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Abstract Recently, the study of structured populations using models of evolution-
ary processes on graphs has begun to incorporate a more general type of interaction
between individuals, allowing multi-player games to be played among the population.
In this paper, we develop a birth-death dynamics for use in such models and consider
the evolution of populations for special cases of very small graphs where we can easily
identify all of the population states and carry out exact analyses. To do so, we study
two multi-player games, a Hawk–Dove game and a public goods game. Our focus
is on finding the fixation probability of an individual from one type, cooperator or
defector in the case of the public goods game, within a population of the other type.
We compare this value for both games on several graphs under different parameter
values and assumptions, and identify some interesting general features of our model.
In particular there is a very close relationship between the fixation probability and
the mean temperature, with high temperatures helping fitter individuals and punishing
unfit ones and so enhancing selection, whereas low temperatures give a levelling effect
which suppresses selection.
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1 Introduction

1.1 Modelling structured populations with multi-player interactions

The modelling of the evolution of a population of individuals where each is located
on the vertex of a graph, interacting with their neighbours and potentially replacing
themwith a direct copy of themselves, is commonly termed evolutionary graph theory
(although it is the population and not the graph which evolves), and studies how the
structure of this population, i.e. its topology, can affect its evolution (Lieberman et al.
2005; Antal and Scheuring 2006; Nowak 2006; Broom and Rychtář 2008; Voorhees
and Murray 2013; Maciejewski et al. 2014). As opposed to traditional evolutionary
game theory thatmainly considers infinitewell-mixed populations, the use of graphs to
model population structure on standard games such as the Prisoner’s Dilemma and the
Hawk–Dove game enables us to work on finite inhomogeneous populations (Ohtsuki
et al. 2006; Santos and Pacheco 2006; Hadjichrysanthou et al. 2011). This follows
earlier work considering finite and/or spatial populations; for example Nowak and
May (1992, 1993) considered the spatial evolution of cooperative behaviour, Schaffer
(1988) considered a Hawk–Dove game in a finite population, and Killingback and
Doebeli (1996) considered a Hawk–Dove game on a lattice.

This approach, however, is still limited in the sense that it is restricted to pairwise
interactions between individuals. Animals of many species live alone or in distinct
groups on a certain territory. Although animals generally forage for food within their
territory, it can happen that the territory size varies considerably over time. In some
cases, it can expand and overlap with other territories, when food becomes rarer, or for
the purpose of mating for example. Thus the same place is used by two or more indi-
viduals that will interact and sometimes compete when somemajor items of food are at
stake. This kind of situation illustrates the need for models of evolution on structured
population to incorporate amore general type of interaction, not only based on pairwise
interactions, but also allowing multi-player games to be played among the population.

In general there aremany situationswhere groups ofmore than two individuals form
to cooperate, or to compete. Groups form to fight over food, e.g. in African wild dogs
(Ginsberg and Macdonald 1990) or roadrunners (Kelley et al. 2011). Ant colonies are
large cooperative enterprises, and similarly primate groups are cooperative structures,
containing conflicts related to dominance and resource division. Human society is of
course full of examples. Thus it is natural to generalise evolutionary games tomore than
two individuals. Multi-player games were introduced into biology in Palm (1984) and
the theory developed by Broom et al. (1997), see also Bukowski and Miekisz (2004).
Such general multi-player games have been studied recently, see for example Gokhale
and Traulsen (2010, 2014) and Broom and Rychtář (2013), Chapter 9. A multi-player
Hawk–Dove game was considered in Broom and Rychtář (2012), and multi-player
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public goods gameswere considered in a number of papers: Hauert et al. (2002),Milin-
ski et al. (2006), Santos et al. (2008), Kurokawa and Ihara (2009), Souza et al. (2009),
Santos and Pacheco (2011), Veelen and Nowak (2012), Kurokawa and Ihara (2013).

In order to model this more general type of interaction between individuals, Broom
and Rychtář (2012) developed a new framework to analyse multi-player games in
networks involving groups of different sizes. However, their work is mainly focused
on the static analysis of such games. In this study, we are interested in introducing
dynamics. We want to analyse this framework on models as simple as possible, and
we hope to obtain some general insights by studying the games’ dynamics.

