under-

stand the coordination within a population, the higher moments Tk are needed

also.
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4.4.1. Intermediate values of T for Polya urn models. Consider the Polya urn

model from Section 2.2.2 with parameter B. We get, by (14) and (16),

T =
1

N (N − 1)
∑
m
E[Xm(Xm − 1)] (40)

=
1

N (N − 1)
∑
m

(Var(Xm) + (E[Xm])2 − E[Xm]) (41)

=
1

N (N − 1)
∑
m

(Npm(1 − pm)
N + a
1 + a

+ N 2p2m − Npm) (42)

=
1

N (N − 1) (
N (1 − R)

N + B
1 + B

+ N 2R − N) (43)

= R +
1 − R
1 + B

. (44)

Thus T depends only upon B and the equivalent probability for the correspond-

ing independent model, R. It ranges down from 1 for B → 0+ to independent

R with B → ∞ (technically with this method we cannot attain either bound).

We see that we can achieve any value of T between the purely random value

R and the value that would be obtained through the deterministic herding pro-

cedure of Section 2.1.2 or Section 2.3. Using a similar approach, this will also

be true for the probabilistic versions of any other optimization process based

upon a utility function.

4.4.2. Intermediate values of T : comparing hybrid models. In this section we

will show another example of how intermediate values of T can be attained

and also further investigate the di�erences between hybrid model type I and

hybrid model type II from Section 3.2.

First, as in hybrid type I, assume that with probability sI1 all individuals will

use the follow the leader model and, with probability sI2 = (1 − sI1), move at

random (i.e., we apply the hybrid type I model). Thus, we get, for k = 2,… , N ,

Tk = sI1 + (1 − sI1)∑
m
pkm (45)

which ranges from Rk = ∑m pkm for sI1 = 0 to 1 for sI1 = 1.

Second, as in hybrid type II, assume that each individual uses the follow

the leader model with probability sI I1 , and with probability sI I2 = 1 − sI I1 the

individual uses random (i.e., we apply the hybrid type II model).

For any randomly selected pair of individuals, there is a probability of 2/N
that one of them is the leader, in which case the probability they are together

is sI I1 + (1 − sI I1 )∑m p2m. Otherwise, with probability (N − 2)/N , the following

three cases can happen:
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1. With probability (sI I1 )2 both individuals followed the leader thus ending

up in the same patch for sure.

2. Exactly one individual followed the leader and the other was placed at

random. This happens with probability 2sI I1 (1 − sI I1 ).
3. No individual followed the leader. This happens with probability (1 −
sI I1 )2.

In cases 2 and 3, the individuals move independently of each other and so

their probability to end up in the same patch is ∑m p2m. Either case 2 or case

3 happens with probability 1 − (sI I1 )2. Consequently, the probability for both

individuals to end up in the same patch is given by (sI I1 )2 + (1 − (sI I1 )2)∑m p2m.

Combining the two, we thus obtain

T =
2
N (

sI I1 + (1 − sI I1 )∑
m
p2m)

+
N − 2
N (

(sI I1 )
2 + (1 − (sI I1 )

2)∑
m
p2m)

(46)

= ((sI I1 )
2 −

2sI I1 (1 − sI I1 )
N ) +(1 − (sI I1 )

2 +
2sI I1 (1 − sI I1 )

N )∑
m
p2m, (47)

which again ranges from R = ∑m p2m for sI I1 = 0 to 1 for sI I1 = 1.

To evaluate TN , note that N individuals can meet on patch Pm when the

leader goes to patch Pm, k individuals follow the leader and the remaining

N − k − 1 individuals end up on the patch Pm “by chance”. This gives

TN = ∑
m

(
N − 1
k )(sI I1 )

k(1 − sI I1 )
N−k−1pmpN−k−1

m (48)

= ∑
m
pm(sI I1 + (1 − sI I1 )pm)

N−1. (49)

The di�erence between type I and type II is that in type I, with probability

larger than sI1, all individuals will follow the leader, while in type II a random

number of individuals will follow the leader (the number of such individuals

will follow a binomial distribution with parameter sI I1 ). Thus, in type I, there

is a group of size N with probability larger than sI1. However, in type II, the

group size will be larger than for independent movement, but in a di�erent,

less extreme, way than type I.

