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Abstract In the “producer—scrounger” model, a producer discovers a resource and is
in turn discovered by a second individual, the scrounger, who attempts to steal it. This
resource can be food or a territory, and in some situations, potentially divisible. In a
previous paper we considered a producer and scrounger competing for an indivisible
resource, where each individual could choose the level of energy that they would invest
in the contest. The higher the investment, the higher the probability of success, but also
the higher the costs incurred in the contest. In that paper decisions were sequential with
the scrounger choosing their strategy before the producer. In this paper we consider
a version of the game where decisions are made simultaneously. For the same cost
functions as before, we analyse this case in detail, and then make comparisons between
the two cases. Finally we discuss some real examples with potentially variable and
asymmetric energetic investments, including intraspecific contests amongst spiders
and amongst parasitoid wasps. In the case of the spiders, detailed estimates of energetic
expenditure are available which demonstrate the asymmetric values assumed in our
models. For the wasps the value of the resource can affect the probabilities of success
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of the defender and attacker, and differential energetic investment can be inferred.
In general for real populations energy usage varies markedly depending upon crucial
parameters extrinsic to the individual such as resource value and intrinsic ones such
as age, and is thus an important factor to consider when modelling.

Keywords Kleptoparasitism - Food stealing - Producer—scrounger - Game theory -
Simultaneous decisions

Mathematics Subject Classification 91A05 - 92D50

1 Introduction

Animal competition takes many forms, involving a range of potential resources such
as mates, territories or food. Competition can be with close relatives such as nestmates,
unrelated conspecifics or members of other species, and can involve different kinds of
contests such as direct fights or indirect competition, e.g. competitive begging from
parents in the case of chicks within a brood. The value of different resources also
varies markedly; territories can be key to mating, and if held for a long period can
be of central importance in a given individual’s life (Kruuk 1972; Hamilton and Dill
2003; Iyengar 2008; Kokko 2013). Food resources may also be very valuable, or of
relatively small value, but in either case tend to be relatively short-lived prizes. If an
item can be eaten immediately, then once an individual takes possession of it, there
may be no further possibility of another contesting it (although contest possibilities
persist if this item needs to be taken to young).

Larger food items, or those with defences that need to be breached, such as shellfish,
need some time to consume, and during this time there is the opportunity for others
to attempt to steal the item, see for example Spear et al. (1999), Steele and Hockey
(1995), Triplet et al. (1999). Models where this item was an indivisible one which
needed to be competed for were investigated by Broom and Ruxton (2003), Broom et al.
(2004, 2008), Broom and Rychtar (2007, 2011), Hadjichrysanthou and Broom (2012).
Alternative models that considered the resource as a large patch of smaller items, so that
the resource became divisible, were considered in the so-called “producer—scrounger”
models by Barnard and Sibly (1981), Barnard (1984), Caraco and Giraldeau (1991),
Dubois and Giraldeau (2005), Vickery et al. (1991); consider also Giraldeau and
Livoreil (1998), Kokko (2013), Broom and Rychtar (2013) for more general reviews.
We note that a key element of the kleptoparasitism models was a time-delay element
in the model which meant that contests were not simple independent ones, but the
probability of a given opponent type was correlated with their strategy.

In a previous model by Broom et al. (2015) we considered a version of the
producer—scrounger model, where the producer discovers a resource which cannot
be immediately consumed, and is then subsequently found by a scrounger who chal-
lenges for possession of the resource. In earlier models of this type the competitors
could only choose from a finite range of options such as fight or display, as in the
classical Hawk—Dove game (Maynard Smith and Price 1973; Maynard Smith 1982).
More realistically animals can vary the effort they make in any contest, and a model by
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Broom et al. (2015) allowed a range of investment levels; the higher the investment,
the higher the chances of success, but also the higher the costs incurred. First the
scrounger had to decide the level it should invest (including no investment, so it does
not challenge for the resource), after which the producer chose a level of investment
in response. In this paper, we consider an alternative version of the game where both
individuals make the choice of investment level simultaneously.

From a modelling point of view, it is often the case (see e.g. McNamara et al.
20006), as it is here, that the order of the players matters. But what is the most realistic
ordering to model real populations? We believe that this very much depends upon the
biological scenario being considered. For example, if the producer is in control of a
small stationary resource, then it may make sense that the scrounger makes the first
move, and the producer has to respond.

On the other hand if the resource is a large spread out territory an active defence
may be best, and so there may be some complex interaction, best modelled by a
simultaneous game, as in the early models by Barnard (1984) (or even on occasions a
game with the producer moving first). An example of a case where large territories are
defended and so simultaneous contests are plausible can be seen with the subtropical
reef fish Kyphosus cornelii which defends sizeable gardens from kleptoparasitic rivals
(Hamilton and Dill 2003). Such territories are not necessary for complex energetic
contests, however. An example is the fighting behaviour of the sierra dome spider
Neriene litigiosa where the “resource” is small but mobile (female spiders). Here the
male spiders undergo fights in a series of stages, the energetic cost of which was
investigated by deCarvalho et al. (2004).

We introduce the model formally in Sect. 2, and go on to analyse the model in detail
in Sects. 3 and 4, including a comparison with the results from the sequential case.
As we shall see, the results here are very different. Finally in Sect. 5 we discuss our
results.

2 The model

A scrounger encounters a producer who has a resource item. Simultaneously both
individuals decide whether they will fight for the item or not and, if they decide to
fight, then how much energy they will invest into the fight. This is in contrast to
our earlier paper Broom et al. (2015), where decisions were sequential. As we shall
see, this leads to significantly different analytical problems and predictions. This is
modelled in the following way:

The scrounger chooses the amount of energy s to invest, where s € {0} U [S], S2]
for 0 < §1 < S>. The choice s = 0 corresponds to the decision not to fight, otherwise
the scrounger has to invest at least S so that its opponent registers this as a decision
to fight; S is the maximal amount of energy that the scrounger can invest in the fight.
Similarly, the producer chooses p € {0} U [P}, P;] for0 < P| < P».

As in Broom et al. (2015), we consider the fight cost equal for both individuals
and given by (s + p)“. One interpretation of this choice of cost function is that s + p
is a measure of the complexity of (or of the time taken for) the fight, and that both
individuals pay more for more complex (or longer) fights. For a detailed justification
of the choice of this cost function, see Broom et al. (2015). If neither individual decides
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460 M. Broom et al.

to fight, the producer keeps the resource. Otherwise the scrounger wins the resource
with a probability of —2— Accordlngly, the payoff to the scrounger is

Uss. p) = 0 ifs =p=0, )
W P)= H_pv—(s—i—p)“ ifs+p>0.

Similarly, the payoff to the producer is

Up(s. p) = {” fe=r=9 ©)

mv—(s—}—p)“ ifs+p > 0.

We note that this is the same payoff function as used by Broom et al. (2015), except
that a constant v, representing a value of the resource, has been added to all payoffs.
This has no effect on the solution of the game. It effectively considers the payoff as
being the gain to the producer from the point where a new food item is discovered and
neither individual is in possession, rather than from the “gain” upon the assumption
that the producer possesses the item without contest.

