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a b s t r a c t

We present a simple model of investment across a suite of different anti-predatory defences. Defences

can incur an initial construction cost and and/or may be costly each time they are utilised. Our aim is to

use a simple, but general, mathematical model to explore when prey that face a single predatory threat

where each attack is of the same nature should invest only in a single defence, and when they should

spread their investment across more than one defence. This should help to explain the observed variety

of defences that a single prey individual may employ during repeated attacks of a similar nature or even

at different stages during one attack. Previous verbal reasoning suggested that prey should specialise in

investment in defences that can be utilised early in the predation sequence. Our quantitative model

predicts that (depending of the relatively properties of different defences), there may be concentrated

investment in early acting, or in late-acting defences, or a spread of investment across both defence

types. This variety of predictions is in agreement with the variation in defences shown by natural

organisms subjected to repeated predatory attack.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Predation is an almost ubiquitous process in the natural world,
and very few animals are immune to the risk of predation for at
least part of their life history. Since predation is responsible for a
large proportion of mortality in many species, it is no surprise that
anti-predatory defences are also widespread and intensively
studied by behavioural ecologists (see Ruxton et al., 2004; Caro,
2005 for reviews). Caro identified one of the 10 most pressing
questions in the study of anti-predatory defences as ‘‘how can we
explain patterns of morphological and physiological defences
across taxa?’’ There is indeed tremendous variety between species
in the forms of anti-predatory defences employed. However, there
is even substantial variability within an individual in the defences
they employ against different attacks (Van Buskirk, 2001 and
references therein). The conventional explanation of this variation
is that many individuals face risk of predation from a suite of
different predatory types for which different defences might be
required. For example, a single caterpillar might face attack by
avian predators, predatory social wasps, parasitic wasps and flies,
ants, spiders, and even insectivorous rodents. While visual crypsis
may be an effective defence against detection by birds, it is
unlikely to be as effective against ants that rely more on tactile,
vibrational and olfactory cues to locate their prey. However,

variation in predatory threat (while certainly part of the answer)
cannot be the sole driver of within-individual variation in
defences, since a single individual can use different defences
against the same type of predator in different attacks (reviewed in
section 13.6 of Caro, 2005).

That a single individual can utilise a suite of different defences is
noteworthy for at least two reasons. Firstly, defences are likely to be
costly and each defence added to the prey’s portfolio potentially
adds an associated cost. Secondly, there can be interference between
different defences such that implementation of one may impair the
performance of another. The different costs of different defences are
considered in depth in Chapter 5 of Ruxton et al. (2004). For our
purposes, we differentiate between two general types of cost, those
that are paid ‘‘up-front’’ such that the cost is paid whether or not
attacks occur and regardless of the number of attacks (often called
constitutive defences), and costs that are incurred each time the
defence is used. For example, a caterpillar that defends itself against
birds by being difficult to detect visually pays up-front costs. There
may be physiological costs to the production of pigments required to
produce the desired appearance. Alternatively or additionally, there
may be opportunity costs associated with restricted use of
microhabitats and restricted movement required to maximise
crypsis. These costs are paid regardless of the number of attacks
that an individual caterpillar experiences. In contrast some costs
occur whenever the defence is employed in a specific attack
(Higginson and Ruxton, 2009 call these ‘responsive’ defences). For
example, some insects (notably many ladybirds) exhibit reflex
bleeding where toxin-laced blood is exuded from joints in the
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exoskeleton in response to handling by a potential predator. This
blood may deter the predator from pursuing its attack, but the
exuded blood and its toxins have been lost, and have to be replaced.
Replacement of these is likely to be physiologically costly, and the
total cost of using this defence will increase with the number of
times it is deployed (Grill and Moore, 1998). Notice that this reflex
bleeding defence may also incur up-front costs as well, since there
may be physiological costs associated with the storage of toxins in a
way that avoids autotoxicity, and gaps in the exoskeleton that allow
reflex blood to leave may impose costs in terms of, for example,
water loss or risk of fungal disease. Other examples of responsive
defences are regurgitation (Bowers, 1993), gland secretions (Eisner
et al., 2004), urticating hairs (Bowers, 1993), ink release by
cephalopods (Derby, 2007), and the explosive defence of the
bombardier beetle (Eisner, 1958).

Investment in, or deployment of, one defence can reduce the
effectiveness of another defence. For example investment in a tough
spiny exterior may provide mechanical protection against handling
by predators, but it may make the prey individual more conspicuous
(decreasing the effectiveness of camouflage as a defence) and may
make it more difficult for the prey to choose to flee from predators
that may be able to circumvent the anti-handling defence. Flight and
crypsis are two classically interfering defences. If a predator has not
yet detected a predator, the prey may increase the chances of
remaining undetected by remaining still and trusting to their cryptic
appearance. However, if the predator inadvertently comes close to
the prey before detecting it, the close spatial proximity of the two
individuals will reduce the effectiveness of fleeing by the prey to
escape the predator. Conversely, if the prey flees early in the
predatory sequence before detection has occurred, then the
effectiveness of crypsis is likely to be greatly reduced as the fleeing
animal is more vulnerable to detection than when sitting still
(Broom and Ruxton, 2005).