For a fair comparison, choose sI1 for type I and sI I1 for type II to satisfy (for

large N ) sI1 ≈ (sI I1 )2. Letting N tend to in�nity, type I would yield TN = sI1 and

type II would yield TN = 0 whilst T is the same for both models.

See Figure 7 for visual illustration of the di�erences between the two types

of combinations.

4.5. Model statistics. We consider model statistics for each of the models

that we have described in this paper in Table 1. We observe a wide variety of

values of our statistics, depending upon the underlying mechanisms.
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We see from the table that there are various ways that groupings of the

entire population (TN = 1) can result, and just observing such a group does

not reveal the mechanism, which might relate to preference for grouping with

others or just for the site itself. This can only be distinguished by repeated

observation to see if di�erent sites are selected. Conversely, knowledge of the

variability of the group size at any given site is not su�cient to understand

whether the site or the presence of others is the key factor in to what extent

individuals aggregate.

The entries in Table 1 are for the pure models only, and a great variety of

di�erent results can be obtained through the hybrid models of Section 3.2. We

observed in Section 4.4.2 that the pairwise association measure T2 can be the

same for di�erent distributions, but that this may lead to large di�erences in

the probability of the population forming a single group. We further note that

mechanisms which appear identical in their outcome when followed with ab-

solute accuracy, can in fact be very di�erent when some error is introduced

as we see in the three herding variants in Figure 7. Thus great care is needed

when making inferences about mechanisms from the underlying data.
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5. Discussion

The distribution of animal populations — whether in their selection of sites

for colonization or as transient elections during migrations — has been a cen-

tral question of ecology and its supporting mathematical literature. Here we

have explored both existing and novel mechanisms governing patch selection

and analyzed the degree to which each interpretation maintained the faithful-

ness between a priori and a posteriori probabilities. Although many mecha-

nisms lead to the same or similar probabilities as statistical expectations, they

can exhibit strikingly di�erent realizations in practice.

The model that we have developed captures this feature. We can see this

from Figure 7, where three mechanisms that are identical in outcome from the

statistical measures in Table 1 are very di�erent when there is some additional

random e�ect, perhaps caused by errors or unpredictable external in�uence.

The modelling methodology that we have developed can model a wide range

of movement mechanisms and also produce mechanisms which have desirable

features. For instance we may be interested in modelling a population with

a certain level of aggregation, and we can specify values of our population

measures and then �nd a mechanism that yields these (although as we see in

Section 3.3.1 it is not clear that existing models can generate every possible

case). This will enable us to use these methods as components of models with

a wider range of features, such as from the evolutionary framework of Broom

and Rychtář (2012). The primary focus of this paper, however, is the modelling

of movement of populations itself, and we discuss this in detail below.

Long distance migration is an important aspect of the life cycle for many

organisms including not only avian species (Hutto, 2000; Sillett and Holmes,

2002; Mehlman et al., 2005; Moore et al., 2005), but also �sh (Ward et al., 2001),

ungulates (Guttal and Couzin, 2010), primates (Pyritz et al., 2011), and whales

(Heimlich-Boran, 1988). Both assessment of the landscape and individual mem-

ories from previous migration cycles a�ect the stopover locations for these

species, with the latter providing a justi�cation for both the existence of a pri-
ori probabilities and the faithfulness of a posteriori ones. For example, migra-

tory ducks are believed to assess local conditions and adjust layover times in

response to resource availability and their exposure to predation risk (O’Neal

et al., 2012), while pods of killer whales make use of subsurface topography to

navigate back to historic hunting grounds, although the main feeding grounds

are themselves separated by deep featureless zones (Heimlich-Boran, 1988).

Philopatry is also evident in female-led groups of red-faced lemurs (Pyritz et al.,

2011).

