
1 23

Journal of Mathematical Biology
 
ISSN 0303-6812
Volume 71
Number 4
 
J. Math. Biol. (2015) 71:979-996
DOI 10.1007/s00285-014-0848-x

The effect of fight cost structure on fighting
behaviour

Mark Broom, Michal Johanis & Jan
Rychtář



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J. Math. Biol. (2015) 71:979–996
DOI 10.1007/s00285-014-0848-x Mathematical Biology

The effect of fight cost structure on fighting behaviour

Mark Broom · Michal Johanis · Jan Rychtář
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Abstract A common feature of animal populations is the stealing by animals of
resources such as food from other animals. This has previously been the subject of a
range of modelling approaches, one of which is the so called “producer-scrounger”
model. In this model a producer finds a resource that takes some time to be consumed,
and some time later a (generally) conspecific scrounger discovers the producer with
its resource and potentially attempts to steal it. In this paper we consider a variant of
this scenario where each individual can choose to invest an amount of energy into this
contest, and the level of investment of each individual determines the probability of it
winning the contest, but also the additional cost it has to bear. We analyse the model
for a specific set of cost functions and maximum investment levels and show how the
evolutionarily stable behaviour depends upon them. In particular we see that for high
levels of maximum investment, the producer keeps the resource without a fight for
concave cost functions, but for convex functions the scrounger obtains the resource
(albeit at some cost).
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1 Introduction

Animals need a variety of resources to live and reproduce, and often they have to
compete with other animals for them. These resources include territories, mates and
food. Their competitors can be conspecifics or member of other species, and the nature
of contests vary depending upon the animals involved and the resources competed over.
Territories are often of value for a significant period of time, if not indefinitely, and so
provide significant opportunities for contests over ownership, with a series of intruders
(Kruuk 1972; Hamilton and Dill 2003; Iyengar 2008; Kokko 2013).

Food resources however are often only available for small periods. If a food item can
be consumed immediately by the individual that discovered it, then there is generally
no chance for another to compete for it. Often, however, food items require a non-
trivial handling time to eat them. This can be because the food item is destined for the
offspring of the individual, and some must be transported to the nest or den, during
which time others have the opportunity of taking it. Alternatively, it might take a while
to consume because it has a tough exterior that needs to be penetrated, like a shell, or
needs to be consumed in pieces which requires a bird to land to eat it (Spear et al. 1999;
Steele and Hockey 1995; Triplet et al. 1999). Such scenarios have been modelled by
Broom and Ruxton (2003), Broom et al. (2004, 2008), Broom and Rychtář (2007,
2011). Alternatively the resource might be a large food patch which just takes time to
completely consume, which is the focus of producer-scrounger models (Barnard and
Sibly 1981; Barnard 1984; Caraco and Giraldeau 1991; Vickery et al. 1991; Dubois
and Giraldeau 2005), see also Giraldeau and Livoreil (1998), Kokko (2013), Broom
and Rychtář (2013) for more general reviews.

In our model we consider a version of the producer-scrounger scenario. A producer
finds a resource that takes some time to be consumed, and some time later a (generally)
conspecific scrounger discovers the producer with its resource and potentially attempts
to steal it. In most previous versions of the model the competitors had a choice of a
discrete set of options only, for example fight or concede, or in a given contest to play
aggressively or passively, as in the classical Hawk-Dove game (Maynard Smith and
Price 1973; Maynard Smith 1982). More realistically animals can vary the amount
of investment they make in a contest, which can be a small token effort (perhaps
in the hope that the other will concede), an intermediate but serious effort, or a full-
blown effort at the maximum level possible.We consider a scenario where a scrounger
individual has discovered a producer individual with a resource, and must decide
whether to fight or not. Each individual invests an amount of energy into this contest,
and the level of investment of each determines the probability of it winning the contest.
In addition, each individual incurs a cost for the contest, which depends upon the level
of investment made. In the following sections, we carefully detail the mathematical
assumptions of the model, perform a general analysis for the functional forms we have
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The effect of fight cost structure 981

chosen, and then investigate the results for different key parameter values. Finally we
discuss the implications of our results both biologically, and for future models.