Implicit in our description above is that an interaction between
a prey individual and a predatory individual is generally a
sequence of different phases. The most commonly used articula-
tion of this is the sequence laid out by Endler (1991), who
suggested that a predation event involves a sequence of six
stages: encounter, detection, identification, approach, subjugation
and consumption. Defences differ in which of these stages they
can be utilised in. Clearly crypsis only works in the initial
‘‘encounter’’ stage prior to detection of the prey by the predator.
In contrast, anti-predatory vigilance to allow detection of the
predator by the prey may be of use to the prey throughout all of
the first four of Endler’s six stages. Here we will simplify Endler’s
six stages: subsuming the first four into a ‘‘pre-capture’’ stage and
the last two into ‘‘post-capture. Our aim is to use a simple, but
general, mathematical model to explore when prey that face a
simple predatory threat, where each attack is of the same nature,
should invest only in a single defence; and when they should
spread their investment across more than one defence.

2. Methods

2.1. Model description

The key to our model is the idea that to successfully exploit an
encountered prey item, the predator must capture it and then
subdue and consume it. Thus, successful predation requires
success at each of a sequence of stages. Different defences act at
different stages of the predation process, and we will simply
characterise these as pre-capture and post-capture defences,
simplifying predation to a two stage process.

Pre-capture defences minimise the probability that a predator
that comes spatially close to (hereafter, ‘‘encounters’’) the prey is

able to capture it. These might be defences that minimise the
chance that the prey is detected and recognised (such as
camouflage or disguise) or defences that reduce the chance that
an attack will lead to capture (swiftness of movement, vigilance,
manoeuvrability). We characterise all these pre-capture defences
in a single parameter D1. D1 is a non-negative number indicating
the investment in pre-capture defences, with increasing values
indicating increasing investment. The probability that an
encounter with a predator leads to capture (P1) is a decreasing
function of D1. That is, increasing investment in pre-encounter
defences reduces the probability that the prey individual will be
successfully captured by any predator that encounters it.

Post-capture defences involve such things as fighting ability,
venomous stings, armoured integument and production of mucus.
All these defences have in common the fact that they reduce the
probability (P2) that capture leads to the death (and thus
consumption) of the prey (i.e. capture leads to successful
predation). We describe increasing investment in post-capture
defences by increasing values of D2, with P2 declining with
increasing values of D2. That is, increasing investment in post-
capture defences reduces the probability that a predator that
physically captures the prey is able to subdue, kill and consume it.

We are interested in finding the optimal strategy in terms of
investment in these two defences. There are costs, as well as
benefits, to investment in defence. We first of all assume that
there are fixed costs to the creation of the defences. Thus, even if
the prey individual never encounters a predator, it pays a cost for
its investment in defences. This occurs because these defences are
constitutive (at least in part). The fecundity of an individual that
never encounters any predators is given by F(D1,D2) where F

declines with increasing values of both D1 and D2. This represents
the fixed costs of investment in the two types of defence. As
investment in a defence increases so the fitness cost increases.

However, as well as fixed costs, we assume that there can be
additional costs every time a defence is used. For example, for
pre-capture defences, we can imagine that there is a fixed cost to
building and maintaining the muscle structure required for fast
escape, but there is an additional cost (say in energy expended
and/or feeding time lost) every time that defence is used and the
prey has to flee. Specifically we assume that if the prey encounters
a predator on a number of occasions Na, then it has to use its pre-
capture defence on Na occasions. The cost of these encounters is
represented by multiplying the fecundity of the prey individual by
½C1ðD1Þ�

Na , where C1(0)=1 (that is unaffected if there is no
investment in defence) and C1 declines with increasing values of
D1 (and thus fecundity declines both the investment in defence
and with how often the defences are used). This formulation
captures the assumptions that the costs of using pre-capture
defences increase both with the number of times these defences
are used and with the extent of these defences. That is, greater
investment in pre-capture defence reduces the risk of capture, but
also incurs higher fixed costs and costs that increase with the
number of time these defences are used.

Let us assume that of these Na encounters, a number Nc lead to
capture of the prey and a number Nn lead to no capture and the prey
escaping. Thus, we assume that to successfully survive these attacks
the prey will have to successfully use its post-capture defences on Nc

occasions (NcrNa). The cost of these is represented by multiplying
the fecundity of the prey individual by ½C2ðD2Þ�

Nc .
Where C2(0)=1 and C2 declines with increasing values

of D2. This formulation captures the assumptions that the costs of
using post-capture defences increases both with the number of
times these defences are used and with the extent of these defences.
That is greater investment in post-capture defence reduces the risk
that capture leads to death, but also incurs both higher fixed costs
and higher costs each time these defences are used.
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If a number of encounters with predators occur, then the
fecundity of the prey individual is zero if it is killed in any one of
these. The probability of it not being killed in any of the
encounters is ð1�P2Þ

Nc .
Thus, the total payoff to an individual playing a certain

strategy (in terms of investment across its two possible defences)
is given by the fecundity multiplied by the probability of
surviving:

R¼ FCNa

1 CNc

2 ð1�P2Þ
Nc ¼ FCNn

1 ½C1C2ð1�P2Þ�
Nc ;

where for notational convenience, we have omitted writing out
functional dependences on D1 and D2.