1.2 The population and its distribution: the territorial raider model

Broom and Rychtář (2012) used the territorial raider model (see Fig. 1), to represent
interactions within a population with overlapping territories. We shall briefly describe
it again below. We consider a population of N individuals I1, . . . , IN (see also Sect.
2.2 for an interpretation of In in relation to the evolutionary dynamics) who can move
and eventually interact in N different places P1, . . . , PN , see Fig. 1a. The individual In
lives in a place Pn and can also move to neighbouring places.Wemodel the population
with a graph where vertices represent individuals as well as places of interaction. We
assume that individuals move independently of each other and also independently of
the population’s history (any past movements). The probability of an individual In
being at place Pm will be denoted by pnm .

2 General framework

Using the general framework described by Broom and Rychtář (2012), we are inter-
ested in studying the dynamics of standard games under the territorial raider model,
which as we have seen can be represented as a simple graph (see Fig. 1). We wish to
see if we can get some insight into the effect of the graph on the evolution of a lone
mutant introduced into the population. In (almost) any finite population comprised
of two classes of individuals, eventually one type will come to completely domi-
nate the population. The fixation probability of a single mutant is the probability that

Fig. 1 The territorial raider model from Broom and Rychtář (2012). a Individual In lives in place Pn but
can visit neighbouring places. The territory of I1 consists of all places P1, P2, P3 and P4, the territory of
I2 consists of P1 and P2, the territory of I3 consists of P1 and P3, the territory of P4 consists of P1 and
P4. b An alternative visualization as multi-player interactions on a bi-partite graph where individuals and
places are clearly separated. We will call the vertices I1, . . . In the I -vertices
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1554 M. Broom et al.

Table 1 The framework notation

Notation Definition Description

N ∈ Z
+\{0} Population size

A, B Two types of haploid individuals

In Individual n

S = {n : In is of type A} State of population

N = {1, 2, . . . , N } State in which all individuals are of type A

PSS′ ∈ [0, 1] State transition probability

ρA
S ∈ [0, 1] Probability of fixating in N when initial state is S

Pm Place m

pnm ∈ [0, 1] Probability of In being at Pm

h ∈ [0, ∞) Home fidelity, value of h indicates likelihood of
individual staying in its home vertex

d ∈ Z
+\{0} Number of neighbours

G ⊂ {1, 2, . . . , N } Group of indiviuals

χ(m,G) ∈ [0, 1] Probability of group G meeting at Pm

Fn ∈ [0, ∞) Fitness of individual n

R ∈ [0, ∞) Background payoff that individuals start with

RA
a,b ∈ [0, ∞) Payoff to type A individual in group of a type

A’s and b type B’s

V ∈ [0, ∞) Game reward

C ∈ (0, ∞) Game cost

R ∈ (0, ∞) Background payoff

Ri,G ∈ [0, ∞) Fitness of In in group G

v = V/C Reduced game reward

r = R/C Reduced background payoff

bi ∈ [0, 1] Probability Ii selected for birth

di j ∈ [0, 1] Probability Ii replaces I j given Ii selected for birth

Tj = ∑
i �= j di j Temperature of I j

eventually it will completely replace the other type. Some graphs can act as suppres-
sors or amplifiers of evolution (see Lieberman et al. 2005); a graph is a suppressor
(amplifier) of evolution if a raremutant which has fitness higher than the resident popu-
lation has a smaller (larger) fixation probability on the graph than in the corresponding
well-mixed population.