We also note that, as written, the payoff function does not appear dimensionally
consistent. The parameter « is intended to represent the rate at which costs increase
with the total amount of effort expended by the participants. Thus we can denote e as
the total amount of effort required to make the cost 1 energetic unit, and then our cost
function is ((s + p)/e)®. For convenience we select e = 1. We will focus on a > 0;
the case o« = 0 is investigated by Sykes and Rychtér (2017).

3 Analysis
3.1 Best responses

In this section we identify the best responses, i.e. for a given s > 0 we find the
potentially multi-valued function BR,(s) C {0} U [Py, P»] such that any p €
BR,(s) maximises the function U, (s, p), and the analogous function BRy(p) for
the scrounger.

Ifs =0, then U,,(O p) = v — p* for p > 0 and so clearly BR,(0) = 0. For

—a(s + p)*~ ! for p > —s, in particular for all

p
s > 0 we have ° o (s, p) = (s+p)2

biologically meaningful values of p > 0. Consequently, for fixed s and variable p, the
function U, (s, p) is increasing on (—s, f(s)] and decreasing on [ f(s), +00), where

fo=(5)" - 3)
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Therefore
0 ifs =0, ors > 0and f(s) <0, or
0< f(s) < Prand Uy(s,0) > Up(s, P1),
0, Py} if0 Prand U,(s,0) = U,(s, P1),
BR,,(S): { 1} if0 < f(s) < Ppan p(s,0) p(s, P1) (4)

Py if 0 < f(s) < P; and UP(S,O) < Up(s, P),
fls) if P < f(s) < Py,
P, if f(s) > P,

where by {0, P} we denote the fact that both 0 and P; are best responses to s under
the given conditions.
Similarly, if p = 0, then

mux»={o ifs =0, )

v—s¥ ifs >0,

and so BR;(0) = 0if v < S¥, BR;(0) = Sy if v > S¥, and BR;(0) = {0, S;} if
v = S¢. For p > 0 we have aa[f (s, p) = (si’;)z —a(s+ p)*lfors > —p,in
particular for all biologically meaningful values of s > 0. Consequently, for a fixed p
and variable s, the function U (s, p) is increasing on (—p, f(p)] and decreasing on

[f(p), +00). Therefore

0 ifp=0andv < S, or p>0and f(p) <0, or
0 < f(p) < S1and Us(0, p) > Us(S1, p),
{0, 81} if p=0andv = S}, or
0 < f(p) < Sy and U (0, p) = Us(Sy, p),
BRy(p) = . fp 1 , s p sO1, P (6)
S1 if p=0andv > S, or
0 < f(p) = S1and Us (0, p) < Us(S1, p),
f(p) ifS1 = f(p) =%,
A if f(p) = Sa.

In order to simplify conditions in (4) and (6), note the following. Firstly, f(x) > Oif
1 1
andonlyif 0 < x < (£)%,and f(x) = Oifandonly if x = O orx = (£)*. Secondly,

o

f(x) <y,y>0ifandonlyifx =0orv < %(x—i—y)"‘“,andf(x) = y if and only

if v = %(x + y)**!. Finally, the inequality U p(s,0) > Up(s, Py) is equivalent to

s+ Py

V< Py

((s + P)*— s“). For this last expression we have the following inequalities:

ws® s+ P

(@+mf—fﬂ<%m+ﬂf“. )
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Both can be shown using the substitution = % and Bernoulli’s inequality with the

exponent 1 + «, resp. —«. Hence, the definition of BR p(s) can be simplified to:

0 if s =0orv < SH((s + P —s),
{0, P;} ifs>0andv = %((s + P — %),
P if s > 0 and S';f‘((s+P1)“—s"‘)<vand

BR,(s) = (8)

v<S(s+ Pt
fls) i % s+ P) Tt <v < E(s + P)*T,
P, ifv> 2(s + P+l

Similarly, for B R; we obtain

0 if p=0andv < S, 0rv<SIS—"]’/’((S1+p)“—p“),
{0,581} if p=0andv = SY, or

p>0andv = S'S#((S] + p)¥ — p%),
BRs(p) =151 if p=0andv > S¥, or

p > 0and SIS#((Sl +p)*—p¥) <v= S(S1 + pyet!,
fp)  iESES+ )t s v <SS+ p)* T
2 if v> %S+ p)*t

&)

3.2 Nash equilibria, strict Nash equilibria and evolutionarily stable strategies

Since individuals can either be in the role of scrounger or producer, an individual
strategy is given by a pair (s, p) in order to specify that the individual will play s as a
scrounger and p as a producer.

A point (s*, p*) is a pure strategy Nash equilibrium if p* is the producer’s best
response to s* and s* is the scrounger’s best response to p*. It is a strict Nash equi-
librium if all alternative strategies have a strictly lower payoff. It is an Evolutionarily
Stable Strategies (ESS) if in an infinite population of individuals playing (s*, p*), any
sufficiently small (potentially) invading group playing an alternative strategy has a
lower payoff than (s*, p*).

Since our best responses are unique, then almost all of our pure Nash equilibria are
strict (the exceptions will be for non-generic cases, see Broom and Rychtér 2013). Strict
Nash equilibria are also necessarily ESSs. We note that in addition there may be mixed
strategy Nash equilibria, where individuals can employ more than one pure strategy,
the value used in any given contest selected according to a probability distribution.
We will in general search for pure solutions only, although there are cases when these
do not exist, and we discuss mixed strategy solutions then.

Since BR;(p*) C {0, S1, S2, f(p™)}, we will consider these four cases separately.
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3.2.1 Case s* =0

We have BR,(0) = 0, which means that p* = 0. Further, 0 € BR(0) if and only if
v < ST

Hence in this case there is only the equilibrium (0, 0) and this equilibrium exists if
and only if v < S¥.

3.2.2 Case s* = S

By (9), we have either p* = Oand v > S%, or p* > 0 and 3! +p* ((Si+pH*—p*) <
v< % (Sl + p*)*+! In the first case we need 0 € BR (Sl) which holds if and only
if v 5 S'Iflp' ((S + P — S“). Thus there is an equilibrium (Sy, 0) if and only if
$¢ <o < SEB((S1 + P — S7).