However, Nc (and so Nn) depends upon the value of D1. Let us
assume that encounters with a predator occur as a Poisson
process at rate e, and that reproduction requires that an individual
first avoid being consumed by a predator for a time period T. From
the general properties of the Poisson process, this can be
broken down into two independent Poisson processes. Namely,
encounters that lead to capture (which are Poisson with rate eP1)
and encounters that do not lead to capture (which are Poisson
with rate e(1�P1)). Thus Nc takes values drawn from a Poisson
distribution with mean eP1T, and Nn from a Poisson distribution
with mean e(1�P1)T.

Since Nc and Nn are generated by independent processes, we
can write the payoff as

R¼ FE½CNn

1 �E½fC1C2ð1�P2Þg
Nc �;

where E[ ] denotes the expectation of a stochastic process.
From the properties of the Poisson process, if x is Poisson with

mean l, then

E½tx� ¼ expðlðt�1ÞÞ;

and using this, we can eliminate Nn and Nc from our expression for
the payoff, giving

R¼ F expðeð1�P1ÞTðC1�1ÞÞexpðeP1TðC1C2ð1�P2Þ�1ÞÞ:

If we take logs and divide by eT, we can simplify this to

Rl ¼
lnðRÞ

eT ¼
lnðFÞ

eT �1þC1ð1�P1ÞþP1C1C2ð1�P2Þ: ð1Þ

Maximising the above function, maximises the payoff. In order to
make further progress, we must now specify the following
functional forms.

FðD1;D2Þ ¼ Fmax expð�f1D1�f2D2Þ. Thus, we assume that
maximum fecundity (before any predator encounters) is a decreas-
ing decelerating function of both D1 and D2. The higher the values of
f1 and f2, the higher the fixed costs of pre-capture and
post-capture defences, respectively.

P1 ¼maxð0;1�p1D1Þ;

P2 ¼maxð0;1�p2D2Þ:

That is, we assume that the probability of an attack succeeding
decreases linearly with investment in defences. The higher the
values of p1 and p2 the higher the anti-predatory efficacy of pre-
capture and post-capture defences, respectively.

C1 ¼maxð0;1�c1D1Þ;

C2 ¼maxð0;1�c2D2Þ:

We assume that the cost of defences increases linearly with the
investment in defences. The higher the values of c1 and c2 the higher
the per-use costs of pre-capture and post-capture defences,
respectively.

These are perhaps the simplest functions that have the
required properties outlined in the description above. Clearly,
this restricts investment in defences such that p1D1, p2D2, c1D1

and c2D2 must all be o1 for the model to give sensible
predictions. Thus as D1 approaches 1/c1 for example, any use of
the first defence would cost an individual almost all of its fitness.
Provided that p1 is not much smaller than c1, and p2 not much
smaller than c2, these upper boundaries will not be approached
for any reasonable strategy.

3. Model predictions

We begin by identifying the types of different solutions (in
terms of investment across the two defences) that are optimal in
different circumstances. We define the following two terms that
are central to the work that follows:

b1 ¼
f1

p1eT
�1;

b2 ¼
f2

p2eT
�1:

b can be thought of as the ratio of the constitutive cost to the
benefit of defences. Note that it immediately follows that b1Z�1
and b2Z�1. First, let us ask if it is ever optimal for the prey never
to make any investment in these costly defences. In all analyses
we explore the effect of f1 and f2, which control the constitutive
impact of defences on maximum fecundity.

3.1. No investment: (D1, D2)=(0,0)

This occurs when both the derivatives of Eq. (1) with respect to
D1 and D2 are negative at (0,0). It is easy to show that this occurs
whenever we satisfy two conditions:

b140; ð2Þ

and

b240: ð3Þ

For this solution, the stability condition is the same as the
existence condition, so whenever this solution is valid it is also
stable. The above conditions are equivalent to

f14p1eT and f24p2eT:

This is shown graphically in Fig. 1 with example values for
parameters. These conditions make intuitive sense. Increasing the
f values increases the constitutive cost of defence. If the p value is
small then the effectiveness of the associated defence is low, if e is
small then attacks rarely occur, and if T is small then individuals
only have a short pre-reproductive period to survive: all of which
should make investment in defences less attractive. That is, if
the constitutive cost of defence has a larger impact on fitness than
the increase in the probability of survival, prey should never
invest in defences. Notice, that the occurrence of this no-defence
equilibrium is influenced only by the constitutive costs of defence
(f1 and f2) not by the costs of utilising the defences (c1 and c2).