Let us consider a population of individuals of type A and B set on the vertices of a
graph. Each individual can move along the edges of this graph and meet one or more
other individuals in this process. Each time a group is formed, individuals within this
group play a game so that each individual gets a reward according to the outcome
of the game for each player. At one point, a dynamic process enables the population
to evolve through a birth-death process based on the individuals’ fitness, and we are
interested in expressing the fixation probability of one individual in this process. The
notation used in this paper is summarised in Table 1.
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Fig. 2 The population structures and movement probabilities for small graphs on 3 and 4 vertices. An
individual moves to a neighbouring vertex with probability 1/(h + d) and stays at home with probability
h/(h + d) where d is the number of neighbours. a The line of 3 vertices, which in this case, is also the
star. b The triangle. c The square with both diagonals, the complete graph for four vertices. d The “circle”
graph, or a square with no diagonals. e The star graph with 4 vertices. f The diamond, a square with one
diagonal. g The line with 4 vertices. h The paw

2.1 Spatial structure

Thegraphs thatwewill study are representations of territorial raidermodels. Therefore,
it is important to bear in mind that they relate to a more general representation where
places and individuals are disconnected as shown in Fig. 1b. In other words, the graphs
shown here stand for the kind of models in Fig. 1a. We will consider all of the three
and four vertex connected undirected graphs shown in Fig. 2.

In general each individual could have a different probability of movement, but we
select a natural model where all movements are governed by a single parameter. We
assume that an individual with d neighbours will stay with probability h/(h + d) and
move to one of its neighbour with probability 1/(h + d). Thus h is a measure of the
preference of an individual to stay on its home vertex, and we call this its home fidelity.
In each case setting h = 1 gives the natural parameters of each individual visiting all
allowable places (including its home vertex) with equal probability.

123



1556 M. Broom et al.

Fig. 3 The transition graphs for small graphs on 3 and 4 vertices. a The line of 3 vertices. b the triangle.
c The square with both diagonals, the complete graph for four vertices. d The “circle” graph, or a square
with no diagonals. e The star graph with 4 vertices. f The diamond, a square with one diagonal. g The line
with 4 vertices. h The paw

2.2 Evolutionary dynamics

To calculate the fixation probability of A among B individuals at a given spatial struc-
ture, the first step is to list all the states that describe all the possible distributions of
individuals of both types on the different places throughout the evolutionary process,
from the insertion of one individual from type A in a population made up of B indi-
viduals until its fixation or elimination.

The evolutionary process then determines if the population canmove from one state
to another. Here we consider a birth-death dynamics where during each time step, one
individual is selected with probability proportional to its fitness to produce a copy of
itself, and another individual is selected to be replaced by the copy.
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An individual I j can be replaced by a copy of individual Ii if and only if Ii and
I j could meet in the spatial structure (which here means that Pi and Pj are at most
two edges apart from each other). Thus the types of the individuals change through
time, and so Ii is more properly thought of as a position in our structure which has a
particular relationship to the places P1, . . . , PN , rather than an actual individual. The
relationship between the position Ii and the potential individuals that can be thought
of as similar to that between a gene and its possible alleles. We shall call the positions
In the I -vertices of our structure, but will often simply refer to them as “individuals”,
unless this distinction needs to be emphasised (see Fig. 1b). Note that while in this
paper there is a 1-1 correspondence between places and I -vertices, this is not generally
the case, and will not be true for most realistic models. Figure 3 shows the transition
graphs (when all graph symmetries are taken into account) for the corresponding
graphs from Fig. 2.

Not accounting for the symmetries, a given population structure with N individ-
uals yields a transition graph with 2N different states that can be indexed by subsets
S ⊂ {1, 2, . . . , N }. We will use the convention that state ∅ represents a population
composed entirely of B individuals, and stateN a population of A individuals only. Let
PSS′ denote the transition probability from state S to state S′ in the dynamic process
of our game.

Let bi denote the probability an individual Ii is selected for reproduction and let
di j , for i �= j , denote the probability that I j is replaced by a copy of Ii given Ii is
selected for reproduction. For S �= S′, we have

PSS′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i /∈S
bi di j ; if S′ = S\{ j} for some j ∈ S

∑

i∈S
bi di j ; if S′ = S ∪ { j} for some j /∈ S

0; otherwise

(1)

and we set

PSS = 1 −
∑

S′ �=S

PSS′ . (2)

We calculate bi as being proportional to Fi , the fitness of individual Ii (see (17) in
Sect. 3.4 for how we calculate fitness), i.e.