The spatial co-occurence of animals in either migratory stopovers or dur-

ing colonization and settlement of territories invites the question as to whether
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this spatial association was achieved via some mechanism of social cohesion or

density dependent selection (congregation/schooling), or whether it was solely

a product of density independent processes (aggregration/shoaling). The large

herds of lion prey species on the African savannah act as a defense mecha-

nism against predation (Hayward and Kerley, 2005; Scheel, 1993; Cressman

and Garay, 2011), illustrating the positive herd reinforcement mechanism in

our framework models. In contrast, stem mothers of the gall-forming aphid

Pemphigus betae almost exclusively settle the largest available leaves irrespec-

tive of the �tness costs imposed by high competitor densities (Whitham, 1978),

mirroring our concept of peak overload.

We believe Markov models will have a role in the study of aggregation and

dispersal. It may be useful to conduct a �eld experiment for migratory birds, or

the aphids Pemphigus betae, to estimate the utility functions and subsequently

compare the predictions of our theoretical models to the outcomes of biological

experiments.

Leaders are often individuals who are more attuned to environmental infor-

mation and are less in�uenced by the aggregation of conspeci�cs (Guttal and

Couzin, 2010). They make up a comparatively small proportion of groups rel-

ative to socially-focused individuals whose movements are socially facilitated

(King, 2010; Petit and Bon, 2010; Pyritz et al., 2011). In our models, patch set-

tlement was adopted sequentially but with the assumption that all members

could assume the role of early adopters or leaders. This type of egalitarian-

ism is evidenced in red-fronted lemurs, Eulemur ru�frons, which dwell in the

Kirindy Forest of Madagascar (Pyritz et al., 2011). In more socially despotic

lemurs and other primates with strong dominance hierarchies (Watts, 1994;

Chapman, 1990), leadership is more stable and responsive to external threats

such as the territorial encroachment of rival bands or out-group mate raiding

opportunities. In our models, this would represent the more dominant indi-

viduals non-randomly appearing �rst in the sequencing for patch selections.

High levels of density-dependent movement are often associated with large

variations in patch qualities (Gadgil, 1971; McPeek and Holt, 1992; Travis et al.,

1999; Metz and Gyllenberg, 2001; Poethke and Hovestadt, 2002; Matthysen,

2005; Hixon et al., 2002; Ford and Swearer, 2013). The most common sce-

nario is when settlement is negatively dependent (alternatively, dispersal is

positively dependent) as a consequence of competition for limited resources

with colonization rates proportional to the variation in patch quality (Fretwell

and Lucas, 1969; Morris, 2003; Resetarits Jr and Binckley, 2009). Thus when

beavers, Castor canadensis, were returned to historic, pre-trapping areas, they
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demonstrated clear preferences for areas in the lower watershed (Cunning-

ham et al., 2006). Sites higher in the watersheds were settled last and aban-

doned �rst during �eld observations. Likewise, during stopover periods, mi-

gratory passerines have extreme energy demands as they attempt to replenish

expended fat stores and exhibit territoriality, although conspeci�cs can aid in

the identi�cation of good sites (Moore and Yong, 1991). Nevertheless, move-

ment and colonization can also respond positively to population density (our

herding model) if there is an increased e�ciency in foraging (Takahashi et al.,

2004) or anti-predator bene�ts. In a secondary e�ect, dispersers from these

larger aggregations may have an elevated risk of attack by peripheral preda-

tors attracted by the group (Matthysen, 2005). There may be other, social con-

texts that also reinforce the spatial association of in-groups versus out-groups,

i.e., social fence theory (Hestbeck, 1982). For the southern hula�sh, Trachinops
caudimaculatus, a shoaling zooplanktivore o� the southeastern coast of Aus-

tralia, both resource/refuge competition and social cohesion are evident (Ford

and Swearer, 2013). The hula�sh responds to any patchiness within the reef

structure by distributing in accordance with reef size; however, on any given

reef the �sh comprise a single shoal. This leads to possibly suboptimal distri-

butions on large continuous reef structures.