3.2. Investment only in pre-attack defences: (D1, D2)=(D1,0)

This occurs when both the derivative of Eq. (1) with respect to
D1 is zero and the derivative with respect to D2 is negative at
(D1,0). Evaluation of these derivatives leads to two conditions
again:

Firstly, the derivative with respect to D2 gives

�f2

eT þð1�p1D1Þð1�c1D1Þp2o0:

M. Broom et al. / Journal of Theoretical Biology 263 (2010) 579–586 581
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Expressed in terms of b1 and b2 this becomes

b24
p1b1

4c1

� �
b1þ2þ

2c1

p1

� �
¼

b1

4a1

� �
ðb1þ2þ2a1Þ; ð4Þ

where a1 ¼ c1=p1.
The derivative with respect to D1 gives

�f1

eT
þp1�2p1c1D1 ¼ 0:

Expressed in terms of b1 and b2 this becomes

D1 ¼
�b1

2c1
;

which is positive providing b1o0.
For (D1,0) to be stable we need the second derivative of R with

respect to D1 to be negative at (D1,0). It is easy to demonstrate
that this is always true. Thus, again this solution is stable any time
that it is valid. So, biologically we can conclude that it is also
possible for all investment to be concentrated in pre-attack
defences.

However, there are further conditions on b1, since the optimal
level of investment in defence in this case is given by

D1 ¼
�b1

2c1
:

The condition c1D1o1, together with b1Z�1, leads to the
restriction �1ob1o0; and the condition p1D1o1 leads to the
restriction �2a1ob1o0.

This gives

�2 minð0:5; a1Þob1o0; ð5Þ

which in addition to (4) gives the conditions for the (D1,0)
solution.

These conditions are summarised graphically in Fig. 1. Again,
the results make intuitive sense. From our arguments in the
previous section, this solution is more likely to occur under
conditions where b1 is negative and b2 is positive (or only just
negative). The other parameter group that affects the likelihood of
obtaining this solution is a1. a1 takes a high value if the costs of
using pre-attack defences is high and/or if the effectiveness of
such defences is low. Hence, it is logical that increasing a1 restricts
the area of (b1,b2) space where such solutions occur. From the
arguments laid out already it is no surprise that the level of
investment in pre-attack defences only increases as b1 becomes
more negative (because constitutive costs decrease or benefits
increase) and/or as c1 is reduced (because responsive costs
decrease).

3.3. Investment only in post-capture defences: (D1, D2)=(0,D2)

This occurs when the derivative of Eq. (1) with respect to D1 is
negative and the derivative with respect to D2 is zero at (0,D2).
Evaluation of these derivatives leads to two conditions again:

Firstly, the derivative with respect to D1 gives

�f1

eT þp1�ðp1þc1Þð1�c2D2Þp2D2o0:

Expressed in terms of b1 and b2 this becomes

b14
p2

4c2

� �
1þ

c1

p1

� �
b2ðb2þ2Þ ¼

1þa1

4a2

� �
b2ðb2þ2Þ; ð6Þ

where a2 ¼ c2=p2.
The derivative with respect to D2 gives

�f2

eT
þp2�2p2c2D2 ¼ 0:

Expressed in terms of b1 and b2 this becomes

D2 ¼
�b2

2c2
;

which is positive providing b2o0.
For this solution to be stable we need the second derivative of

R with respect to D2 to be negative at (0,D2). It is easy to
demonstrate that this is always true, and thus again this solution
is always stable when it exists. This means that it is possible to
find combinations of parameter values where investment in post-
attack defences occurs without any investment in pre-capture
defence.

Since this is the mirror image of the case above, it will not be
surprising to find very analogous conditions for this case. The
conditions for the existence of this solution are

�1ob2o0

�2a2ob2o0;

giving �2 minð0:5; a2Þob1o0; ð7Þ

which together with (6) gives the conditions for the (0,D2)
solution.

These limits can again be interpreted intuitively as above, and
are shown graphically in Fig. 1.

Note, however, a significant difference between conditions (4)
and (6); while a2 had no effect on the boundaries of the pre-attack
only case, a1 (as well as a2) does affect the boundaries of the post-
attack only case. This asymmetry arises from the fundamental
asymmetry between the two types of defences, pre-attack
defences occur before post-attack defences, and thus influence
the frequency with which post-attack defences are used.
However, post-attack defences do not affect the frequency with

Fig. 1. Different optimal solutions in terms of investment in pre-capture and post-

capture defences for different combinations of values of the parameters f1 and f2.

The higher the values of f1 and f2, the higher the fixed costs of pre-capture and

post-capture defences, respectively. Other parameter values: eT=10, p1=0.1,

p2=0.1, c1=0.2, c2=0.3. When both f1 and f2 are 41 (top right quarter of this

figure), then zero investment in both defenses is predicted. There is a region where

f1 is o1 and f2 is sufficiently high where investment only in pre-capture defences

is predicted. This region is bounded by the vertical dotted line at f1=1 and the

curved broken line that separates this region from a hatched region below. The

hatched region indicates parameter combinations for which investment across

both defences is predicted. Note this solution can co-exist for some parameter

combinations with investment only in the later-acting (post-capture) defence. The

both-defences solution is plotted only when it is stable (although it is stable in all

cases where it exists for this figure, this is not true in general). The region where

only investment in post-capture defences is optimal occurs in the bottom right of

the figure and is bounded by the horizontal broken line at f2=1 and the curved

solid line that cuts through the middle of the hatched region.
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which pre-attack defences are used. Increasing a1 (increasing the
costs of utilising a pre-attack defence or decreasing its efficacy)
increases the extent of (b1,b2) space where this post-attack only
investment strategy occurs—again this is just as we would expect.