In the second case we have either
1. p* = Py, which holds if and only if 51;1”1 ((S14+P)* = 8§) <v < &1+

Pt or

2. p* = f(S1), which holds if and only if Sl.(Sl + Pt <v < S%(Sl + Py)*tl;

or
3. p* = P,, which holds if and only if v > S%(Sl + Py)etl,

Therefore we obtain an equilibrium (S, Py) if and only if

S1+ Py

((S1+ P)* = Sf) <w %(Sl + P)**! and (10)

S1+ Py
1

((S1+P)*—Pf)<v< ;(Sl + Pt (11)
1

another equilibrium (S7, f(S1)) which occurs if and only if

TS+ P == (814 Pt and (12)
1 N

S1+ /(S) ) ) .
(S G = FOD) S0 S oS a)

and finally an equilibrium (87, P») if and only if

v > ;i(s] + P»)?*! and (14)
1
S1+ P

(S + P)* — P%) < %(Sl + Pyt (15)

Further, the second inequality in (13) simplifiesto v < 2« (251)%, the first inequality
aSy
(1_(1_a)1/a)a+l

Finally, for « > 1, (14) implies the first inequality in (15).

in (13) always holds when « > 1 and simplifies to v > fora < 1.
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3.2.3 Case s* = S,
By (9), we have v > %(Sz + p*)®*! and either

1. p* = Pi, which holds if and only if S252((Sy + P1)* — §§) < v < &(S) +

Pt or
2. p* = f(S$2), which holds if and only if § (S> + Pl <v < (S + Pyt
or

3. p* = P,, which holds if and only if v > S%(Sz + Py)etl,
Therefore we obtain an equilibrium (S>, Py) if and only if
$2 + Py

1
v > %(SZ + Pt (17)
1

((S2 4 P)* — 8%) < v %(52 + P)?*!, and (16)

another equilibrium (5>, f(S2)) which occurs if and only if

%(Sz + Py <v < ﬁ(Sz + Pt and (18)
2

> mwz + f(sz>>“+1 (19)

and finally an equilibrium (S, P») if and only if

v> Si(Sz + Pyt and (20)
2

V> o (§y+ Pyt @1)
P

Moreover, (19) can be simplified to v > 20 (252)%. Also, when « > 1, (17) implies
the first inequality in (16).

3.2.4 Case s* = f(p*) >0

By (9), we have % (81 + phetl <y < & L8+ M (or equivalently S; <
f(p*) < 82) and either
1. p* = Py, which holds if and only if ZEYERL((f£(Py) + P)? — f(P)®) < v <

7o (f(PD) + P*H = £l or
2. p* = f(s*), which holds if and only if P; < f(s*) < P,;or

3. p* = P,, which holds if and only if v > %(f(Pz) + Py)etl = f”(izz).
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Therefore we obtain an equilibrium ( f (P1), Pp) if and only if

P P
%((ﬂm + P — f(PD?) <v <20QP)".and  (22)
1
S (S PY << (54 PO (23)
Py P
Similarly as above, (22) always holds when o > 1 and it simplifies to v >
LHI fora < 1.
(1-(1-a)1/e)
Another equilibrium is (' (P2), P») which occurs if and only if
v > 2a(2Py)%, and 24
DS P < v < o (Sy o+ Pyt (25)
P Py

The last equilibrium is in the case p* = f(s*) = f(f(p*)). We have

e . o
ren = () < oo = ()T (B) Tk e

o

Thus p = f(f(p*) if and only if p* = f(p*) = s* if and only if p* = s* =

T
N ) . So the last equilibrium is (3 (22)3 1% ) ) and such an equilibrium exists
if and only if S} < f(p*) = p* < S and P; < f(s*) = f(p*) = p* < Py, or

equivalently

RI—

Si

IA

< 8, and 27)

§le
~ —
Q=

A

|
IA

P. (28)

4 Results
4.1 Overview of all possible equilibria

For fixed parameters Si, Sz, P1, and P,, Table 1 gives conditions on v under which the
respective equilibrium is present. For low values of v neither individual will invest,
leaving the producer with the reward. For larger values of v, the scrounger will jump
to investing the minimum level Sy, if this level is sufficiently small in comparison to
the producer’s minimum level Pp, thus taking the reward. We note that there is no
situation where the producer would make the equivalent jump whilst the scrounger
remained at zero investment, since it gains the reward in the case where neither invest.
If P; is small compared to Sj, this can lead to no pure equilibrium (this asymme-
try of conditions between the two players is closely linked to the cases with no pure
equilibrium in general, as we discuss later). As v increases the game goes through
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Table 1 All types of equilibria. For fixed parameters S1, Sy, P1, and P,, we give conditions on v under
which the respective equilibrium is present

Conditions Equilibrium #

v<S¥ 0,0) 1
sy < v < SRS + P - 5%) (51.0) 2
SEPL((s1 + P = 89) < v < (51 + PD**Hland (S1. Pp) 3

Si+P
SELL((S1+ P — P) < v = g (81 + P!
§ 1+ P T < v < £(81+ P)*T and v < 2a(25)) (S1. £(51)) 4

as¥ .
L ifa<l1

andv> ———————
(1=(1=e) /)

FoS1+P)*H <v < (S + P)*H and v < 202P)” (f(P1). P1) 5
aPy¥
andv> —L— —ifa <1
(1=(1—a/e)**!
81+ P T < v < £(S1+ P and (S1. P2) 6
vz SER (051 4+ P = Py ife < 1
FrS2+ P <v < £ (S + P! and (82, P1) 7

So+P; .
vz 2R (S + P — 8§) ifa < 1

20(251)% < v < 2a(25,) and 2¢(2P)¥ < v < 20(2Py)* (%(%)5, %(%)5) 8
FrS1+ P <v< F(S+ P)*H and v = 202Py)" (f(Py). P2) 9
$S2+ P <v< £ S+ P andv = 20(25)* (S2. £(52)) 10
vz S+ P)*H and v = (S + P)* ! (82, Py) 11

a series of stages where one or other player increases its investment. After the ini-
tial jump to the minimum level, the investment level of either (or both) increases
gradually, until both individuals invest at the maximum level. For a more technical
summary, including an alternative way of writing some of the key conditions, see the
Appendix.

Figure 1 shows various regions of existence of equilibria when v and S = P, are
fixed and S; and P; vary. Figure 2 shows various regions of existence of equilibria
when v and S, > P, are fixed and S; and P; vary. We notice that when S; and
P are high, then there is no real contest, the producer always investing nothing,
and the scrounger sometimes making the (substantial) investment of S; to gain the
reward. As these minimum values are decreased, we see that more complex behaviour
occurs.
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(@) © (b) »

1 1

Ve v

(81,0)

o (51,0) (0,0) o (0,0)

(f(Pr),Pr) (51.P1)

(51.4(51))
S, (L)% vE S 0 Hx)w S vE S

(51,0) 1

o (0,0) o | (F(P), Pr)

(f(P1),Pr) (S1,P1)

ol

(S1,£(S1))
0 %(2’7)7 S] 1(v) v So 0 é(_;?): Sl ve L(v) S

Fig. 1 Regions of existence of equilibriaas v =1, 8 = 1.2, P, = 1.2 and S7 and P; vary.aa = 4, b

a=1ca =0.85da = 0.65. White region means no pure equilibrium, the function /(v) is given by
atl

1
() (1- (1 -w)'s

(@ (b)
(S1,P1) (S1,P1) (51,0)
9 (51,0) (0,0) o~ (0,0)
(51.5(51)
(51,(51))
0 0
0 5)* L) v S 0 L)t S, ok S,

Fig. 2 Regions of existence of equilibria as S| and Py vary.av = 1,8 = 12,Pp = 02,0 =4, b
v=1,8%=12,P,=02,0a=1