2 The model

We model the situation described above as a game in extensive form. One individual,
a producer, is in possession of a resource of fixed value v. Another individual, a
scrounger, comes along and may attempt to steal it. The scrounger invests s ∈ [0, S]
units of energy in the stealing attempt.When s = 0, nothing happens.When s > 0, the
producer then invests p ∈ [0, P] units of energy in defending the item. The probability
that the producer successfully defends the item will be an increasing function of p,
and a decreasing function of s, which for tractability of analysis we simply set as
p

s+p . Such a function has been introduced in Tullock (1980), who considered the more

general form pk

sk+pk
, which in the limit of k → ∞ gives the case where the individual

with the highest investment always wins, as in the classical war of attrition, e.g. see
Bishop and Cannings (1978). Such functions were axiomatized by Skaperdas (1996),
and our natural choice has now become widely used (see for example Congleton et al.
2008). When the individuals engage in the fight, each one incurs a cost c(s, p).

In full generality, the cost function c(s, p) is asymmetrical and potentially different
for the scrounger and producer. It consists of the true energetic cost of the investment
(such as performing a complex manoeuvre in an aerial contest between birds), the
potential for getting hurt by the animal’s own actions (typically, the more complex the
manoeuver, the more things could go wrong and the animal could end up seriously
injured even if the other individual does not fight) and the potential for getting hurt
by the actions of the opponent. However, in such a full generality, the mathematics
would be intractable, and we thus consider a symmetrical cost function (note that it
is possible to find solutions for linear asymmetric functions, as shown in Baye et al.
2012). The symmetrical cost function that we use is defined by

c(s, p) = (s + p)α (1)

for s+ p > 0 and α ≥ 0. We note that one consequence of this is that extra investment
by the other player will directly affect an individual’s cost, and so potentially its chosen
strategy. Clearly we do not need to define the cost at s + p = 0, since a contested
resource requires s > 0 and p ≥ 0. We note that there are other symmetrical cost
functions used, such as min(p, s) in the war of attrition, where effort corresponds to
the time an individual is prepared to wait in a purely passive contest, so that the extra
time over and above when the other individual concedes does not need to be spent.

One possible interpretation of the cost function is that s+ p is a measure of the total
complexity of the fight and the individuals pay more for more complex fights (because
the complex fights aremore energetically demanding and individuals can get hurtmore
seriously or with higher probability as the complexity increases). Alternatively, more
complex contests can take more time, and that time may be a function of s + p. The
cost paid could then be a function of the time spent; for example in lost opportunities,
or predation risk through being in an exposed area. We note that Baye et al. (2005,
2012) consider many possible cost functions, including conventional functions (each
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982 M. Broom et al.

pays its own costs) and less conventional ones (each pays some of its own and some
of the other player’s effort costs). Nested in their model is the case c(s, p) = s + p,
which is also a special case considered in this paper.

Note that as the cost is a function of s + p, this means that the producer pays the
cost even if it does not engage in the fight. This is a plausible outcome under a variety
of scenarios. For example, the producer may be hurt by the scrounger’s attack even if
the producer does not invest anything in fighting back. Similarly, if the producer does
not want to fight, it may need to flee the scene and the energy expenditure of doing so
may be correlated with the strength of the scrounger’s attack. Finally, the cost may be
interpreted as damage to the environment; for example any kind of attack on a fishing
bird may scare away any potential fish and reduce its gain from fishing in the short to
medium-term.

It is worth considering what circumstances are likely to lead to the different types
of cost function, i.e. the different values of the parameter α. It seems reasonable that
as the effort involved increases, the duration of the contest will increase sublinearly
and the risk of injury and fitness costs due to lost energy will increase supralinearly.
Thus if the major cost is due to risk of injury or lost energy, α is likely to be greater
than 1, i.e. we have a convex function, whereas if time costs are the biggest problem,
for example if this is due to exposure to predation risk, then we have α less than 1, i.e.
a concave function.

We will study how the stealing behaviour can evolve for different values of the
parameter α. When 0 < α < 1, then even a small investment in the fight is relatively
costly, but enlarging an already large investment is relatively inexpensive.Whenα > 1,
then small investments in the fight are cheap, but enlarging an already large investment
is very costly.When α = 0, the cost of the fight is constant regardless of the investment
for any contested resource (i.e. for any s > 0).