3.4. Non-zero investment in both forms of defence

At such a solution, the derivatives of Eq. (1) with respect to
both D1 and D2 will be zero. Substituting the specific functional
forms and differentiating gives

�f1

eT
þp1�2p1c1D1þð2p1c1D1�p1�c1Þð1�c2D2Þp2D2 ¼ 0; ð8Þ

�f2

eT
þð1�p1D1Þð1�c1D1Þðp2�2p2c2D2Þ ¼ 0: ð9Þ

These can be solved simultaneously for the non-zero combination
of D1 and D2 that maximises the payoff.

Using (9) we can get an expression for D2 in terms of D1:

D2 ¼
1

2c2

� �
1�

f2

p2eTð1�p1D1Þð1�c1D1Þ

� �
: ð10Þ

Using this substitution, and rearranging Eq. (8) gives

p2

4c2

� �
1-

f2

p2eTð1-p1D1Þð1-c1D1Þ

� �2
 !

¼

f1

eT-p1ð1-2c1D1Þ

c1þp1ð1-2c1D1Þ
: ð11Þ

It is relatively easy to show that as D1 increases the RHS of this
always increases, because the nominator gets larger and the
denominator gets smaller, and the LHS always decreases (provid-
ing c1D1o1 and p1D1o1: which we have assumed to hold
earlier). Thus there can be at most one solution where the two
sides balance and so at most one solution with D140 and D240.

Thus, for any parameter value combination, if a solution
(D1,D2) exists, then this solution is unique.

Using the standard methodology of considering the determi-
nant of the Hessian matrix, the solution will be stable when this
determinant is negative, so that

@2Rl

@D2
1

@2Rl

@D2
2

4
@2Rl

@D1D2

 !2

;
@2Rl

@D2
1

o0;
@2Rl

@D2
2

o0;

at the solution values (D1,D2). We obtain

@2Rl

@D2
1

¼ 2p1c1ðp2D2ð1�c2D2Þ�1Þ;

@2Rl

@D2
2

¼�2p2c2ð1�p1D1Þð1�c1D1Þ;

@2Rl

@D1D2
¼ ð2p1c1D1�p1�c1Þðp2�2p2c2D2Þ:

It is clear that both second derivatives are negative and so we only
need the first condition to be solved. Substituting for D2 in (8) and
tidying yields

4p1c1p2c2v1�p2
2p1c1v1þ

f2

eTv1

� �2

ðp1c1v1�ðp1þc1�2p1c1D1Þ
2
Þ40;

ð12Þ

where D1 is given by the solution of (11) and v1 ¼ ð1�p1D1Þ

ð1�c1D1Þ.

Thus a stable non-zero investment occurs if the solutions of
(10) and (11) yield values of D1 and D2 such that

0oD1omin
1

p1
;

1

c1

� �
; 0oD2omin

1

p2
;

1

c2

� �
;

and (12) holds. An unstable solution occurs if (10) and (11) yield
such values and (12) does not hold. Unlike the other strategies
discussed so far, this mixed-defences strategy is not guaranteed to
be stable whenever it exists.

4. Co-existence of solutions

We consider the five possible solutions stable (D1, D2);
unstable (D1, D2); (D�1;0); stable (0;D�2); (0,0) where we use D�1
and D�2 to indicate that if one of these single defence solutions
were to coexist for the same parameters as (D1, D2), the levels
would in general be different to that of the same defence in the
two-defence solution.

It is clear from Eqs. (2), (3), (5) and (7) that (0,0) cannot co-
exist with either of the single defence strategies, and by noticing
that the left hand side of Eq. (9) decreases with increasing levels
of either defence, it is also clear that it cannot co-exist with either
of the two-defence solutions (either the two-defence solution is
stable when it exists or it is unstable).

We shall now consider the two single-defence solutions. The
lower boundary to the pre-attack only solution (D1,0) is given
when the inequality in (4) is replaced by an equality, i.e.

b2 ¼
b1

4a1

� �
ðb1þ2þ2a1Þ: ð13Þ

The left-most boundary of the post-attack-only solution in
Fig. 1 is attained using (6) in a similar way to give

b1 ¼
1þa1

4a2

� �
b2ðb2þ2Þ: ð14Þ

The gradient db2/db1 of the boundary of the (D1,0) solution,
evaluated at the origin is simply 1/(2a1). For the left-most
boundary to the (0,D2) solution, the gradient db1/db2 evaluated
at the origin is simply (1+a1)/(2a2). Thus, the gradient db2/db1 at
this point is 2a2/(1+a1).

From Fig. 1, we can see that there will be an area of overlap of
the two regions if the gradient of the (0, D2) boundary is less steep
than at the of the (D1, 0) boundary at the origin, i.e. if

2a2

1þa1
o

1

2a1
: ð15Þ

However, if (15) is not satisfied for a particular set of parameter
values then the two single-defence-only solutions cannot co-
exist.