The foraging behavior of Adélie penguins o�ers an interesting case study for

the modeling framework presented here as there appears to be two processes

at play. Adélie penguins, Pygoscelis adeliae, are known to dive synchronously

into small open waters surrounded by sea ice (Wilson et al., 1986; Tremblay and

Cherel, 1999; Ainley, 1972, 2002; Takahashi et al., 2004), possibly as a means

to reduce predation risk upon entry into the water (Todd, 1988; Ainley, 1972,

2002; Rogers and Bryden, 1995). Diving is typically proceeded by a congrega-

tion of penguins on the ice followed by calls that are hypothesized to facilitate

the dive synchronization (Takahashi et al., 2004). Diving in pairs or trios dur-

ing the observations, the action is usually initiated by the same lead individ-

uals (Takahashi et al., 2004). Once in the water, however, the penguins forage

independently and disperse to di�erent depths in the water column. This dis-

persal re�ects the fact that the penguins’ prey density is relatively small but

occurs over a greater range of depth (O’Brien, 1987). Compare this behavior

with rockhopper penguins who do not forage independently and whose prey

occurs in dense swarms (Tremblay and Cherel, 1999). Consequently, the tim-

ing of diving seems similar to the wheel model with a very tight range of dive

times, while the depth of foraging is controlled by a quality function negatively

a�ected by the presence of conspeci�cs.
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One of the framework features we examined was the transitioning between

alternative utility objectives (e.g. Figures 2 and 3). The desert locust Schis-
tocerca gregaria exhibits density-dependent phenotypic plasticity that a�ects

both its social behavior (solitary crypsis versus aposematic gregarious swarm-

ing) and food source selection (avoidance or consumption of the toxic plant

alkaloid hyoscyamine) (Uvarov, 1977; Simpson et al., 2001; Sword and Simp-

son, 2000; Sword and Dopman, 1999; Despland and Simpson, 2005). At low

populations, solitary S. gregaria are di�cult to locate for predators; however,

when densities increase, the physical contact between individuals stimulates

gregarization (Collett et al., 1998; Simpson et al., 2001). The resulting swarms

are easily identi�ed because the accompanying switch in diet leads to a bright

colorization in addition to their numeracy; however, these locusts also acquire

a measure of anti-predator protection. Predators learn to avoid the swarming

locusts because they are rendered unpalatable following the consumption of

the toxic compounds. Although the population initiates the transition from

being solitary to gregarious in response to higher densities, the window of

transition does not itself appear to be density-dependent.

Not all movements need pertain to consumable resources. When white

storks, Ciconia ciconia migrate from Germany to Spain, the presence of con-

speci�cs in �ight can provide information on the location and strength of up-

drafts (Van Loon et al., 2011; Pennycuick, 1972). Some of these migratory pop-

ulations can be partitioned into identi�able subgroups (Mueller et al., 2013;

Scheiber et al., 2013; Voelkl and Fritz, 2017), but discernable social relations

are not a requirement for large aggregation (Leshem and Yom-Tov, 1998), not

unlike traveling wildebeest herds. Even when subgroups are present, however,

their memberships are not static but change dynamically over the course of the

long migration (cf. migrations of the red-faced lemurs described above).

Population movement and colonization have been addressed in a number

of studies that have focused on particular mechanisms governing movement

processes. The original ideal free distribution (Fretwell and Lucas, 1969) has

led to modern interpretations of the concept using explicit spatial structures

both discrete (Armsworth and Roughgarden, 2005) and continuous (Cosner,

2005; Rowell, 2009). The resulting distributions are qualitatively recapitulated

in our model when the utility functions are negatively density-dependent. The

continuous system of Reding et al. (2016) provides a point of contrast with our

herding model. In both cases there is a general increase in the attractiveness

of locations with rising density. With the herding model, the increase is un-

bounded, but in Reding et al. (2016) ecological demographic processes even-

tually bound this increase and limit density. Intermediate population sizes are

also featured in more recent trends in research involving di�usive movement
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that uses U-shaped dispersal rules (e.g. Kim et al., 2009) where there is high

dispersal when the population density is either low or high but not when it

is intermediate. Travis et al. (1999) used a model of dispersal on n × n lattice

networks to show that density dependent dispersal should evolve under most

conditions, while Ballerini et al. (2008) demonstrated that collective animal

behavior could emerge from simple rules of interactions between individuals

(see also Guttal and Couzin, 2010). Moreover, what seemed to matter most

was the topological (social) distance between individuals rather than the met-

ric (physical) distance. Our present framework does not contain this level of

social networking between individuals, but it could be extended to do so. Given

the community structure and hunting strategies of cooperative predators like

killer whales who sometimes use line-abreast positioning like an expanded net

(Heimlich-Boran, 1988), reminiscent of our wheel model, this is a logical next

step for our paper’s framework.