bi = Fi
∑

k Fk
. (3)

We calculate di j by considering all possible places Pm and all possible groups G ⊂
{1, 2, . . . , N } involving both individuals i and j ; weighted byχ(m,G), the probability
of the group G meeting at place Pm , and by a factor (|G| − 1)−1 representing the fact
that in a group G, an individual Ii could replace any one of |G| − 1 other individuals.
Thus, we get
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di j =
N∑

m=1

∑

G
i, j∈G

χ(m,G)

|G| − 1
, where (4)

χ(m,G) =
∏

k∈G
pkm

∏

k′ /∈G
(1 − pk′m); (5)

here pkm is the probability of Ik moving to Pm , so for example for an individual at
the centre of a star the probability that it goes to its ‘home” vertex is p11 = h/(h + 3)
(see Fig. 2e). We note that d ji = di j . Also, the quantity

Tj =
∑

i �= j

di j (6)

could be regarded as the temperature (Lieberman et al. 2005) of the I -vertex I j as it is
proportional to the frequency of an individual I j being replaced by another individual
(if all individuals are equally likely to produce an offspring).Wenote that in our setting,
the (mean) temperature depends not only on the graph but also on the parameter h,
see Fig. 4.

2.3 The fixation probability of A

Finally, let ρA
S be the probability that A fixates from state S. We get,

ρA
S =

∑

S′⊂{1,2,...,N }
PSS′ρA

S′ (7)

with boundary conditions

ρA
∅ = 0, (8)

ρA
N = 1. (9)

The mean fixation probability of A, ρA, will be an appropriately weighted average
of the fixation probabilities from all states including exactly one individual of type A.
Following Allen and Tarnita (2014), we define

ρA =
∑

i

Ti
∑

j Tj
ρA{i}, (10)

which is grounded in the fact that a new type of individual is more likely to appear
at a place whose inhabitants are replaced more often (relative to others). We note,
however, that the difference betweenρA and the uniformlyweighted average

∑
i
1
N ρA{i}

is negligible for all the small graphs we considered. In fact, the latter quantity is never
less than ρA which is in agreement with results from Allen et al. (2014).
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3 The multi-player games

In this section we summarize two multi-player games, the Hawk–Dove game, and the
public goods game. We also introduce the payoffs for the fixed fitness case, which can
be seen as a limiting case in our framework.

3.1 The Hawk–Dove game

Let us consider a population of two types of individuals, A stands for a Hawk, and
B for a Dove. They both start with a background payoff R, in addition to playing a
multi-playerHawk–Dove game, competing for a single reward V that is placed on each
vertex of our graph. If all individuals in the group are Doves, they split the reward so
that each one gets the same share. If there is at least one Hawk, all the Doves concede
and the remaining Hawks fight, so that the winner gets the reward V while the others
receive a cost C . Therefore, after one game within a group of a Hawks and b Doves,
the average payoffs for the Hawk and the Dove are respectively

RA
a,b = R + V − (a − 1)C

a
, (11)

RB
a,b =

{
R, if a > 0,

R + V
b , if a = 0.

(12)

In what follows, we will be interested in the fixation probability of a single Hawk
in a population of Doves as well as in the fixation probability of a single Dove in a
population of Hawks.

3.2 The public goods game

Let us consider a population of two types of individuals, A stands for a Cooperator,
and B for a Defector. They both start with a background payoff R, representing fitness
gained from sources other than the game, in addition to playing a multi-player public
goods game. Following for example Veelen and Nowak (2012), a Cooperator (always)
pays a cost C so that other individuals in the group share the benefit V . Therefore,
after one game within a group of a Cooperators and b Defectors, the average payoffs
for the Cooperator and the Defector are respectively

RA
a,b =

{
R − C, a = 1, b = 0,

R − C + a−1
a+b−1V, otherwise,

(13)

RB
a,b = R + a

a + b − 1
V . (14)

3.3 Fixed fitness case

In this game, the individuals do not really interact with each other but rather receive
a constant payoff depending on their type and irrespective of the groups size or types
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of the other group members. Specifically, if a group consists of a individuals of type
A and b individuals of type B, we define

RA
a,b = R + V, (15)

RB
a,b = R. (16)

3.4 Fitness

For simplicity, we assume that the fitness of an individual is the average (equivalently
total, since all individuals play the same number of games) payoff from the games.
This corresponds to the scenario where individuals first undergo a large number of
independent movements, acquiring the average (or total) payoff from the games that
are played during this process, and thenmove onemore time to form groups, but in this
case, no game is played, only the reproduction (proportional to the acquired payoff)
and replacement processes take place.