From before, the conditions for a solution (0, D2) are given by
(6) and (7) and the conditions for a solution (D1,0) are given by (4)
and (5). If we look at the simplifying case where a2 ¼ a1 ¼ 0:5,
then (4) becomes

b24
b1

2
ðb1þ3Þ;

(5) becomes �1ob1o0,
(6) becomes

b14
3b2

4
ðb2þ2Þ;

and (7) becomes �1ob1o0.
In general, b14�1 and b24�1 is the allowable region if

c1Z0.5 p1, c2Z0.5 p2 and p1b14�2c1 (or p2b24�2c2) if c1o0.5
p1 (c2o0.5 p2). So if p1r2c1 and p2r2c2 then the full range of
possible bs are valid (and so any parameter sets of this type give
solutions as above), but if p142c1 and/or p242c2 then there will
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be parameter combinations that we cannot solve in this way;
these cases correspond to defences which are so effective that a
reasonable investment can reduce the probability of capture to
zero, and we ignore this possibility here.

We now show that (D1,D2) cannot occur with (D�1;0). For both
of these to be solutions, each must satisfy Eq. (8), and we can see
from this that D�14D1.

For (D1, D2) to be a solution we need these values to solve (10)
and (11). For (D�1;0) we need Eq. (11) to be solved with the left-
hand side replaced by 0. However, this means that in this second
solution the left-hand term is less than in the first, but the right-
hand term is greater than the first (D�14D1 and the right-hand
term increases with D1); which yields a contradiction. Thus the
two solutions cannot occur for the same parameters.

Hence (D1, D2) can only occur together with (0, D2) (see Fig. 1),
or as a unique solution.

In all of our numerical calculations (see the following section)
a stable solution of this type (with investment in both defences)
exists whenever none of the other three types do, although we
have been unable to prove that this must always be the case.

We have shown there are five possible equilibrium solutions,
four of which are ESSs ((0,0), (D1,0), (0,D2), stable (D1,D2), together
with the unstable (D1,D2) which is not an ESS). Thus without
restrictions, there would be 32 possible combinations of solutions.
However, we have shown that (0,0) can only exist as the sole
solution, and that there can never be more than one solution from
(D1,0), stable (D1,D2) and unstable (D1,D2). This leaves nine
possible combinations, which we consider below.

The following five combinations are all observed in Fig. 1:(0,0);
(D1,0); (0,D2); stable (D1,D2); (0,D2), stable (D1,D2). In addition to
some of these, both (D1,0), (0,D2) and (0,D2), unstable (D1,D2) are
observed in Fig. 3. This leaves the two possibilities of only
unstable (D1,D2) and no solution, which are the two possibilities
leading to no ESS. We have been unable to prove that these cannot
occur, but have not observed them in any of our numerical
investigations.

5. Numerical investigation of the model

Recall our definitions:

b1 ¼
f1

p1eT
�1;

and

b2 ¼
f2

p2eT
�1:

We know that (0,0) occurs when b1 and b2 are both positive, and
under these circumstances (0,0) can be the only solution. This
translates to conditions f14p1eT and f24p2eT .

For all of the examples that follow we assume the values
p1=0.1, p2=0.1, eT=10 and c2=0.2. Then (0,0) is the unique
solution when f141 and f241. The boundaries of these condi-
tions are shown by the dotted lines in Fig. 1, and the region of no
investment in defences lies above both these boundary values of
f1 and f2 in the top right corner of Fig. 1 (note the dotted lines will
be partially covered by other lines).

For the situation where the prey should invest only in pre-
capture defences, there are two restrictions on f1: �2ob1o0 and
�2a1ob1o0. As before, the prey should not invest in post-
capture defences where f24p2eT. Under our default parameters
values, c1=0.2, and thus a1=2, since a1=c1/p1. and therefore the
most restrictive condition is that not involving a1. The region of
(f1,f2) parameter space where only pre-capture defences are
predicted therefore occurs when b1 is negative and (by

re-arrangement) f14�peT. Since f1 ¼ p1eTb1þ1, for our default
values these fall at f1 values of 1 and �1. However, we are only
interested in non-negative values of f1 and f2, so the critical f2

values become 0 and 1.
There is also a restriction on f2 given by

b24
b1

4a1

� �
ðb1þ2þ2a1Þ:

In order to find this line, we simply take a range of f1 values,
between the two extreme values (0 and 1), convert these to
b1 values, and hence to b2 values, before converting these to f2

values. Since

f2 ¼ p2eTb2þ1;

we need to specify the value of p2. We assume this takes the value
0.1. Thus, the curved broken line and the vertical lines at f1 equals
0 and 1 in Fig. 1 enclose the region where investment in pre-
capture defences makes post-capture unnecessary. This is the top,
left region of Fig. 1.

A very similar situation occurs for the (0,D2) solution. Here,
there are two restrictions on f2: �2ob2o0 and �2a2ob2o0.
Let us assume that c2=0.3, and thus a1=3, since a2=c2/p2. Thus,
the most restrictive condition does not involve a2. Since
f2 ¼ p2eTb2þ1, for our default values these fall at f2 values of 1
and �1. However, we are only interested in non-negative values
of f1 and f2, so the critical f2 values become 0 and 1.