In Figs. 3, 4, 5 and 6 we show Nash equilibria and corresponding payoffs when
the opponents are fixed (i.e. S1, Sz, P1 and P, are fixed) and v varies (i.e. they play
for different resources). These figures clearly show the way the investment strategies
increase, as discussed in relation to Table 1, with sometimes one individual, sometimes
the other, being the one to increase their strategy. The payoffs are not monotone in
this way, however, where the payoff of either can increase or decrease, gradually or
suddenly, in response to the strategy changes of the players. In Fig. 3b, for example,
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(@) » ‘ (b) »
Scrounger Scrounger
= Producer = Producer
» @»
.8 .8
B Ab 1 & A .
i) 2
15 15
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0 1 1 | 1 0 |
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z 1 2 L —
= / E sk // |
& -osft 12 - // /
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| | | 1 |
-1.5 -1 -0.5 0 0.5 1.5 -0.5 0 0.5
log(v) log(v)

Fig. 3 Nash equilibria and payoffs relative to v (i.e. (Us(s*, p*)/v for the scrounger and (U, (s*, p*) /v
for the producer) when S| = 0.2, 5, =04, P} =0.6, , =1landaa =2orba =0.5

1.5

P T
(a) Scrounger
= Producer
»
.8 s
=
s nr ]
Sif —t E
0 1 1 | |
-1.5 -1 0.5 0 0.5
1
&
SN o "
)
a L—
2 oM | §
E d
5]
& -0.5F B
| | |
-1.5 -1 0.5 0 0.5
log(v)

(b)

Strategies

Relative payoffs

P
Scrounger
Producer
Sal
P 4
Si et -
0 I
-0.5 0 0.5
1
0.5 B
0 ?
—0.5F B
1k // 4
I
0.5 0

log(v)

Fig. 4 Nash equilibria and payoffs relative to v (i.e. (Us(s*, p*)/v for the scrounger and (U (s*, p*) /v
for the producer) when S| = 0.2, 5, =0.6, Py =04, P, =1landaa =2orba =0.5

we see that the scrounger receives a lower payoff for high values of v than it does for
quite low values.

4.1.1 Equilibrium (0, 0)

This equilibrium is possible if (and only if) the resource is not worth enough for the
scrounger to be worth fighting for. Note that when the scrounger does not fight at
all, the producer simply prefers not to fight (and keeps the resource). Typically, this

happens when S is large compared to v
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4.1.2 Equilibrium (S1, 0)

This equilibrium is possible if the resource is worth enough for the scrounger to fight
for, but once the scrounger fights, the cost is prohibitive for the producer to fight
back. This happens if either (a) S; is relatively small and P; relatively large, or (b)
(especially for « > 1) §j is large enough so that small p increases the costs for the
producer without significantly improving the chances of winning the resource while
large p increases the cost to make it unprofitable for the producer to fight.
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4.1.3 Equilibrium (S1, Py)

This equilibrium happens when v is large enough for both individuals to fight for but
not large enough to really engage in the fight “vigorously”. Specifically, the scrounger
finds the resource attractive to “initiate” the fight and invest S;. The producer also
finds the resource attractive enough to fight back at level Py, but the cost is prohibitive
to invest more. When the producer invests Pj, the cost becomes prohibitive for the
scrounger to invest more.

Moreover, in this situation, both individuals would prefer to invest even less into the
fight; yet investing S1 and P; is better for them than not fighting at all. Also note that
when o < 1, this equilibrium can happen simultaneously to (0, 0). This phenomenon
is also observed for the case @ = 0, which is analysed in detail by Sykes and Rychtaf
(2017).

4.1.4 Equilibria (S1, f(S1)) and (f(Py), P1)

These are in effect natural continuations of (S7, P;). As the value of the resource
increases a little more, one individual finds it beneficial to fight for it with an investment
above its minimal level. Note that the conditions are such that P; < f(S;) < S (for
the equilibrium (S, f(S1))) or S1 < f(P1) < Pp (for the equilibrium (f(Py), P1)).
An alternative way of thinking about this is that P; (or S7) is already small enough
relative to v so that the producer (or scrounger) fights at the optimal level whereas the
other individual would prefer to fight less (but still prefers to fight rather than to not
fight).

4.1.5 Equilibria (S, P2) and (S2, P1)

Here, one individual invests at its minimum level while the other invests at its maxi-
mum. However, these equilibria occur only if S| > P, orif P; > Sy, i.e. the individual
investing its minimum is actually stronger than the individual investing its maximum
(and the stronger individual would prefer to invest less while the weaker individual
would prefer to invest more).

1 1
4.1.6 Equilibrium (%(ﬁ)a, %(%)&)
This is the “most natural” equilibrium. It happens for “medium” values of v and both

individuals play at the optimal level and any sufficiently small change in their abilities
would not change the equilibrium. This equilibrium corresponds to the fixed point

s* = f(p*) and p* = f(s").
4.1.7 Equilibria (S>, f(S2)) or (f(P2), P2)

This equilibrium happens whenever there is a strength asymmetry in the players and
v is large enough. Both individuals want to fight for it but the stronger individual does
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not fight at full force (since the additional cost of a bigger fight does not outweigh the
benefits of only a slightly higher chances of winning the fight).

4.1.8 Equilibrium (S>, P»)

This equilibrium happens whenever v is large enough, in which case both individuals
want to fight for the reward to the maximum extent, as the value of the resource
outweighs the cost of the fight.

4.2 Co-existence of equilibria

Next, we consider the question of whether multiple equilibria can occur for the same
parameter values. More specifically, we show that none of the equilibria when both
players invest non-zero in the fights (equilibria numbered 3—11) can occur at the same
time, of course unless they coincide (e.g. when P; = f(S1)). For o« > 1 the only
equilibria that can occur at the same time are the combinations (0, 0) and (Sy, 0)
or (S1,0) and (S;, P1). Moreover, these two coexist only on the lines between their
respective regions, which can be considered as a non-generic case (see Broom and
Rychtar 2013). Other equilibria appear to co-exist on the lines between their regions
but in those cases, the equilibria coincide on those lines. For « < 1 the equilibria
(0, 0) and (1, 0) can occur together with any other equilibrium with the exception
that (S, 0) cannot coexist with (S1, f(S1)) nor with (S, P»). See for example Fig. 7.

For the remaining cases we consider first the case « > 1. The equilibria (0, 0)
and (81, 0) occur at the same time when v = S}. The equilibria (57, 0) and (57, Pr)
occur at the same time when v = S‘:,'IP‘ ((S1 + Pp)* — S‘f‘) The equilibria (0, 0) and
(S1, P1) cannot occur at the same time due to inequality (7). Further, we easily check

@ Springer



472 M. Broom et al.

that S‘%Pl((& + P)Y—8¥) < (51 + P1)**! which combined with inequality (7)
yields

St + Py

St < (S1 4+ P < 2a(81 + P)°.

(0%
S P))% — 8¢ _
(S0 V)< max{S;, P}

Comparing these estimates against those in Table 1 (and also Table 4 from the
Appendix) we obtain that neither equilibrium (0, 0) nor (S, 0) can occur at the same
time as any of 4—11.