The individuals will always pay the cost of the fight, the producer will keep the
resource item if it wins and lose it if it loses the fight; the scrounger either gains nothing
if it loses or it gains the resource item if it wins the fight. The payoffs Up and Us for
the producer and scrounger will thus be

Up(s, p) = −(s + p)α − v
s

s + p
, (2)

Fig. 1 Scheme of the game. First, the scrounger invests s ∈ [0, S]. If s > 0, the producer then invests
p ∈ [0, P]. If p > 0, there is a fight that the scrounger wins with probability s/(s+ p). Both individuals pay
the costs, the winner of the contest keeps the resource that was originally in the possession of the producer
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The effect of fight cost structure 983

Us(s, p) = −(s + p)α + v
s

s + p
, (3)

whenever s + p > 0 and

Up(0, 0) = Us(0, 0) = 0. (4)

The game is shown in Fig. 1.

3 Analysis

In each case that we analyse below, the scrounger will make an initial choice of s, and
then the producer will pick a value p(s) which may vary depending upon the value
of s actually encountered. Thus any strategy will be a choice of a single number for
the scrounger, and a function of all possible encountered scrounger strategies for the
producer. This will result in a realisation of the producer’s strategy which is the actual
value of its function for the chosen value of s, but it should be borne in mind that the
producer’s strategy is the response function, not just the single number (see the text at
the end of Sect. 4.3).

3.1 Case α = 0

Let us first examine the special case of α = 0, i.e. a constant fight cost.
Assume the scrounger attempted to steal (s > 0). The payoff to the producer will

then be

Up(s, p) = −1 − v
s

s + p
. (5)

Since ∂Up
∂p > 0, it is optimal for the producer to fight with maximal intensity P .

If the scrounger does not attack (s = 0), its payoff will be 0. If the scrounger attacks
(s > 0), we also get ∂Us

∂s > 0, so that the scrounger should invest the maximal value
S in the fight. Hence, putting it together with the producer’s optimal decision, the
maximal scrounger’s payoff for s > 0 is −1 + vS/(S + P).

Consequently, when v ≤ 1 + P/S, the scrounger will not attack. If v > 1 + P/S,
the scrounger will attack with maximal intensity S and the producer will fight back,
also with the maximal intensity. We note that the condition for the scrounger to attack
is equivalent to the value of the resource times the probability to win being bigger than
the cost of the fight; this is in agreement with previous models, such as Broom et al.
(2004).

3.2 Case α > 0

For a given s ≥ 0 we find an optimal response of the producer. Clearly, when s = 0,
the producer’s response is p0(0) = 0.
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984 M. Broom et al.

For a fixed s ∈ (0,+∞) we have

∂Up

∂p
(s, p) = −α(s + p)α−1 + vs

(s + p)2
, (6)

which holds for p ∈ (−s,+∞) (clearly p < 0 and p > P do not correspond to real
solutions as they fall outside the valid range, yet it is mathematically convenient to
consider all values of p at this stage) and is continuous there. The critical points of
the function p �→ Up(s, p), i.e. the points p where ∂Up

∂p (s, p) = 0, are given by

p = g(s) =
(vs

α

) 1
α+1 − s. (7)

Note that g(s) > −s when s > 0. For convenience, we continuously extend g by
setting g(0) = 0. Furthermore,

∂2Up

∂p2
(s, g(s)) = −α(α − 1)(s + p)α−2 − 2vs

(s + p)3

∣∣∣∣
(s,g(s))

(8)

= −α(α + 1)
(vs

α

) α−2
α+1

< 0. (9)

It follows that ∂Up
∂p (s, p) > 0 for p ∈ (−s, g(s)) and ∂Up

∂p (s, p) < 0 for p ∈
(g(s),+∞). Consequently, p �→ Up(s, p) is increasing on (−s, g(s)] and decreasing
on [g(s),+∞) (and attains its unique maximum on (−s,+∞) at g(s)). However, we
have to maximise p �→ Up(s, p) on [0, P]. Thus p �→ Up(s, p) attains its unique
maximum on [0, P] at

p0(s) =

⎧
⎪⎨
⎪⎩

0 if g(s) ≤ 0,

P if g(s) ≥ P,

g(s) otherwise.