There is then a restriction on f1 given by

b14
1þa1

4a1

� �
b2ðb2þ2Þ:

In order to find this line, we simply take a range of f2 values,
between the two extreme values, convert these to b2 values, and
hence to b1 values, before converting these to f1 values. Thus, the
solid curved line and the horizontal lines at f2=0 and 1 to the right
of the curved line enclose the parameter values that yield this
solution (in the bottom, right part of Fig. 1).

Lastly, we show the solution where investment is spread
across both defences, these must be solved numerically, and are
only valid if both D values are positive, and that all four P and C

values are positive. All these solutions are shown in Fig. 1; the
situation where non-zero investment in both defences is shown
as a hatched region. Notice that to the right of the solid curved
lines there are parameter combinations where the both-defences
solution co-exists with another solution involving investment
only in post-attack defences.

In order to explore the nature of the mixed solution, in Fig. 2
we plot the D1 and D2 values for the mixed solution along a
transect of f1 values where we hold f2 at the value 0.6. We observe
that for f1 values close to zero there is no valid mixed solution,
since simultaneous solution for non-zero D1 and D2 values
predicts a negative D2 value. In this region the only solution is
for zero investment in D2 and all investment to be channelled into
D1. At around f1 values of 0.4 we do begin to get a mixed solution
with initially very low investment in D2. The D1 value at this point
shown on Fig. 2 is close to the value 1.5 predicted for the solution
with zero investment in D2 at f1=0.4. Generally as f1 increases, so
D2 increases and D1 decreases. Eventually, at an f1 value around
1.05 the D1 value falls to zero, when this occurs, then Fig. 2
predicts the D2 value to be close to the 0.667 value predicted for
the solution with no investment in D1 at this point.

In Fig. 3 we present the result of the same evaluation as in
Fig. 1 but where c2 is reduced six-fold to 0.05. Although the
predictions are superficially similar, there are several interesting
differences. Firstly, there is now a region of f1� f2 space where
both the (0,D2) and (D1,0) solutions are valid and stable. We must
also consider the stability of the solution of investment across
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both defences. In Fig. 3, we only plot such solutions where they
are stable. In Fig. 1, the interior solution is stable whenever it
exists. This is not true for the parameters chosen for Fig. 3. As in
Fig. 1, when f1o1, the interior solution exists for all f2 values
below the broken line marking the region of (D1,0) solutions.

However, it is only stable for a subset of lower f2 values. Thus,
there can be a region where both (0,D2) and (D1,D2) are potential
solutions but only the first of these is stable. As we have seen in
Fig. 1, it is possible also to find regions of parameter space where
both solutions are stable simultaneously.

6. Discussion

In his influential work, Endler (1991) suggested that it may be
more attractive for prey to interrupt the predation sequence as
early as possible (see also Planque et al., 2002 who argue the same
relating to successive defences against brood parasitism). He
argues this for a number of reasons. Firstly, failure of a later
defence may be more likely to be catastrophic for the prey.
Secondly, later in the sequence the performance of the prey may
be weakened or exhausted by implementation of defences earlier
in the sequence. Thirdly, the lost time and energy spent in
repelling the attack will be reduced if the attack is resolved early
in the sequence. Finally, investment in defences later in the
sequence may be inefficient, if these defences are seldom used
because defences used earlier in the sequence are generally
successful in repelling attacks before the later-acting defences are
implemented. The last point especially argues that we should
expect investment in early (pre-capture) defences, but not in later
defences.

Furthermore, early defences are more often constitutive, in
that the prey does not have to detect the predator to be
undetected, and so predator encounters might not affect the cost
of early defences. In contrast, post-encounter defences are more
often responsive, involving defensive behaviours or other physio-
logical costs, such as regurgitation or reflex bleeding that are
triggered by a specific attack.

Our model predicts that there can be circumstances where it is
optimal for the prey to invest in neither defence. This occurs if the
constitutive costs of the defences are high, if the defences have
low efficacy (per unit of investment), if attacks are rare and if the
period during which the prey is exposed to predation is short.
There are also circumstances where we predict investment in
pre-capture defences but not post-capture defences. This solution
is more likely to occur under conditions where b1 is negative and
b2 is positive (or only just negative). The parameter b for a given
defence can be seen as a description of the cost-benefit ratio of the
defences: b becomes larger (more positive) if the constitutive
costs of the defence are high. b also becomes larger if the attack
rate, the period that must be survived by the prey and/or the
efficacy of the defence are low. Whether or not we predict
investment in pre-capture defences only is also affected by the
value of a1. This parameter takes a high value if the costs of using
pre-capture defences are high and/or if the effectiveness of pre-
attack defences is low. Increasing a1 restricts the area of (b1,b2)
space where investment only in pre-capture defences is optimal.
The level of investment in pre-capture defences increases as
b1 becomes more negative and/or as c1 is reduced.