The fitness of an individual Ii is thus given by

Fi =
∑

m

∑

G
i∈G

χ(m,G)Ri,G , (17)

where Ri,G is the fitness of individual Ii in group G. Ri,G depends on the state S (in
particular on the type of individual Ii and the types of individuals in G). Note that a
group can be of size 1, and so include only the individual in question.

At one point (after a number of games), one individual is chosen for reproduction
with probability proportional to its fitness bi , as given in (3). Next, a copy of individual
Ii replaces an individual I j with probability di j given in (4).

Note that the background payoff R has no effect in static games, but is important
for our dynamics. In general for discrete dynamics, including the one we consider
here, the larger the value of R, the weaker the effect of evolution (see e.g. Broom
and Rychtář 2013, Chapter 2). Here, we always assume R is sufficiently large that no
fitness can ever go negative.

On the other hand, scaling all payoffs by a constant has no effect on the game
outcomes, as the numerator and denominator from (3) are both divided by the same
constant, and so we only need to consider the reduced parameters v = V/C and
r = R/C . In the following, we will set the reduced background fitness r equal to 10.
Figure 5 shows a series of plots using this model with v varying from 0 to 2.

4 Results

For the Hawk–Dove game, the results for the fixation probabilities of Hawks on small
graphs are shown in Fig. 5. The fixation probabilities of Doves on small graphs are
shown in Fig. 6. For the public goods game, the results for the fixation probabilities
of Cooperators on small graphs are shown in Fig. 7 and the fixation probabilities of
Defectors are shown in Fig. 8. The fixation probability ρA, depends on the underlying
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Fig. 5 The fixation probabilities of a single Hawk in a population of Doves for small graphs on 3 and 4
vertices
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Fig. 6 The fixation probabilities of a single Dove in a population of Hawks for small graphs on 3 and 4
vertices
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Fig. 7 The fixation probabilities of a single Cooperator in a population of Defectors for small graphs on 3
and 4 vertices
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Fig. 8 The fixation probabilities of a single Defector in a population of Cooperators for small graphs on 3
and 4 vertices
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1566 M. Broom et al.

graph structure, the home fidelity parameter h, the game and the parameters of the
game v (the parameter r was fixed at 10), as well as the type of the invading individual/
resident population.

There are a number of features common to both games, and both types of invading
mutant within the Hawk–Dove game. The fixation probability in each case naturally
depends upon the size of the reward, and the strength of this dependency itself depends
upon h. For low values of h, which have a high mean temperature, there is a wide
spread of values of fixation probability depending upon the value of v. For high h,
corresponding to low mean temperature, the fixation probability depends very little
upon v. This can be seen from Fig. 10, where the biggest differences between fixation
probabilities are for the highest temperatures. In Hawk–Dove game, a large v is good
for Hawks, and a small v is good for Doves (since Hawks still pay costs against other
Hawks) and the effect of changing v is most profound when the temperature is highest.
In general we see that low temperatures suppress the effect of fitness and thus suppress
selection, whereas high temperatures enhance it.