(10)

Note that p0(s) = max{0,min{g(s), P}} and it is a continuous function on [0,+∞).
Recall that g(0) = 0, and, by (7), for s > 0 we have g(s) ≤ 0 if and only if

s ≥ c4 :=
( v

α

) 1
α

. (11)

Further,

g′(x) = 1

α + 1

( v

α

) 1
α+1

x− α
α+1 − 1, (12)

g′′(x) = − α

(α + 1)2

( v

α

) 1
α+1

x− 2α+1
α+1 (13)
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The effect of fight cost structure 985

for x ∈ (0,+∞). Thus g is strictly concave on (0,+∞). Since g′(x) = 0 if and only
if

x = c1 := 1

(α + 1)
α+1
α

( v

α

) 1
α

> 0, (14)

the function g attains its unique maximum on (0,+∞) at c1. It follows that the
inequality g(s) ≥ P has a solution if and only if

P ≤ g(c1) = c3 :=
(
1 − 1

α + 1

)
1

(α + 1)
1
α

( v

α

) 1
α ; (15)

moreover, as g(0) = 0 < P and g is strictly concave on (0,∞), there exist constants
a(P), b(P) satisfying 0 < a(P) ≤ b(P) < c4 and such that g(s) ≥ P if and only if
s ∈ [a(P), b(P)]. The producer’s optimal responses are shown in Fig. 2.

To find the optimal strategy for the scrounger we have to maximise the scrounger’s
payoff given the producer responds optimally, i.e. the function

f (s) = Us(s, p0(s)). (16)

We define

h(s) = Us(s, P) = −(s + P)α + vs

s + P
, (17)

and then we have

f (s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if s = 0,

−sα + v if s > c4, i.e. p0(s) = 0,

h(s) if P ≤ c3 and s ∈ [a(P), b(P)], i.e. p0(s) = P,

(α − 1)
(

vs
α

) α
α+1 otherwise, i.e. p0(s) = g(s).

(18)
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Fig. 2 Producer’s optimal responses to varying the scrounger’s investment level s and different values of
v for P = 1. a α = 4, b α = 1, c α = 0.8
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986 M. Broom et al.

We note that f is a continuous function on [0,+∞). We have

h′(x) = −α(x + P)α−1 + vP

(x + P)2
, (19)

h′′(x) = −α(α − 1)(x + P)α−2 − 2vP

(x + P)3
(20)

for x ∈ (−P,+∞). Note that h′(x) = 0 if and only if x = g(P) and that g(P) > −P .

Since h′(g(P)) = 0 and h′′(g(P)) = −α(α + 1)( vP
α

)
α−2
α+1 < 0, it follows that h′ > 0

and h is increasing on (−P, g(P)] and h′ < 0 and h is decreasing on [g(P),+∞).
The behaviour of h on [a(P), b(P)] depends on whether g(P) ∈ [a(P), b(P)], i.e.
g(g(P)) ≥ P . This happens if and only if

P ≤ c2 := 1

2

( v

2α

) 1
α

. (21)

Note that g represents a critical point of either player’s payoff function if the other
player’s effort is effectively locally fixed. In a region where the producer’s effort is

Table 1 Notations used in the manuscript. S, P, α, v are parameters of the model

Notation Meaning

S The upper limit of the scrounger’s investment in the fight

P The upper limit of the producer’s investment in the fight

α The indicator of the concavity of the cost function

v The value of the contested resource

Up(s, p) Payoff to the producer when the scrounger plays s and the producer plays p

Us (s, p) Payoff to the scrounger when the scrounger plays s and the producer plays p

p0(s) The optimal response of the producer given the scrounger played s

f (s) Us (s, p0(s)), i.e. an anticipated scrounger’s payoff when playing s and the
producer responds optimally

h(s) Us (s, P), i.e. the scrounger’s payoff when scrounger plays s and producer plays P

g(s) Critical point of the producer’s payoff function
(and thus a candidate for the optimal response) if the scrounger played s

g(P) Critical point of the scrounger’s payoff function h(s)
(if the producer’s effort is locally fixed at P)

a(P), b(P) Solutions of g(s) = P; g(s) ≥ P if and only if s ∈ [a(P), b(P)],
p0(s) = P on [a(P), b(P)]

c1 The point where g(s) attains its maximum

c2 The point where g(g(s)) = s; g(P) ∈ [a(P), b(P)] if and only if P ≤ c2
c3 The maximal value of g, i.e. c3 = g(c1)

c4 The point where g = 0; g(s) < 0 if and only if s > c4
c0 The point where h(g(p)) = 0; h(g(P)) > 0 if and only if P < c0
k(P) The solution of f (s) = f (g(P)) that lies in the interval [b(P), c4)

l(S) The solution of Us (S, x) = 0
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The effect of fight cost structure 987

locallyfixed at P , such thatmarginal changes in the scrounger’s effort do not change the
producer’s effort, the scrounger’s payoff f (s) is given by h(s) and since h′(g(P)) = 0
(with g(P) being the only root of h′), g(P) describes a critical point of the scrounger’s
payoff function. See Table 1 for the summary of notation used in the paper.

