
doi: 10.1098/rspa.2010.0067
, 2795-2798 first published online 7 April 2010466 2010 Proc. R. Soc. A

 
M. Broom, C. Hadjichrysanthou, J. Rychtár and B. T. Stadler
 
non-directed graphs
Two results on evolutionary processes on general
 
 

References
html#ref-list-1
http://rspa.royalsocietypublishing.org/content/466/2121/2795.full.

 This article cites 2 articles, 1 of which can be accessed free

Subject collections

 (11 articles)graph theory   �
 (75 articles)mathematical modelling   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

This journal is © 2010 The Royal Society

 on August 16, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/466/2121/2795.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/cgi/collection/mathematical_modelling
http://rspa.royalsocietypublishing.org/cgi/collection/graph_theory
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;466/2121/2795&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/466/2121/2795.full.pdf
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


Proc. R. Soc. A (2010) 466, 2795–2798
doi:10.1098/rspa.2010.0067

Published online 7 April 2010

ADDENDUM

Two results on evolutionary processes on
general non-directed graphs

Keywords: evolutionary dynamics; random drift; Markov chain; irregular graphs

1. Introduction

The paper Broom & Rychtář (2008) analytically investigated the probability
for mutants to fixate in an otherwise uniform population on two types of
heterogeneous graphs (lines and stars) by evolutionary dynamics. The main
motivation for concentrating on those two types of graphs only was the potentially
exponential size of the system of linear equations (see equation (1.1) below)
yielding the fixation probability on general heterogeneous graphs. The size of
the system was given by formula (4.1) from Broom & Rychtář (2008). It turns
out that formula (4.1) is in fact only a lower bound for the size of the system
and in this paper we correct this by deriving a formula for the exact size of the
system (1.1). We also solve the system (1.1) for general heterogeneous graphs in
the case of random drift.

Let G = (V , E) be an undirected graph, where V is the set of vertices and E is
the set of edges. We assume that the graph is finite, connected and simple, i.e. no
vertex is connected to itself and there are no parallel edges. The graph structure
is represented by a matrix W = (wij), where

wij =
{

d−1
i , if i and j are connected,

0, otherwise,

where di is the degree of the vertex i, i.e. the number of edges incident to the
vertex i.

The evolutionary dynamics on graphs is described, e.g. in Lieberman et al.
(2005) and is treated as a discrete time Markov chain. At the beginning,
a vertex is chosen at random and replaced by a mutant with fitness r , all
remaining vertices having fitness 1. At subsequent steps, a randomly chosen
individual replicates with a probability proportional to its fitness and its offspring
replaces an individual at a randomly chosen neighbouring vertex. The process
stops when there are no mutants or no resident individuals in the graph. Each
state of the dynamics is described by a set C ⊆ V , a set of vertices inhabited
by mutants.
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Let PC denote the probability of mutant fixation given that mutants currently
inhabit a set C . The rules of the dynamics yield (Lieberman et al. 2005; Broom &
Rychtář 2008)

PC =
∑

i∈C
∑

j �∈C (rwijPC∪{j} + wjiPC\{i})∑
i∈C

∑
j �∈C

(
rwij + wji

) (1.1)

with P∅ = 0 and PV = 1. This system has a unique solution following Broom &
Rychtář (2008).

For what classes of graphs can the system (1.1) be solved explicitly? Lieberman
et al. (2005) solved it for regular graphs (where di takes a constant value
independent of i, so that wij = wji). Broom & Rychtář (2008) solved it for stars
and significantly reduced the size of the system for lines. Below, we shall solve the
system for general graphs and r = 1, but first we consider the size of the system.

2. The number of mutant–resident formations

At every vertex of a graph G, there can be either a resident or a mutant; and
thus there are up to 2|V | potential mutant–resident formations or patterns. Let
a mutant–resident formation be represented by a function m : V �→ {0, 1} (0 for
resident, 1 for mutant).