Finally, from (7) we obtain that (S7, 0) combined with (S1, £(S1)) and (S7,0)
combined with (Sy, P») cannot occur even in the case « < 1. On the other hand, in
this case equilibrium 1 can occur at the same time as any of the other equilibria, and
the equilibrium (S7, 0) can occur at the same time as any of 3,5, 7-11.

4.2.1 No (pure) equilibria

As we have seen in Fig. 1, there are instances of no pure strategy equilibria. These
are linked to the asymmetry between the two players, and in particular the fact that
(S1, 0) can be an equilibrium, but (0, P;) cannot. This leads to a break in the natural
sequences of solutions; for example there is a natural progression from 1 to 2 to 3 to 4
to 6to 9 to 11 (there are six such sequences starting 1 to 2 to 3), where regions share a
boundary linked to the reversing of one condition. However, the “region” associated
with (0, P;) connecting 3 to 1 does not exist, resulting in disconnected conditions
between regions 1 and 3, but also between regions 1 and 5.

For region 3 the lower boundaries must satisfy both of the following conditions:
S%Pl((sl + P — 5%) < v, 31;”1 ((S1+ P)¥ — P) < v.
The first of these would form a boundary with region 2, but the second has no equivalent
region sharing the boundary. Thus when this is the more restrictive condition, then a
gap appears which can potentially yield no pure equilibrium. This occurs if and only

if St + Py S1+ P
1

((S1+PD* —8Y) < ((S1+ P)* — PfY), (29)

which rearranges to

S (oS (S o 0 (30)
— - — )= — > 0.
P P P

This holds for S§ < P; when « > 1, and for S§ > P; whena < 1. If o > 1, then
for any v there is always a region of no pure equilibria when P; > S; as in Fig. la,
following from the disconnect between regions 1 and 3.

For example, there is no pure equilibrium when ¢« = 4,v = 1,8 = 0.1, 5, =
1.2, Py = 0.8, P = 1.2. Here the players effectively decide between two discrete
cases (a) do not fight at all, or (b) fight at the minimal level. Thus, the scrounger’s
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payoff is
S\P 0 Py
0 0 - Py
v S o 31
S1 v— 8] S|+P1v_(Sl+Pl)
and the producer’s payoff is
S\P 0 Py
0 v v— Py
o« _P o (32)
S =57 sapv—(S1+ Py

When p = 0, the scrounger prefers s = S; over s = 0. When s = S, the producer
prefers p = P; over p = 0. When p = Py, the scrounger prefers s = 0 over s = .
Finally, when s = 0, the producer prefers p = 0 over p = P;. Note that this leads to
an internal mixed equilibrium strategy.

If « = 1, then for any v and any S;, Py, S2, P, there is exactly one (pure) equilib-
rium as in Fig. 1b. When « falls below 1 there can be two regions with no equilibria,
corresponding to the disconnects between the regions 1 and 3, 1 and 5. As « becomes
small the disconnect boundaries discussed above do not occur, and there is always at
least one equilibrium and sometimes two (although never more than two) equilibria.

4.3 Some observations for particular cases
4.3.1 The case when a < 1

When o < 1, we observe the following phenomenon, see any of the Figs. 3, 4, 5 and
6. If the players do not engage in the conflict at all, the producer would get v and the
scrounger would get 0. However, as v grows, (0, 0) is no longer a Nash equilibrium (or
the only Nash equilibrium) and very often (S, P;) emerges as the Nash equilibrium.
At the same time, the payoffs to the players at (S1, P;) are negative. Still, (S1, Py) is
a Nash equilibrium. If players have to choose between 0 and S; (or 0 and P;) only,
then for the scrounger, s = S; will be better than s = 0 no matter what the producer’s
action (because s = 0 means no gain and while s = S| adds a cost, this is either
compensated by the gain of the resource if p = 0 or is relatively small if p = Py,
since o < 1, i.e. the fights are costly to start but inexpensive to continue). For similar
reasons, once the scrounger invests s = S into the fight, the producer prefers p = P;
over p = 0 as o < 1 and thus the fights are costly to start but inexpensive to continue.
For an analysis of the case when o = 0, i.e. when all fights are equally costly, see
Sykes and Rychtar (2017). There, if an individual decides to fight, it should fight with
the maximal aggression. For v < 1, the game is a variant of the Stag Hunt game
(Skyrms 2004) and for v > 1, it is a Prisoner’s Dilemma (see e.g. Broom and Rychtar
2013). When v < 1, both (S, P») and (0, 0) are Nash equilibria; and when v > 1,
(S2, P») is the only Nash equilibrium.
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Fig. 8 Regions of existence of equilibriaas v = 1, §| = 0.01, P; = 0.01 and S, and P, vary. The regions
are similar for all «’s, hereaa =2 andba = 0.5

4.3.2 Small S| and P,

When S; and P; are both small compared to v, they can effectively be treated as 0
and none of the equilibria 1-7 occur. The situation when S1 = P; = 0 is considered

1 1
in detail by Sykes (2015). The only remaining equilibria are (%(%)5 %(%)5),
(f(P2), P2), (S2, f(S2)) and (S2, P»). Once « and v are fixed, there is no overlap
between these equilibria and always exactly one holds (see Table 1). The situation for

a =2 and @ = 0.5 is shown in Fig. 8 (the situation for other « is analogous).

4.3.3 Increasing strength

Figure 9 shows how increasing the strength of an animal affects its strategy and payoffs.
Increasing the upper limit allows the affected individual to invest more in the fight and
the individual also does it when v is large enough. When « > 1 (investing a little is
cheap but increasing the investment is eventually costly), investing more also yields
a higher payoff. When o« < 1 (investing a little is expensive but investing more is
relatively cheap compared to the initial investment), the situation is more interesting
as then even the other individual invests more.

4.4 A comparison with the results of Broom et al. (2015)

In a model by Broom et al. (2015) the scrounger made an initial investment, to which
the producer responded. This led to very different results to that in the current paper
where decisions are simultaneous.

For sufficiently high values of the bounds on available effort, one or other individual
was forced to concede. For a concave function with @ < 1 the scrounger will not
challenge and thus the producer obtains the reward with no investment level at all (for
any non-zero level the optimal producer investment is sufficiently large). For a convex
function with « > 1 then the scrounger will make a sufficient level of investment to
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Fig. 9 Nash equilibria and payoffs relative to v (i.e. (Us(s*, p*)/v for the scrounger and (U, (s*, p*) /v
for the producer) when S = 0.2, Py =02, P, =195 € {0.5,1,1.5},aa =4orba = 0.5 When
a > 1, higher value of S, corresponds to higher investment level and payoff to the scrounger and lower
investment and payoff to the producer. When o < 1, higher value of S, corresponds to higher investment
level to both scrounger and producer, and higher payoff to the producer

force the producer to concede. Only when o = 1 could there be non-zero levels of
investment.