4.1 Fixation probability, temperature and mean group size

In previous work, see for example Broom and Rychtář (2012), Bruni et al. (2014),
the authors studied the mean size of an individual’s group (the group size from the
individual’s perspective) defined by

G =
∑

m

∑

G

χ(m,G)|G|2
∑

m

∑

G

χ(m,G)|G|
. (18)

Note the distinction between (18) and the mean group size from an observer’s per-
spective, as here we weight the groups by the number of individuals within a group.
For example, if half of groups are of size 6 and half are of size 12, from the observer’s

Fig. 9 The mean temperature
versus the mean group size for
graphs with 4 vertices (as h
varies from 0 to 100). For
complete graphs, the line with 4
vertices and the diamond, i.e. the
graphs where the mean
temperature peaks at h ≈ 1,
there is a spike in the correlation
figure corresponding to the fact
that the mean temperature and
the mean group size increase
(decrease) at different speeds as
h < 1 (or h > 1). Note that
Star(4) has the largest possible
mean group size 1 1.5 2 2.5
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perspective the mean group size is 9, but from the individual’s perspective this is 10,
as 2/3 of individuals are in the larger groups.

In Broom and Rychtář (2012) it was observed that the mean group size was an
important factor affecting the fitness, and we thus expected that this would be the
case for the fixation probability too. In fact this is so, but it turns out that the mean
temperature and the mean group size are strongly correlated, see Fig. 9, and the effect
of the mean group size on the fixation probability is less strong than that of the mean
temperature, and hence we have focused on the mean temperature in the discussion
of our results. We can see that ρA strongly correlates with the mean temperature for
the underlying graphs as shown at Fig. 10. The correlation is negative for the public
goods game and ranges from positive to negative as v decreases for Hawks in the
Hawk–Dove game or increases for Doves in Hawk–Dove game.

4.2 High home fidelity h

For low temperatures, the relationship between mean temperature and fixation prob-
ability is effectively linear, although this linear dependence breaks down for high
temperatures, and breaks down fast for larger or more heterogeneous graphs like the
star with 7 vertices, see Fig. 10.

For example consider the case of the complete graph, where every I -vertex has
the same temperature, which we denote below simply by T . In this case the fixation
probability is given by the standard formula (see e.g Karlin and Taylor 1975; Traulsen
and Hauert 2009)

ρA = 1

1 + ∑N−1
j=1

∏ j
k=1 γk

, (19)

where γk is the ratio of the probability of a decrease in the number of type A individuals
and the probability of an increase in that number (given there are currently k type A
individuals). Since di j = d ji , in this case γk = bA,k/bB,k = FA,k/FB,k , where the
latter expressions are the ratios of the birth probabilities of types B and A and the
fitnesses of types B and A (that depends on k but does not depend on position).

For both games this is the ratio of two terms that are approximately linear in the
temperature, when this temperature is low, as we show below. Any individual is only
likely to be with at most one other individual, and a payoff above the baseline will only
occur if this is a cooperator (each with probability roughly 1/h). The temperature at
each I -vertex is approximately (N − 1)/h. Recalling that the (reduced) background
fitness and reward values are denoted by r and v, respectively, if type A is a Cooperator
in the public goods game, we obtain

FA,k ≈ r − 1 + (k − 1)v

h
≈ r − 1 + k − 1

N − 1
vT, (20)

FB,k ≈ r + kv

h
≈ r + k

N − 1
vT . (21)
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Fig. 10 The fixation probability as a function of the mean temperature for various graphs. For all small
graphs, the correlations look similar and depend primarily on the game played

For sufficiently small temperatures, it is thus clear that γk is approximately linear in
themean temperature, and so consequently we can see that the fixation probability will
also be approximately linear in the mean temperature, although this linearity breaks
down as soon as the temperature becomes sufficiently large.

For the fixed fitness case, we can actually see the situation from the point of view
of classical evolutionary graph theory (Lieberman et al. 2005). No matter what our
underlying population structure, we can construct an evolutionary graph W with the
vertices given by the set of I -vertices {Ii ; i = 1, . . . N } and the edges between Ii and
I j weighted bywi j = di j corresponding to the fact that I j is being replaced by Ii with
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Fig. 11 Dependence of the fixation probability on v for h = 1

probability di j . Since di j = d ji , the resulting evolutionary graph W is a circulation
(Lieberman et al. 2005, Appendix). Consequently, type A, having a relative fitness
(r + v)/r when compared to type B, will fixate with the Moran probability (Moran
1958)

ρA = PMoran

(
r + v

r

)