The (finite) automorphism group Aut(G) of the graph G acts on a set of
formations M = {m : V �→ {0, 1}} by

(f ◦ m)(v) = m(f −1(v)) (2.1)

for every vertex v whenever f ∈ Aut(G), m ∈ M . We say that two formations
m and m′ are equivalent, if there is an automorphism f such that m′ = f ◦ m
(and thus m = f −1 ◦ m′). The number of unknowns in the system (1.1) is equal
to the number of equivalence classes of mutant–resident formations |M/Aut(G)|.
Burnside’s orbit counting theorem (Tucker 1994) yields

|M/Aut(G)| = 1
|Aut(G)|

⎛
⎝ ∑

f ∈Aut(G)

|Mf |
⎞
⎠ (2.2)

where |Mf | denotes the number of the elements of M fixed by f .
It is easy to see that if f is any permutation of vertices (this includes any

automorphism of the graph), then f ◦ m = m exactly for those m that are constant
on the cycles of permutation f . Hence, if C (f ) denotes the number of cycles of
a permutation f (fixed points—as elements of V—of the permutation f count as
one cycle), then every automorphism f fixes exactly 2C (f ) formations m because
one can have only all 0’s or all 1’s on every cycle of f . Thus, the total count
of equivalence classes of m and thus the number of mutant–resident formations,
MRF(G), is given by

MRF(G) = 1
|Aut(G)|

⎛
⎝ ∑

f ∈Aut(G)

2C (f )

⎞
⎠. (2.3)
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Consequently, as the number given by formula (2.3) is at least as large as the
number given by formula (4.1) from Broom & Rychtář (2008), the main point of
that paper is still valid as formula (4.1) was shown to emphasize the large size of
the system (1.1) in a general heterogeneous graph.

3. Random drift, the case when r = 1

For the case of random drift, r = 1, the solution of equation (1.1) is given by

PC =
∑

i∈C di
−1∑

k∈V dk
−1 , (3.1)

which can be checked by direct substitution. To derive the formula (3.1), assume
that, for disjoint sets C , D ⊂ V ,

PC∪D = PC + PD. (3.2)

By equation (3.2), the system (1.1) is equivalent to∑
i∈C

∑
j �∈C

wjiP{i} =
∑
i∈C

∑
j �∈C

wijP{j},

which is satisfied if, for all i, j ,

wjiP{i} = wijP{j}.

Consequently, whenever vertices i and j are connected,

P{i}
P{j}

= dj

di
. (3.3)

As the graph is connected, the repeated application of equation (3.3) along a path
between any two vertices i, j shows that equation (3.3) holds even when i, j are
not connected by an edge. As, by equations (3.2) and (3.3),

1 = PV =
∑
j∈V

P{j} = P{i}
∑
j∈V

di

dj
, (3.4)

we get

P{i} =
(∑

k∈V

di

dk

)−1

. (3.5)

The formula (3.1) then follows from equations (3.5) and (3.2). The assumptions
(3.2) and (3.3) can now be justified by the uniqueness of the solution of the system
(1.1). Note that equation (3.2) cannot hold for general r . For example, if r is very
large, PC∪D ≈ PC ≈ PD ≈ 1 which violates equation (3.2). Yet, as shown above,
equation (3.2) holds when r = 1.
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4. Discussion

The two results that we have presented apply for general graphs. Previous
analytical papers, including Broom & Rychtář (2008), only consider very special
graphs. The large size of the system of equations (1.1) makes it very difficult
to find analytical results in the general case, of which equation (3.1) is a very
special example. In fact, equation (2.3) is very useful in considering whether an
analytical approach should be made, as the larger the value of MRF(G) the more
difficult the system of equations is to deal with in general. Two of the simplest
graphs that have received the most attention so far, the complete graph and the
star, have values of MRF(G) of |V | + 1 and 2|V |, respectively. Interestingly, the
circle and the line, which have also been investigated, have much larger values of
MRF(G), but many states cannot be accessed from the initial state of a single
mutant (it was shown in Broom & Rychtář (2008) that these were the only graphs
for which this was true).
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