4 Results

Now we distinguish three cases.

4.1 Case α > 1

Note that in this case c1 < c2 < c3 < c4. If P > c2, then f is increasing on [0, c4] (this
follows from the fact that h is monotone on [a(P), b(P)] and f (a(P)) < f (b(P))

by continuity) and decreasing on [c4,+∞). Thus if S < c4, then f attains its unique
maximum on [0, S] at S, while if S ≥ c4, then f attains its unique maximum on [0, S]
at c4.

If P ≤ c2 < c3, then f is increasing on [0, g(P)], decreasing on [g(P), b(P)],
increasing on [b(P), c4], and decreasing on [c4,+∞). We have f (g(P)) =
h(g(P)) = v−(α+1)( vP

α
)

α
α+1 and f (c4) = −cα

4 +v = v− v
α
. Thus f (g(P)) > f (c4)

if and only if P < c1. Therefore in this case if S < g(P), then f attains its unique
maximum on [0, S] at S, while if S ≥ g(P), then f attains its unique maximum on
[0, S] at g(P). Finally, if c1 ≤ P ≤ c2, then there is k(P) ∈ [b(P), c4) such that
f (k(P)) = f (g(P)). This is given by

k(P) = 1

(α − 1)
α+1
α

α

v

(
v − (α + 1)

(
vP

α

) α
α+1

) α+1
α

. (22)

The following summary is then easily deduced:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P > c2

{
S < c4 maximum at S,

S ≥ c4 maximum at c4,

c1 ≤ P ≤ c2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S < g(P) maximum at S,

g(P) ≤ S < k(P) maximum at g(P),

k(P) ≤ S < c4 maximum at S,

S ≥ c4 maximum at c4,

P < c1

{
S < g(P) maximum at S,

S ≥ g(P) maximum at g(P).

(23)

It means that the scrounger will play either c4, g(P) or S. The corresponding responses
by the producer will be p0(c4) = 0, p0(g(P)) = P (because P ≤ c2) and
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988 M. Broom et al.

Fig. 3 Different types of
equilibria for α = 4, fixed v and
varying S and P . The bold lines
are the boundaries of the regions
where the equilibrium types
changes. The equations for
curves g and k are given in (7)
and (22). The figure looks the
same for all values of v because
the constants c1, . . . , c4 and the
function g(P) =
v1/α[( P

αv1/α
)

1
α+1 − P

v1/α
] and

thus also the function k(P) scale
appropriately by a factor v1/α .
The situation is analogous for
any α > 1

00 c1

c1

c2

c2

c3

c3

c4

c4

P

S

v

v

(S,P )
g(P )

k(P )g(S) (S, g(S))

(g(P ), P )

(c4,0)

p0(S) =
{
P, if g(S) ≥ P,

g(S), otherwise.
(24)

The situation is summarised in Fig. 3. We note that sending S and P to infinity
corresponds to the situationwhere there is no upper bound on the investments possible,
and here this leads to the solution (c4, 0), where the scrounger steals the resource with
no resistance from the producer.

It should also be noted that in this and later sections, sending v to 0 has similar
effects to sending S and P to infinity, since although for finite S and P there are
theoretical limits on the energy that can be invested, for small v the energy that any
individual would invest in practice is also small.

The equilibrium investments and resulting payoffs for fixed S and P and varying
v are shown in Fig. 4. Also, note the discontinuity of the strategies when S > P . This
happens for all values of α and is caused by the switch from one solution to another,
when crossing from the (S, g(S)) region to the (g(P), P) region. We can see that only
the probabilities and not the payoffs are discontinuous. Thus, here we see one example
of a well known fact that the maximum of the function is continuous as the parameter
changes but the maximizer may not be continuous (Berge 1963).