= 1 − r
r+v

1 −
(

r
r+v

)N
. (22)

The above results hold for any graph and the fixed fitness case; and it holds approx-
imately for any graph and any game where the payoffs of different types of individuals
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are nearly constant. Within our framework, this happens if h → ∞ because then the
individuals rarely move and thus rarely interact. For the Public Goods game, it also
happens if v → 0. In this case, Cooperators receive payoff r − 1 while Defectors
receive payoffs r , resulting in

ρA = PMoran

(
r − 1

r

)

= 1 − r
r−1

1 −
(

r
r−1

)N
. (23)

For r = 10 and N = 4, we thus get PMoran ≈ 0.2119which corresponds to our results
for h → ∞ or v → 0 as seen in Fig. 11. For the Hawk–Dove game, as h → ∞, the
fitnesses of both the Hawk and the Dove tend to r as the individuals rarely meet. Thus,
the fixation probability of either a Hawk or a Dove tends to 1/N as h → ∞ as seen
in Figs. 5 and 6.

Note that for the Hawk–Dove game, when v → 0 but h is not too large, the fixation
probability of Hawks and Doves is not 1/N . This is caused by the fact that Hawks
still interact and thus have a disadvantage over Doves. The disadvantage grows with
growing mean group size (i.e. with growing mean temperature). Consequently, the
fixation probability is not the Moran probability if h � ∞.

4.3 Effects of the graph and the game

The fixation probability also depends upon the population structure more generally
over and above the mean temperature. For low h in particular the heterogenous star
graph, and to a lesser extent the paw, have a wider range of fixation probabilities for
differing values of v than any of the other graphs. Note, however, that the line is less
variable than the homogeneous well-mixed population. This may be the effect of the
temperature (note that the star has the highest mean temperature as well as the widest
range of fixation probabilities), or the variance in the group size, or possibly both
effects working in conjunction.

A secondobservation that can bemadeon these graphs is that the ordering of fixation
probabilities for different graphs can change as the parameters vary. For example, for
the Hawk–Dove game with three vertices, whatever the value of the reduced gain v,
the fixation probability of the triangle and the line cross for h ≈ 0.66 ≈ 10−0.18.
Note that this approximately corresponds to the point where the mean temperature
gets higher on the triangle than on the line. Similar observations are true for some (but
not all) of the graphs (and other games considered here), see Fig. 12.

There are some features specific to the particular game in question. For the Hawk–
Dove game, the highest fixation probabilities can occur for intermediate values of
log(h) ≈ 0, both for Dove invaders and for Hawk invaders. This is particularly the
case for the square and the line. This occurs when the reward value v is high for Hawk
invaders, and the effect disappears for low v. The figures are noticeably different for
different graphs, and we can thus say that there is a significant graph effect for the
Hawk–Dove game. For the public goods game these features do not appear, and we see
eight broadly similar figures. Thus for the public goods game, we can say that there is
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Fig. 12 Dependence of the
fixation probability on the graph
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not a significant graph effect, at least for the small graphs that we have considered. The
main features where the graphs differ is in the broader spread on the star as mentioned
above, and the dip in the fixation probability for intermediate values of v.

5 Discussion

In this study we used the modelling framework described by Broom and Rychtář
(2012) to consider interactions of individuals in a non-homogeneous environment.
We have developed a birth-death dynamics for this framework so that for the first time
we can carry out a dynamic analysis. We note that for evolutionary graphs, there is a
wide variety of dynamic models considered including a number of common dynamics
used, for example the invasion process (Lieberman et al. 2005), BD-Dprocess (Masuda
2009), voter model (Antal et al. 2006), DB-B process (Ohtsuki et al. 2006), and link
dynamics (Lieberman et al. 2005), see also Shakarian et al. (2012), Allen and Nowak
(2014),Débarre et al. (2014) for recent reviews. In a forthcoming paperwewill develop
an equivalent range of dynamics for our framework.