In general it would be interesting to know to what extent the wheel can

describe the di�erent cases that optimizing and reinforcement models can do.

We saw in Section 3.1 with Figures 5 and 6 that it is �exible it showing a lot

of these behaviours, yet at the same time is a relatively simple model to work

with. Perhaps we can generate a lot of what we want with just a single mech-

anism? We note also similar �exibility from the hybrid methods of Section

3.2.

There are many reasons why individuals elect to be part of a group (spa-

tially, behaviorially) or to remain solitary (Krause and Ruxton, 2002), and we

have demonstrated here a broad framework of sequential behavioral adaption

that captures both alternatives. Many other factors in�uence these behavioral

expressions, however, and future work should incorporate additional social

and ecological realism in the formulation of our utility functions or hybrid

model creation. We have previously mentioned the inclusion of social struc-

ture as one research direction. As a further consideration, many species exhibit

sex-speci�c or age-speci�c segregation (Baguette et al., 1998; Matthysen, 2005;

Dingle and Drake, 2007; Beltho� and Gauthreaux Jr, 1991), while other species

may be in�uenced by the prevalence of exogenous and endogenous mating.

We can simulate these e�ects using our framework by adding the appropri-

ate dependence to the utility functions and tracking sub-group membership.

This will necessitate further consideration of the role of sequencing the pop-

ulation in our model as sub-group interactions may have confounding e�ects.

Additionally we have assumed that one patch does not in�uence another, yet

perceived habitat quality can be in�uenced both positively and negatively by

neighboring locations (Resetarits et al., 2005) (situations without this assump-

tion were discussed in Broom and Rychtář, 2018) as mentioned in Section 2.1.
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Finally, predator behavior strongly in�uences the aggregation of a population

(Cressman and Garay, 2011), and the predators themselves can disperse across

the environment. Our model o�ers the possibility of studying the dynamics of

settlement between prey and predator species on both ecological and evolu-

tionary timescales.

Appendix A. Proof of the minimal value of T

Suppose that the distribution of individuals at patch Pm, denoted by Qm, is

given by

P[Qm = k] = qmk , k ∈ ℕ0. (50)

We know that

T =
1

N (N − 1)

M

∑
m=1

(Var(Qm) + (E[Qm])
2
− E[Qm]) (51)

=
NR − 1
N − 1

+
1

N (N − 1)

M

∑
m=1

Var(Qm), (52)

where

Var(Qm) = ∑
k
qmk(k − Npm)2. (53)

We wish to �nd the minimum possible summation of these variance terms.

We proceed to �nd the minimum for each individually, and show that these

are achieved by the distribution generated by the minimal range distribution.

If Npm is an integer then clearly the distribution with mean Npm yielding

the minimum variance is just the one taking that value with probability 1.

We assume that Npm is not integer valued. Then for our distribution Qm we

must have some k < Npm for which qmk > 0, similarly for some k > Npm.

If the only such ks with positive probabilities are ⌊Npm⌋ and ⌈Npm⌉, then we

have the minimal range distribution and our target value fm(1− fm) is achieved,

as shown in Section 4.2.

In the following, we will distinguish two cases.

Case 1. Suppose that there are 0 ≤ k1 < ⌊Npm⌋ with qmk1 > 0 and N ≥
k2 > ⌈Npm⌉ with qmk1 > 0. Let s = min{k1; qmk1 > 0 and k1 < ⌊Npm⌋}, and

l = max{k2; qmk2 > 0 and k2 > ⌈Npm⌉}. Our distribution thus has range l−s ≥ 2.