To examine the phenomenon inmore details, let us directly examine the connections
between Figs. 3 and 4. For fixed values S and P (say S = 2 and P = 1) and a
temporarily fixed value v, the point with coordinates [P, S] falls into a specific region
in Fig. 3. As v grows, the regions in Fig. 3 grow as well (without essentially changing
shape) while the point [P, S] remains fixed. Hence the point that was originally in the
(c4, 0) region (such as the one for small values of v) eventually falls into the (S, g(S))

region (this is a continuous, but not differentiable change of optimal investment level).
As v grows even further, the same point then falls into the (g(P), P) region (indicating
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Fig. 4 Equilibrium investment levels for the scrounger and producer and the scrounger’s payoffs and
probability of victory when a S = 2, P = 1, α = 1.2 (left column) and b S = 1, P = 2, α = 1.2 (right

column) are fixed. We note that g is in fact a function g(x) = gα,v(x) = ( vx
α )

1
α+1 − x . In this figure, g(S)

means a function v �→ gα,v(S), and g(P) is interpreted analogously

a discontinuous change or a jump of optimal investment level). As v grows even more,
the point then finally falls into the (S, P) region.

From the players’ perspective, as v grows but is still relatively small, the scrounger’s
optimal investment grows to a maximal level S, while it is not beneficial for the
producer to invest anything. As v grows even further, the scrounger would like to
invest more but it cannot because it has reached its maximum already, and thus it
becomes beneficial for the producer to invest (it improves the odds of winning the
fight and the increase of the reward value outweighs the cost associated with the
investment). As v continues to grow, the producer invests more and more and since
the scrounger cannot invest more than S its odds of winning decrease, and at one point,
the odds decrease so much that the reward does not justify the cost and it becomes
beneficial to invest less than the maximum.

4.2 Case α = 1

Note that in this case c1 = c2 = c3 = v/4 < c4 = v. If P ≥ c1 then f is zero
on [0, c4]. If P < c1, then f is zero on [0, a(P)] and [b(P), c4], increasing on
[a(P), g(P)] and decreasing on [g(P), b(P)]. Therefore we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P ≥ c1

{
S < c4 maximum anywhere in [0, S],
S ≥ c4 maximum anywhere in [0, c4],

P < c1

⎧⎪⎨
⎪⎩

S ≤ a(P) maximum anywhere in [0, S],
a(P) < S < g(P) maximum at S,

S ≥ g(P) maximum at g(P).

(25)
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Fig. 5 Different types of
equilibria for α = 1, fixed v and
varying S and P . The bold lines
are the boundaries of the regions
where the equilibrium types
changes. The equation for the
curve g is given in (7). The
scrounger can chose from
multiple equilibria. Note that the
graph of a(P) coincides with the
lower branch of the graph of
g(S) because a(P) is the smaller
solution of P = g(s)
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This means that the scrounger will play either g(P), S, anything between 0 and
c4, or anything between 0 and S. The corresponding responses by the producer will
be p0(g(P)) = P (because P ≤ c2 = c1), p0(S) = P (because g(S) ≥ P) and
p0(s) = g(s) in the remaining cases. The situation is summarised in Fig. 5. Here
sending S and P to infinity leads to a solution of the form (s, g(s)), where the resource
is contested by both parties.

The equilibrium investments and resulting payoffs for fixed S and P and varying
v are shown in Fig. 6.

Wenote that there are large ranges of the scrounger’s investment levelwhich give the
same maximum payoff of 0 to the scrounger. This can be seen directly by substituting
into the formula

f (s) = Us(s, p0(s)) = −(s + p0(s)) + v
s

s + p0(s)
(26)

= −(s + √
vs − s) + v

s

s + √
vs − s

= 0 (27)

for the large range of s values where p0(s) = g(s).

4.3 Case α < 1

Note that in this case c2 < c3 < c1 < c4. If P > c2, then f is decreasing on [0,+∞)

(this follows from the fact that if P ≤ c3, then h is monotone on [a(P), b(P)] and
f (a(P)) > f (b(P)) by continuity) and so it attains its unique maximum on [0, S]
at 0. If P ≤ c2, then f is decreasing on [0, a(P)], increasing on [a(P), g(P)], and
decreasing on [g(P),+∞). Thus f still attains its maximum on [0, S] at 0 unless
h(g(P)) > 0, which happens if and only if
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Fig. 6 Equilibrium investment levels for the scrounger’s and producer and the scrounger’s payoffs and
probability of victory when a S = 2, P = 1, α = 1 (left column) and b S = 1, P = 2, α = 1 (right
column) are fixed.Here, the scrounger has a choice for any s in the black and darker gray region, the producer
then replies by p = g(s) which falls in the darker or lighter gray region. Probability of scrounger’s victory
depends on the scrounger’s strategy, themaximal probability (corresponding tomaximal optimal investment
level) is shown