We analysed and compared the dynamics of some simple games on different spatial
structures and tried to determine some general features. The aim was to look at the
simplest possible cases in relation to this framework. There are three key components
of the model. One is the dynamics, as mentioned above. A second is the population
structure which has a number of key features; home fidelity, temperature, group size.
Often conditioning upon one or more of these features, the structure only has a sec-
ondary effect. In particular the fixation probability was shown to be strongly correlated
with the mean temperature. Within the population, individuals play games, and each
game as well as being distinct, has specific features (in our case reward, cost and
baseline reward) which govern how well individuals do. The value of the reward v

was shown to have a potentially significant effect on the fixation probability; the size
of this effect depended upon aspects of the population structure. In particular, a high
mean temperature made the effect of this parameter much more critical, and the effect
will be stronger when the graph is highly heterogeneous, on the star for example.
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The presented framework is set up in a way that given any graph structure and
any multi-player game, one can automatically generate a system of linear equations
yielding fixation probabilities. The results for graphs on 3 and 4 vertices are shown
in this paper. The results for graphs on more vertices can theoretically be obtained in
a similar fashion. For some highly symmetrical classes of graphs (such as complete
graphs, or stars), the analysis can still be performed even for large graphs, and such
cases will be explored in an upcoming paper. However, the system of linear equations
grows exponentially with the number of vertices (see Broom et al. 2010, for a similar
scenario) and the number of possible graphs grows even faster (Harary and Palmer
1973, p. 240) and the limits of these brute force numerical methods lie at around 9 or
10 vertices.

The two games that we consider, Hawk–Dove and the public goods game, can be
said to represent cooperative dilemmas,with the cooperative strategies beingHawkand
Cooperate, respectively. In our model, we see that for the cases shown, the cooperative
strategies generally do poorly. For the public goods game, the fixation probability of
a single Cooperator (Defector) is always less (more) than 1/N . Similarly, for the
Hawk–Dove game, the fixation probability for a single Hawk is often greater than
1/N, although it can fall below this value for small v. The fixation probability of a
single Dove is often less than 1/N , although it can climb above this value for small v.
One reason for this is that, in general, birth-death processes do not favour cooperation
(see e.g. Ohtsuki et al. 2006). Thus it may be that cooperation is generally disfavoured
in the public goods game. For the Hawk–Dove game, an important factor could be the
small size of the graphs used, which mean that in turn the groups formed remain small.
Large groups will tend to disfavour Hawks, as they generate costs without rewards for
all but oneHawk in any group. Thus for larger graphs, wemay obtainmore cooperative
behaviour, in the form of relatively higher fixation probabilities for Doves as opposed
to Hawks.

We note that we have made some assumptions about evolution in terms of the
dynamics as mentioned above. We have also assumed that in our birth-death process
the new offspring cannot replace a parent within the group (e.g. if the parent kills
and replaces another individual). If the offspring could replace the parent, then the
denominator |G| − 1 in Eq. (4) would become |G|. This changes the results slightly;
most notably, it decreases the temperatures as we would divide by larger numbers.
However, the shapes of the curves and the correlations are effectively as before.

The different graphs in our model can be considered to represent different ways
in which biological territories overlap. Alternatively our graphs can represent distinct
social relationshipswithin a group.While we only considered small graphs, we believe
that our results will generalise. As mentioned above, mean temperature seems to be
a more important factor than the specific structure. In the biological context, this
represents ameasure of interaction between the individualswithin the population.High
mean temperature corresponds to highly mobile individuals which interact potentially
in larger groups than when the mean temperature is low. This gives us a natural
measure of the strength of the effect of a particular game in a population. What’s
more, temperatures can be estimated in real populations, as long as the meetings
between individuals in groups can be reliably recorded, so that the frequency of the
formation of different groups can be estimated. It would be of great interest to work out
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the temperatures in various real population scenarios, and to ascertain how accurate
our general conclusions are.

Finally we note that all of the populations in this paper correspond to graphs, as we
see in Fig. 1a. This is for ease of explanation only, and in fact the framework of Broom
and Rychtář (2012) allowed for a far greater variety of population types. In subsequent
work, we will consider a wider class of populations, and in particular explore cases
where there are more individuals than places and so large groups of individuals can
form.
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