For sufficiently low values of the upper bounds on effort (Broom et al. 2015 did
not consider lower bounds), the outcome depended significantly on which individual
had the higher upper bound. Both individuals would invest, but at most one of these
would be at an intermediate level. The individual with the higher upper bound would
generally invest at a higher level, and thus win the resource with higher probability.
Results in this case are similar to those in the current paper.

We note that in general the intermediate strategies available in the current paper,
where both individuals invest but not at maximum or minimum level, are not present
in a model by Broom et al. (2015), and so the simultaneous nature of the game here
has a big effect. This in fact mirrors the general contrast between simultaneous and
sequential games (Maynard Smith 1982; McNamara et al. 2006) including the most
basic of all evolutionary games, matrix games. In matrix games mixed strategies occur
only for simultaneous play (Selten 1980), and this can be thought of as an analogous
result to that regarding intermediate levels of investment here (though as noted above,
for sequential games with low maximum threshold, it was possible for one of the
individuals to invest at an intermediate level). Thus this type of relationship may hold
for a great variety of games.

5 Discussion

In this paper we have built on our previous work in Broom et al. (2015) considering
a producer-scrounger competition over resources, where the participants decide the
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level of effort that they put into contesting the resource. The larger the effort the larger
the chance of winning the resource, but also the larger the cost. Models of this type
have also been considered in economics, see for example Tullock (1980), Skaperdas
(1992), Baye et al. (2012). A feature of our model is the existence of limits to the
available effort, which also feature in such models, such as Che and Gale (1997),
Roberson (2006). In our previous work decisions were sequential, with the scrounger
choosing an attacking strategy, followed by a defensive one from the producer. In
the current paper, the individuals make their decisions simultaneously. We have both
analysed this situation, and then compared it to the previous model to identify key
areas of similarity and difference.

The game is governed by a number of model parameters. For example, there is
both a minimum level of effort required (at least to have any effect in the contest) and
a maximum level available, and these can differ between the players, S;, S» for the
scrounger and P, P, for the producer. We have assumed that all model parameters are
known to both players, including the minimum and maximum levels of their opponent,
i.e. we have a game with perfect information (note that we have also considered related
models with imperfect information in Broom et al. 2013; Broom and Rychtar 2016b).
This is of course reasonable if all individuals are identical, or an opponent has been
previously encountered. Otherwise, an individual would have to gauge an opponent’s
ability from appearance or behaviour; this may at least imply that there should be some
error involved in making the assessment of the ability of a stranger (Dugatkin 1997,
Dugatkin and Dugatkin 2007; Kura et al. 2015). As shown in Fig. 9, different S» not
only yields different behaviour of the Scrounger, but also different behaviour of the
Producer. Thus, not knowing the opponent’s strength would potentially influence the
strategies.

We have found the complete set of pure Nash equilibria for our model, which are
summarised in Table 1. We find in particular that there are always at most two such
equilibria, with sometimes there being none. When the bounds on the available effort
for the two players are sufficiently wide, so that the minimum values P; and S; are
low and the maximum values P> and S, are high when compared to the reward, then
both individuals choose the same intermediate level of investment. When this is not
the case the asymmetries between the players come into play, meaning that different
values of reward can have a surprising effect on the strategies and rewards received
for the two players. For example in Fig. 3b both chosen strategies jump (from zero to
their minimum non-zero level) and hence the payoffs also jump, and an increase in
reward value can actually lead to a lower payoff for one of the participants. The results
here are sometimes very different from those by Broom et al. (2015) when sequential
decisions occurred. For example, when bounds on the available effort in that paper
were wide then there was never a contest between the protagonists.

A question arises then, about whether simultaneous or sequential decisions are
most realistic, and indeed if sequential, which individual should choose first. This was
discussed by Broom et al. (2015). In general, it is probably more realistic to consider
any interaction as an extended contest where both individuals make a sequence of
choices, and this would be a natural way to extend the current work. Broom and
Rychtar (2016a) consider such a situation in a related scenario, where it is shown that
provided that reward values and contest durations are fixed (except when one individual
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concedes) and known, the single decision approximation of simpler models like those
considered here can be good.

When would our model be useful in real situations? As mentioned in the Intro-
duction, situations of territorial defence where territories are large as discussed by
Hamilton and Dill (2003) for the subtropical reef fish Kyphosus cornelii are a natural
type of situation to consider for models with simultaneous decision-making. Here taller
vegetation means a more valuable territory leading to more kleptoparasitic behaviour.
Another interesting possibility is that of the archerfish Toxotes chatareus as investi-
gated by Davis and Dill (2012). Here fish shoot down small prey such as crickets with
jets of water, but other fish can try to steal the prey item. Here the shooting fish can be
regarded as the owner, and both fish have to move to acquire the target; the greater the
energy they put into their attempt to take the prey, the greater the chance they have to
acquire it. To properly use our model in a real situation, however, we need some way
of inferring the level of energy used in an actual contest, and as observed by Hack
(1998), this is hard to do and not very often attempted.

There are cases where we do have good energetic measurements however, including
in the work of Hack (1998) himself. Here house crickets Acheta domesticus L. compete
in contests for females. In this paper, contests involved a range of different fighting
strategies, and the energetic investment of the crickets was estimated using levels
of their oxygen consumption. The authors observed that different fighting strategies
required different levels of energy, and that energy expenditure was an important
consideration in strategy choice. A similar situation involves contests between male
sierra dome spiders Neriene litigiosa (deCarvalho et al. 2004). In this paper, spiders of
varying ages (the number of days since sexual maturation) and sizes compete against
other males for female spiders. These contests are long, and can be thought to comprise
three main stages; display, ritualised wrestling and real fights. The level of energy used
was measured using the carbon dioxide production of the spiders. This was observed
to go up with the stages, with a particularly big jump between the first and second
stages. This could be modelled as a complex sequential contest (containing some
simultaneous choices), but as shown by Broom and Rychtar (2016a) might be well
approximated by a single choice of energy investment, with low investment indicating
concession before later stages. The authors observed that older spiders generally used
less energy and larger spiders generally used more energy, so that there is likely (but
not necessarily) an asymmetry of ability of assessment of reward values amongst the
spiders.

As mentioned above, energetic expenditure is not often measured in real contests,
so can we apply our model in cases where it is not? Goubault et al. (2007) studied
the parasitoid wasp Goniozus nephantidis. The female wasps lay their eggs within
host (in this work the caterpillar of the rice moth Corcyra cephalonica). These in turn
can be parasitised by other wasps, and so female wasps defend the caterpillar, and so
fights between defender and attacker can occur. Here the value of the caterpillar to the
defender changes with time, as the eggs are laid in the hosts and then hatch into larvae,
but no other attributes are likely to change between these early and later contests. In
particular before eggs are laid the host has no offspring to defend, and after hatching
larvae are at relatively low risk, but eggs can be destroyed by intruders. It was observed
by Goubault et al. (2007) that for contests at the egg stage, the defender was more
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likely to win than at the other stages. Thus while an energetic measurement has not
been made, a differential of investment can be inferred by the win probability. We
note that in this example the attacker and defender will value the resource differently
except for when no eggs have been laid by the defender, so our model with its current
assumptions will not directly be able to explain this differential assessment. It will
still be applicable to the problem when no eggs have been lain, where differences in
intruder and owner size, or the size of the defended caterpillar, can be considered.
In general in all of the considered examples, we see that energetic investment will
vary markedly depending upon a number of factors. These can be properties of the
individual such as their size and age, but also extrinsic factors such as the value of the
resource. Thus energetic aspects are an important factor to consider when modelling
animal contests.