P < c0 :=
(

α

α + 1

) α+1
α ( v

α

) 1
α

< c2. (28)

In this case we need to know whether S lies in the interval where h is positive. We
define

l(S) = (vS)
1

α+1 − S. (29)

Note that h(S) > 0 if and only if

P < l(S). (30)

Thus we may conclude that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P ≥ c0 maximum at 0,

P < c0

⎧⎪⎨
⎪⎩

S ≤ g(P) and P ≥ l(S) maximum at 0,

S ≤ g(P) and P < l(S) maximum at S,

S > g(P) maximum at g(P).

(31)

This means that the scrounger will choose to play either 0, S or g(P). The correspond-
ing responses by the producer will be p0(0) = 0, p0(S) = P (because in this case
P < l(S) < g(S)) and p0(g(P)) = P (because in this case P < c0 < c2). The situ-
ation is summarised in Fig. 7. Sending S and P to infinity here yields the solution of

123

Author's personal copy



992 M. Broom et al.

Fig. 7 Different types of
equilibria for α = 0.8, fixed v

and varying S and P . The bold
lines are the boundaries of the
regions where the equilibrium
types changes. The equations for
curves g and l are given in (7)
and (30). The situation is
analogous for any α < 1
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Fig. 8 Equilibrium investment levels for the scrounger and producer and the scrounger’s payoffs and
probability of victory when a S = 2, P = 1, α = 0.8 (left column) and b S = 1, P = 2, α = 0.8 (right
column) are fixed

(0,0), with the scrounger not challenging for the resource in the unbounded investment
case. This may seem a counterintuitive result because it appears that the scrounger
would be better off playing s > 0 and then gaining a reward for a little cost (after the
producer gives up by playing p = 0). However, p = 0 is just the realisation of the
actual producer’s strategy, which is to play a specific function of p0(s) given by (10),
against whichever s occurs. For α < 1, when s > 0, then the producer’s best reply is
g(s) (at least in the case when P is large), which would yield a negative payoff to the
scrounger, and hence the scrounger should indeed play 0.
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The equilibrium investments and resulting payoffs for fixed S and P and varying
v are shown in Fig. 8.

5 Discussion

Previous game-theoretical models of food stealing behaviour (Broom and Ruxton
2003; Broom et al. 2004, 2008; Broom and Rychtář 2007, 2011) have considered a
number of different scenarios for when an animal tries to gain resources by stealing,
rather than by directly acquiring them itself. Typically these models only consider
a small range of options for the players involved, for example to attempt to steal or
not (Crowe et al. 2009; Broom et al. 2013, 2014), or play Hawk or Dove in a contest
(Broom et al. 2009; Grundman et al. 2009). Such a discrete set of options is commonly
considered inwider ecological scenarios, for example patch foraging,where the choice
may be to forage on a particular patch (Fretwell and Lucas 1970; Křivan et al. 2008). In
many real situations, individuals will have a greater flexibility of options, for example
forage for a while and then move to a different patch (Charnov 1976). We also note
that our model can be applied beyond biological sciences, such as to quantity-setting
games in economics between two firms (Varian and Repcheck 2005, Ch. 27).

Often contests are decided not by the strongest, but by the individual with the
greatest desire or need to win the resource, as they may put in a disproportionate effort
as the reward is so important to them. Thus energetic investment can be thought of as a
strategic investment under the control of the individual animal, and can plausibly vary
from zero upwards, perhaps to some maximum value depending upon the animal’s
energy reserves. However, the bigger the investment in the contest, the bigger the
chances of winning, but also the bigger the costs of the potential contest. This creates
another trade-off situation for the individuals. This is the situation that we consider
in this paper: related models from economics have been considered, for example in
Tullock (1980), Baye et al. (2012), and Skaperdas (1992). We note that the role of
budget limits has been analysed, see for example Che and Gale (1997), and Bester and
Konrad (2004), and plays a crucial role in Colonel Blotto games (Roberson 2006).