Choose � = min(qms , qml). Consider the alternative distribution Q/
m which

has the same probabilities over the integers, except that:

q/ms = qms − �, (54)

q/ml = qml − �, (55)

q/m(s+1) = qm(s+1) + �, (56)

q/m(l−1) = qm(l−1) + �. (57)
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This distribution has range l − s − 1 (or l − s − 2 if qms = qml). The variance of

this new distribution is given by

Var(Q/
m) = Var(Qm) + �((l − 1 − Npm)2 + (s + 1 − Npm)2 (58)

− (l − Npm)2 − (s − Npm)2) (59)

= Var(Xm) − 2�(l − s). (60)

It is easy to verify that the above is indeed a probability distribution with mean

Npm. Thus, for any such distribution with range l − s we can �nd one with a

smaller range giving a smaller variance. Thus, no such distribution can achieve

the minimum variance.

Case 2. Now consider a distribution where we only have one out of a k <
⌊Npm⌋ and a k > ⌈Npm⌉ with positive probability. Suppose without loss of

generality that we have value l > ⌈Npm⌉, the largest such value with posi-

tive probability (almost identical working yields the equivalent result for only

values smaller than ⌊Npm⌋).
The mean of this distribution is Npm, and we know that the only possible

value below the mean is ⌊Npm⌋. Thus as l occurs with probability qml , ⌊Npm⌋
must occur with probability qm⌊Npm⌋ satisfying

qm⌊Npm⌋ ≥ qmlx (61)

where

x =
l − Npm

Npm − ⌊Npm⌋
. (62)

Consider the alternative distribution Q/
m which has the same probabilities

over the integers, except that:

q/ml = 0, (63)

q/m⌈Npm⌉ = qm⌈Npm⌉ + (Npm − ⌊Npm⌋)qml (1 + x) (64)

q/m⌊Npm⌋ = qm⌊Npm⌋ − qmlx + (⌈Npm⌉ − Npm)qml (1 + x) (65)

It is easy to verify that the above is indeed a probability distribution with mean

Npm. The range is also clearly smaller than the range l − ⌊Npm⌋ of the original.

Moreover,

Var(Q/
m) = Var(Qm) − (l − Npm)2 − qm⌊Npm⌋ − qmlx(Npm − ⌊Npm⌋)2 (66)

+ qml (1 + x) [(⌈Npm⌉ − Npm)
2(Npm − ⌊Npm⌋) (67)

+ (Npm − ⌊Npm⌋)2(⌈Npm⌉ − Npm)] (68)

= Var(Qm) − qml(Npm − ⌊Npm⌋)(⌈Npm⌉ − Npm). (69)
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Figure 8. T as a function of angles between spikes. N = 3, M = 2. �12 varies, �23 = �12.
Le� figure p1 = 0.1, middle figure p1 = 1/3, right figure p1 = 0.4.

Thus for any such distribution we can �nd an alternative with a smaller range

and a smaller variance.

We therefore have that any distribution with a range bigger than ⌈Npm⌉ −
⌊Npm⌋ = 1, does not yield the smallest variance. Thus the distribution that

yields the smallest variance is the (unique) one that has range 1.

Appendix B. Achieving the minimal value with the wheel

Suppose that the angle between the spikes on the wheel model from Section

3.1 is 2�/N . It is easy to see that the expected number of individuals on patch

Pm isNpm, and by considering the angles of the �rst and �nal individual on any

patch we see that the number of individuals on a given patch is either ⌊Npm⌋
or ⌈Npm⌉, and is exactly the distribution X̃m as described in Section 4.2. Thus

we have that the regular wheel precisely achieves the minimal T .

A uniform spread as described above is not the only distribution which

yields a minimal T , see Figure 8. Assume we have 3 individuals and two

patches that the individuals visit with probabilities p1 and p2 = 1 − p1 respec-

tively for p1 ≤ 1/2. The minimum value of T is Tmin = 1/3max(1, 3 − 6p1).
If p1 ≤ 1/3, the minimal value is achieved by the wheel method with the

spikes distributed in such a way that all angles are bigger than (or equal to)

p1 (i.e. uniquely with the uniform distribution for p1 = 1/3 but not uniquely if

p1 < 1/3). If 1/3 ≤ p1 ≤ 1/2, the minimal T is achieved if all angles are smaller

than (or equal to) p1 for 1/3 ≤ p1 ≤ 1/2.
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