A potential future development would be to introduce heterogeneity within the pop-
ulation in the parameters. For instance, individuals may value the resource differently,
depending upon information they have about the resource (differences in assessment)
as considered by Broom et al. (2013). Alternatively, they both may know all about
the resource but still value it differently, e.g. because of hunger levels (Broom et al.
2014). Similarly individuals may know their own bounds upon investment but not
those of their opponents as discussed previously, and they may then need to estimate
these based upon past observations of the distribution of values within the population
and/or cues from the specific opponent.

In general animals need to make trade-offs between the energy they allocate to dif-
ferent activities, and thus the kind of investment decisions made in this paper are likely
to be important in many scenarios. We contend that, for this reason, such energetic
considerations should be considered in a large range of evolutionary models.
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Appendix

Here we consider alternative ways of representing some of the results from the main
body of the paper. Table 2 summarises the precise conditions on Sy, Sz, P, P> under
which a given equilibrium type can occur for some values of v. Most of the conditions
easily follow from the facts that the intervals described in Table 1 must be non-empty.
The additional condition for the equilibrium (S, Py) (and (S;, P>)) follows from (7).
For equilibrium (S1, f(S1)) (and similarly for equilibrium (f(Py), P1)) and o < 1

.. s . . .
the condition ﬁ < 2a(2S57)% is always satisfied, since (1 — a)l/e < %;
1—(1—a)l/e
asy Sy 1-(1-a)'/®

the condition < S%(Sl + Pg)ohLl simplifies to 7 <

(17(17a)1/a)a+1 (1—0{)1/0‘ .

For equilibrium (S, P;) the fact that the intervals in Table 1 are non-empty follows
from (7) (and also by interchanging S| and Pp). Further, these intervals have non-empty
interior if and only if SLEEL((S) + P)® — PfY) < &(S1 + P! and SER((S) +
Pp)% — S‘f‘) < %I(Sl + Pl)‘”‘l, which simplifies to the condition in Table 2. Finally,
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Table 2 Conditions for all types of equilibria. Here, we give conditions on parameters Sy, S7, Py, and Py
under which equilibria are present for some value of v

# Equilibrium Conditions on Sy, S2, P1, P>
1 0,0) Always possible
2 (S1,0) For « > 1 always possible, for ¢ < 1 if and only if

%26>0,where(1+c)a:1+ﬁ

3 (S1, P) For a > 1 always possible, for ¢ < 1 if and only if
(1—a)l/ Pl _ 1=(l—a)l/®
1—(1—a)l/e =5 = (1—a)l/e
N I—(1—a)/2 .

4 (S1, £(S1) P < S; and moreover P—]z < W ifa <1

3 P 1—-(1—a)l/e .
5 (f(PD), P1) S1 < Pj and moreover S—; < 7(1_0:1/5( ifa <1
6 (S1, Pp) P, <8
7 (S2. Py) S, < P

1 1

8 (37 5(0)7) PL<SamdS) < Py
9 (f(P2), Pp) Py <S8
10 (2. f(52)) <P
11 (S2. P2) Always possible

Table 3 Possible equilibria related to relative positions of Sy, S2, Py, P2

Relations between Equilibrium

S1, 82, P1, Py 1 2 3 4 5 6 7 8 9 10 11
Si<S <P <Py . * * * . . .
Si<Pi<S <P . * * . . . o
Si<Pi<Pr<$ . * * . . . .
Pi<P, <81 <% . * * * . . .
Pil<S1<Ph<$ . * * . . N .
Pi<S1<$H<P . * * . . . .

‘e’ means that in this case the equilibrium is always possible for some value of v, ‘x’ means that fora > 1 the
equilibrium is always possible for some value of v, while for « < 1 there are certain additional conditions
(to be found in Table 2) that need to be satisfied in order for the equilibrium to be present

for equilibrium (57, 0) we can use (7) in case « > 1. From Table 2 we immediately
obtain Table 3 and the necessary conditions shown in Table 4.

Now by comparing the conditions in various tables we can see why none of the
equilibria when both players invest non-zero in the fights (equilibria numbered 3—11)
ever occur together. This is summarised in Table 5.
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Table 4 Necessary conditions

# Equilibrium Necessary condition
3 (S1. P1) VS sy 1+ POYT! < 20(S1 + P
4 (S1. £(S1) v < & (S +min(Sy, Pa)) T < 2a(5) + Py
5 (f(Py), Pp) v < - (min{S, Py} + P1)* T < 2a(Sy + P?
1 1
8 (3(2)7. 5(%)7) 202max(S1, PLN® < v < 2Q2min(Sy, P))*
9 (f(P). P2) vz f(max(Sy, Pa} + Po)* T = 2a(s) + Pyt
10 (2, £($2) 0= £ (S + max($y, P1))* T > 2008, + Pt
+1

11 (2, P2) v > m(s2+1)2)a > 2a(Sy + P2)*
Table 5 Reasons why intersection cannot occur

4 5 6 7 8 9 10 11
3 Table 1 Table 1 Table 1 Table 1 Table 4 Table 4 Table 4 Table 4
4 Table 2 Table 1 Table 2 Table 1 Table 4 Table 1 Table 4
5 Table 2 Table 1 Table 1 Table 1 Table 4 Table 4
6 Table 2 Table 2 Table 1 Table 2 Table 1
7 Table 2 Table 2 Table 1 Table 1
8 Table 1 Table 1 Table 4
9 Table 2 Table 1
10 Table 1
References

Barnard C (1984) Producers and scroungers: strategies of exploitation and parasitism. Springer, Berlin

Barnard C, Sibly R (1981) Producers and scroungers: a general model and its application to captive flocks
of house sparrows. Anim Behav 29(2):543-550

Baye MR, Kovenock D, de Vries CG (2012) Contests with rank-order spillovers. Econ Theory 51(2):315-
350

Broom M, Ruxton G (2003) Evolutionarily stable kleptoparasitism: consequences of different prey types.
Behav Ecol 14(1):23

Broom M, Rychtdr J (2007) The evolution of a kleptoparasitic system under adaptive dynamics. J Math
Biol 54(2):151-177

Broom M, Rychtdr J (2011) Kleptoparasitic melees—modelling food stealing featuring contests with mul-
tiple individuals. Bull Math Biol 73(3):683-699

Broom M, Rychtdf J (2013) Game-theoretical models in biology. CRC Press, Boca Raton

Broom M, Rychtéi J (2016a) Evolutionary games with sequential decisions and dollar auctions. Dyn Games
Appl. doi:10.1007/s13235-016-0212-4

Broom M, Rychtdf J (2016b) A model of food stealing with asymmetric information. Ecol Complex 26:137—
142