We have shown that when maximum investment levels are low or equivalently
when v is large compared to the maximum investment levels, generally both animals
should play at the maximum level. However, when they are high or v is not too large,
then the equilibria depend greatly upon the nature of the cost function. For a convex
function the scrounger can find a sufficient investment level (but one not too high to
be profitable) to force the producer to concede. For a concave function the scrounger
will not challenge, so the producer keeps the resource with no investment. Only at the
boundary linear case will there be a contest for the resource.

If the individuals do not have the same maximum level, we saw that the situation is
typically more favourable to the individual with the higher maximum. When S > P ,
then the scrounger always invests more than the producer and obtains a favourable
payoff. When P > S, then the producer invests more than the scrounger for large
values of v. Interestingly, as seen at Fig. 4b, when the payoff is convex, P > S and v

is relatively small (but not too small), then a scrounger invests more than a producer
(and is thus likely to win the fight). Still, regardless of the convexity of the payoff
function, when P > S the scrounger’s payoff is small (relatively to the value of v).
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As we have seen, the order of the players in such a sequential game can make a real
difference. We have assumed that the scrounger is the first player and the producer is
the second. This makes sense, as usually the producer will be in control of a stationary
resource and the scrounger will have to make the first move. However, there may be
situations where the reverse is true, for example if the resource is sufficiently large
or spread out that an active defence is required to chase off an intruder. In this case,
the results that we have obtained for producer and scrounger would be swapped.
There may also be circumstances where the game can be assumed to be one involving
simultaneous decisions (as in the earlier models, such as Barnard 1984), which would
require a different game-theoretical model. See for example McNamara et al. (2006)
where the authors study the differences between the two approaches for a similar
game.

Our model assumes that there is a homogeneous population of producers and simi-
larly for scroungers. This means that the scrounger can predict the producer’s response
to its effort with perfect accuracy. In a real biological situation, individuals vary in
their fighting ability and other factors, commonly known as Resource Holding Poten-
tial (RHP) (Parker 1974). In Broom et al. (2014) authors explicitly model a similar
scenariowhere individuals differ in RHP (although the difference is known to both par-
ties). A scenario where the individuals value the resource differently has been studied
in Broom et al. (2013). We hypothesise that in a heterogeneous population, the role of
information will be crucial in determining the outcome. If individuals know the exact
RHPof their opponents, then results very similar to thosewe have already obtainedwill
occur, where (in the absence of energy limits) one individual will concede. However,
with uncertainty, there will likely be more contests where both individuals fight.

Note that we have also used rather simplistic functions for both the probability of
victory, and the cost of the contest. Thesewere for reasons ofmathematical tractability.
It is possible to consider alternative forms for each of these functions. Similarly the
costs, the probability of victory and the maximum energy investment of the animals
may all depend upon some property of the animal, for example its Resource Holding
Potential, e.g. see Hurd (2006). These could be considered in later versions of the
model. The main rationale for this paper, however, was to introduce the concept of
energetic investment into food stealing contests, as well as to show some of its effects,
and as mentioned earlier there is a significant range of existing models where this kind
of idea could be applied.

Acknowledgments The research has been supported by grant GAČR 201/11/0345 (Michal Johanis) and
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References

Barnard C (1984) Producers and scroungers: strategies of exploitation and parasitism. Springer, Berlin
Barnard C, Sibly R (1981) Producers and scroungers: a general model and its application to captive flocks

of house sparrows. Anim Behav 29(2):543–550
BayeMR,KovenockD, deVries CG (2005) Comparative analysis of litigation systems: an auction-theoretic

approach. Econ J 115(505):583–601
Baye MR, Kovenock D, de Vries CG (2012) Contests with rank-order spillovers. Econ Theory 51(2):315–

350

123

Author's personal copy



The effect of fight cost structure 995

Berge C (1963) Topological spaces: including a treatment of multi-valued functions, vector spaces, and
convexity. Dover Publications

Bester H, Konrad KA (2004) Delay in contests. Eur Econ Rev 48(5):1169–1178
Bishop D, Cannings C (1978) A generalized war of attrition. J Theor Biol 70(1):85–124
Broom M, Ruxton G (2003) Evolutionarily stable kleptoparasitism: consequences of different prey types.

Behav Ecol 14(1):23
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