In circumstances where the asymmetry of the cost/benefit
ratios are opposite (that is bs is negative and b1 is positive (or only
just negative)), then we get investment in post-attack defences
only. Where the two b values are generally similar and not too
large and positive, we predict investment across both defences.
Indeed, such solutions are likely where f1 and f2 are small, which
might be reasonable for defences such as colouration and
sequestering of defences. Many defences serve other, perhaps
primary functions, such as catching or subduing prey, and so their
marginal canonical costs in terms of defence might be small. We
find that the costs of one defence affect the likelihood of
investment in the other (cf Figs. 3 and 1).

Fig. 2. D1 (broken line) and D2 (solid line) values for the mixed solution shown in

Fig. 1 along a transect of f1 values where we hold f2 at the value 0.6. All other

values are as in Fig. 1. Clearly, only combinations where both D1 and D2 are non-

negative are valid.

Fig. 3. Different optimal solutions in terms of investment in pre-capture and post-

capture defences for different combinations of values of the parameters f1 and f2.

The higher the values of f1 and f2, the higher the fixed costs of pre-capture and

post-capture defences, respectively. The values of the other parameters are the

same as those used for Fig. 1, except c2=0.05. When both f1 and f2 are 41 (top

right quarter of this figure), then zero investment in both defenses is predicted.

There is a region where f1 is o1 and f2 is sufficiently high when investment only in

pre-capture defences is predicted. This region is bounded by the vertical dotted

line at f1=1 and the curved dotted line. The hatched region indicates parameter

combinations for which investment across both defences is predicted and this

solution is stable. However, this solution is not stable everywhere where it is valid,

and so this solution is substantially less commonly predicted than in Fig. 1. Note

that this solution can co-exist for some parameter combinations with investment

only in the later-acting (post-capture) defence. The region where only investment

in post-capture defences is optimal occurs in the bottom right of the figure and is

bounded by the horizontal broken line at f2=1 and the curved solid line. Between

the two curved lines there is a region labelled ‘‘both’’, where both the solution with

investment only in post-capture defences and the solution with investment only in

pre-capture defences are possible.
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Further, there are combinations of parameter values for which
different strategies are both stable. In such circumstances the
strategy to which the population settles will depend on the
history of the population. Thus, the model predicts that it is
difficult to make generalisations about how many and which
defences a certain prey type will invest in without quantitative
evaluation of the different properties of each of the alternative
defences, as we discuss above. Our model might therefore provide
insight in to, for example, the evolution of aposematism in
the lepidoptera. Many closely related species have differing
defensive strategies, with some investing heavily in pre-capture
defences (excellent crypsis paying opportunity costs) and others
having both pre-capture (warning coloration) and post-capture
(aversive chemistry) defences. Our model shows how easily these
might be equally fit, and so divergent selection might occur based
initially on very minor differences, or even genetic drift.

There is a significant difference between the two types of
defence, in that pre-attack defences occur before post-attack
defences, and thus influence the extent to which post-attack
defences are used. However, post-attack defences do not affect
the frequency with which pre-attack defences are used. This
results in the co-existence of solutions in both defences and in
only post-attack defences, but not in both defences and only pre-
attack defences.

An interesting extension of our model would be to include a
range of predator types (or equivalently a range of different
predatory situations), with different defences differing in their
rank order of efficacy against these different predators. In
particular, this would allow exploration of generalism and
specialism in defences and in particular the general trend (noted
by both Endler, 1991; Caro, 2005) that defences used later in the
predation sequence are more likely to be specialised for a
particular type of predator than more general defences used
earlier in the sequence. Again, the role of multi-functional
defences was identified by Caro (2005) as another of his 10 most
pressing questions in predator–prey interactions.

Endler’s (1991) categorisation of different anti-predatory
defences in animals has been highly influential, but development
of theoretical underpinning for his predictions and empirical
testing of these predictions has been lacking. We hope our work
will be a useful early step in developing a more solid theoretical
base for understanding diversity of anti-predatory traits. There
have been developments on the empirical side. Low (2008)
carefully demonstrated investment across a range of defences by
the leaf-mining larvae of a moth (Antispila nysaefoiella) against a
specialist parasitoid. Langridge et al. (in prep) demonstrated that
the anti-predatory behaviours of cuttlefish (Sepai officinalis)
accords with three of Endler’s specific predictions: that later in
the sequences of an attack, defences become more predator-
specific, more risky if unsuccessful in deterring attack and more

costly to mount. More empirical and theoretical works to explore
and develop these predictions would be valuable. In this, an
important resource may be the comparatively much more
extensive literature seeking to understand the diversity of
anti-herbivore traits shown by plants (e.g. Biere et al., 2004;
Ode, 2006). We suggest that a useful next development for our
understanding of anti-predator behaviours would be to explore
how applicable current understanding of anti-herbivore defences
is to the different system.

The diversity of possible solutions to investment across only
two defences in our simple model where prey faces only one type
of attack demonstrates that a general understanding of the
diversity of anti-predatory suites used by different prey will be
a challenge. However, to meet that challenge, we feel that we
have demonstrated that simple verbal reasoning will be insuffi-
cient and models that allow quantitative evaluation of a complex
of different costs and benefits (as well as interaction between the
effectiveness of defences, not considered here) will be required.
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