Broom M, Luther R, Ruxton G (2004) Resistance is useless? Extensions to the game theory of kleptopara-
sitism. Bull Math Biol 66(6):1645-1658

Broom M, Luther RM, Ruxton GD, Rychtaf J (2008) A game-theoretic model of kleptoparasitic behavior
in polymorphic populations. J Theor Biol 255(1):81-91

@ Springer


http://dx.doi.org/10.1007/s13235-016-0212-4

The effect of fight cost structure on fighting behaviour. . . 481

Broom M, Rychtét J, Sykes DG (2013) The effect of information on payoff in kleptoparasitic interactions.
In: Topics from the 8th annual UNCG regional mathematics and statistics conference. Springer, pp
125-134

Broom M, Rychtét J, Sykes DG (2014) Kleptoparasitic interactions under asymmetric resource valuation.
Math Model Nat Phenom 9(3):138-147

Broom M, Johanis M, Rychtdr J (2015) The effect of fight cost structure on fighting behaviour. J Math Biol
71(4):979-996

Caraco T, Giraldeau L (1991) Social foraging: producing and scrounging in a stochastic environment. J
Theor Biol 153(4):559-583

Che YK, Gale I (1997) Rent dissipation when rent seekers are budget constrained. Public Choice 92(1-
2):109-126

Davis B, Dill L (2012) Intraspecific kleptoparasitism and counter-tactics in the archerfish (Zoxotes
chatareus). Behaviour 149:1367-1394

deCarvalho TN, Watson PJ, Field SA (2004) Costs increase as ritualized fighting progresses within and
between phases in the sierra dome spider, Neriene litigiosa. Anim Behav 68(3):473-482

Dubois F, Giraldeau L (2005) Fighting for resources: the economics of defense and appropriation. Ecology
86(1):3-11

Dugatkin L (1997) Winner and loser effects and the structure of dominance hierarchies. Behav Ecol
8(6):583-587

Dugatkin LA, Dugatkin AD (2007) Extrinsic effects, estimating opponents’ RHP, and the structure of
dominance hierarchies. Biol Lett 3(6):614-616

Giraldeau LA, Livoreil B (1998) Game theory and social foraging. In: Dugatkin LA, Reeve HK (eds) Game
theory and animal behavior. Oxford University Press, New York, pp 16-37

Goubault M, Scott D, Hardy IC (2007) The importance of offspring value: maternal defence in parasitoid
contests. Anim Behav 74(3):437-446

Hack MA (1998) The energetics of male mating strategies in field crickets (Orthoptera: Gryllinae: Gryllidae).
J Insect Behav 11(6):853-867

Hadjichrysanthou C, Broom M (2012) When should animals share food? Game theory applied to kleptopar-
asitic populations with food sharing. Behav Ecol 23:977-991

Hamilton I, Dill L (2003) The use of territorial gardening versus kleptoparasitism by a subtropical reef fish
(Kyphosus cornelii) is influenced by territory defendability. Behav Ecol 14(4):561-568

Iyengar E (2008) Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on
participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol J Linn Soc
93(4):745-762

Kokko H (2013) Dyadic contests: modelling fights between. In: Hardy ICW, Briffa M (eds) Animal contests.
Cambridge University Press, Cambridge, pp 5-32

Kruuk H (1972) The spotted hyena: a study of predation and social behavior. University of Chicago Press,
Chicago

Kura K, Broom M, Kandler A (2015) Modelling dominance hierarchies under winner and loser effects.
Bull Math Biol 77(6):927-952

Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

Maynard Smith J, Price G (1973) The logic of animal conflict. Nature 246:15-18

McNamara JM, Wilson EM, Houston AI (2006) Is it better to give information, receive it, or be ignorant in
a two-player game? Behav Ecol 17(3):441-451

Roberson B (2006) The Colonel Blotto game. Econ Theory 29(1):1-24

Selten R (1980) A note on evolutionarily stable strategies in asymmetric animal conflicts. J Theor Biol
84(1):93-101

Skaperdas S (1992) Cooperation, conflict, and power in the absence of property rights. Am Econ Rev
82(4):720-739

Skyrms B (2004) The stag hunt and the evolution of social structure. Cambridge University Press, Cambridge

Spear L, Howell S, Oedekoven C, Legay D, Bried J (1999) Kleptoparasitism by brown skuas on albatrosses
and giant-petrels in the Indian Ocean. Auk 116(2):545-548. doi:10.2307/4089389

Steele W, Hockey P (1995) Factors influencing rate and success of intraspecific kleptoparasitism among
kelp gulls (Larus dominicanus). Auk 112(4):847-859. doi:10.2307/4089017

Sykes DG (2015) The connection between fight cost structure and evolutionary stability of kleptoparasitism
in simultaneous games. Honor’s thesis, The University of North Carolina at Greensboro

@ Springer


http://dx.doi.org/10.2307/4089389
http://dx.doi.org/10.2307/4089017

482 M. Broom et al.

Sykes DG, Rychtar J (2017) Optimal aggression in kleptoparasitic interactions. Involve 10(5):735-747.
doi:10.2140/involve.2017.10.735

Triplet P, Stillman R, Goss-Custard J (1999) Prey abundance and the strength of interference in a foraging
shorebird. J Anim Ecol 68(2):254-265

Tullock G (1980) Efficient rent-seeking. In: Buchanan J, Tollison R, Tullock G (eds) Toward a theory of
the rent-seeking society. Texas A&M Press, College Station, pp 269-282

Vickery W, Giraldeau L, Templeton J, Kramer D, Chapman C (1991) Producers, scroungers and group
foraging. American Naturalist, pp 847-863

@ Springer


http://dx.doi.org/10.2140/involve.2017.10.735

	The effect of fight cost structure on fighting behaviour involving simultaneous decisions and variable investment levels
	Abstract
	1 Introduction
	2 The model
	3 Analysis
	3.1 Best responses
	3.2 Nash equilibria, strict Nash equilibria and evolutionarily stable strategies
	3.2.1 Case s*=0
	3.2.2 Case s*=S1
	3.2.3 Case s*=S2
	3.2.4 Case s*=f(p*)>0


	4 Results
	4.1 Overview of all possible equilibria
	4.1.1 Equilibrium (0,0)
	4.1.2 Equilibrium (S1,0)
	4.1.3 Equilibrium (S1,P1)
	4.1.4 Equilibria (S1,f(S1)) and (f(P1),P1)
	4.1.5 Equilibria (S1, P2) and (S2,P1)
	4.1.6 Equilibrium (to1.5.12(to.v2α)to.1α,12(to.v2α)to.1α)to1.5.
	4.1.7 Equilibria (S2,f(S2)) or (f(P2),P2)
	4.1.8 Equilibrium (S2,P2)

	4.2 Co-existence of equilibria
	4.2.1 No (pure) equilibria

	4.3 Some observations for particular cases
	4.3.1 The case when α<1
	4.3.2 Small S1 and P1
	4.3.3 Increasing strength

	4.4 A comparison with the results of broom2015effect

	5 Discussion
	Acknowledgements
	Appendix
	References




