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Abstract Kleptoparasitism is the stealing of food by one animal from another. This
has been modelled in various ways before, but all previous models have only allowed
contests between two individuals. We investigate a model of kleptoparasitism where
individuals are allowed to fight in groups of more than two, as often occurs in real
populations. We find the equilibrium distribution of the population amongst various
behavioural states, conditional upon the strategies played and environmental para-
meters, and then find evolutionarily stable challenging strategies. We find that there
is always at least one ESS, but sometimes there are two or more, and discuss the
circumstances when particular ESSs occur, and when there are likely to be multiple
ESSs.

Keywords Kleptoparasitism · Multiplayer contests · ESS · Game theory · Strategy

1 Introduction

A problem shared by all animals is finding a sufficient amount of food, and discov-
ering food items can involve a significant period of searching. Whilst foraging, an
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684 Broom and Rychtář

individual can come into contact with conspecifics also seeking food, and it may
discover an individual already in possession of a food item. It may then attempt to
steal the food item; such stealing of items of food by one animal from another is
termed kleptoparasitism (Rothschild and Clay 1952), and is common amongst many
types of animals, for example insects (Jeanne 1972), fish (Grimm and Klinge 1996),
and mammals (Kruuk 1972). It is perhaps most common in birds (see Brockmann
and Barnard 1979 for a review), and especially seabirds (Steele and Hockey 1995;
Triplet et al. 1999; Spear et al. 1999).

However, the gain from attempting to steal a food item must be weighed against
the costs, e.g. time wasted, risk of injury involved in a contest. The individual must
then make a choice whether to steal or not, based upon such rewards or costs;
this provides an ideal scenario for the application of game theory (Maynard Smith
1982). A significant body of literature using game theoretic models to investigate
kleptoparasitic behaviour in nature has been built up (e.g. Barnard and Sibly 1981;
Stillman et al. 1997; Broom and Ruxton 1998; Ruxton and Broom 1999; Broom
and Ruxton 2003). The original model of Broom and Ruxton (1998) has been de-
veloped in a variety of ways in recent papers. For instance Luther and Broom
(2004) showed that key dynamic assumptions of the model were correct, Broom et
al. (2004) developed the game by allowing handling birds to surrender food items
and varying the success probability of the contestants, Broom and Rychtář (2007)
analysed the models using adaptive dynamics for the first time, and Luther et al.
(2007) considered two groups of birds, kleptoparasites and those which only for-
aged. However, in each of these papers, fights were limited to two contestants only.
In all of these earlier models, the key ingredient was this contest over food be-
tween the two animals, and where the different models gave different results, it
was often because the nature of these contests changed from one scenario to an-
other.

If an individual came across a contest for food already in progress, it was
not allowed to intervene. This is not always reasonable, and it has been ob-
served (e.g. Steele and Hockey 1995) that large numbers of birds can fight over
the same piece of food. Such groups can be particularly visible compared to
smaller contests, and so such multiple contests may be very common. In this
paper, we explore this situation by allowing challenges to groups contesting a
food item, and individuals have to decide whether to challenge any given sized
group.

We find the equilibrium distribution of the population conditional on the strate-
gies employed by the population members and find conditions when it is worth chal-
lenging a group in a given situation; this is more complicated than in the previous
models (e.g. Broom and Ruxton 1998; Broom et al. 2004) where only single in-
dividuals could be challenged. Every individual can choose what size groups it is
prepared to challenge. We investigate how large a group it is worth challenging and
the distribution of contest sizes in the population. We show that the only sensible
strategies are to challenge groups up to a certain maximum size, and not to chal-
lenge larger groups. In particular, we look for what parameter values such strate-
gies are Evolutionarily Stable Strategies (ESSs). We show that there is always at
least one ESS in every case, but that there can be two or more ESSs, sometimes
many.
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2 The model

Individuals are either searchers, handlers, or involved in fights. Such kleptoparasitic
contests can involve fights in groups of size i, for general i ≥ 2. Searchers are al-
lowed to challenge groups already involved in a contest, thus increasing the number
of contestants by one. Note that in the original model of Broom and Ruxton (1998)
individuals were only allowed to fight in groups of size two.

Transitions between the states occur according to a continuous time Markov chain,
so every possible transition is associated with a single rate. Food is found at rate νf f

where f is the food density in the environment and νf is the area searchers can search
for food in a unit time. The food item is handled at rate 1/th. All fights, irrespective of
the size of the groups, end at rate 1/tc , where tc is the expected duration of a contest.
We assume this for the sake of simplicity; in particular, the calculations for Sect. 3.1
relating to optimal strategies would be greatly complicated if contest time varied. In
Broom and Ruxton (1998) and subsequent papers, where all such contests contained
two individuals, this average fighting time tc was written as ta/2. The proportion of
searchers and handlers in the population are labelled s and h, respectively. In Broom
and Ruxton (1998), the densities of searchers and handlers S and H were considered,
so that s = S/P and h = H/P where P denoted the density of the population. The
proportion of individuals involved in a contest of size i is labelled fi (f2 = A/P in,
e.g. Broom et al. 2004), and the consequent ratio of the number of groups of size i

to the population size is gi = fi/i. Searchers find groups of size i fighting over food
at rate μigi (so that the rate of finding a handler is μ1h, equivalent to νhH = νhhP

in Broom and Ruxton (1998), and thus μ1 = Pνh). When a searcher sees a group of
size i, it challenges with probability pi (so the probability of challenging a handler is
p1). These probabilities may be fixed properties of the population, or be potentially
different for different individuals. We will be particularly interested in the optimal
values of pi if all possibilities are allowed in the population. When contests end each
group member is equally likely to be the winner, and emerge as a handler, all others
becoming searchers. The parameters of the model are summarised in Table 1 and the
transitions are shown in Fig. 1.

The transitions translate into the following system of differential equations for
s, h, and gi .

ds

dt
= h

th
− νf f s + 1

tc

∞∑

i=2

(i − 1)gi − μ1p1sh − s

∞∑

i=2

μipigi, (1)

dh

dt
= νf f s − h

th
− μ1p1sh + 1

tc

∞∑

i=2

gi, (2)

dgi

dt
= μi−1sgi−1pi−1 − 1

tc
gi − giμispi, i = 2,3, . . . . (3)

As shown in Appendix A, the equilibrium solutions are given by

h = thνf f s, (4)
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686 Broom and Rychtář

Table 1 A summary of model parameters (top section) and notation (bottom section)

Meaning

νf f The rate at which food items are found

1/th The rate at which food items are handled

1/tc The rate at which fights are resolved

μ1 The rate at which handlers are found

μi The rate at which groups of i fighters are found

s The proportion of searchers in the population

h The proportion of handlers in the population

fi The proportion of individuals in groups of size i

gi gi = fi/i, the relative density of groups of i individuals; g1 = h

p1 The probability a handler is challenged if found

pi The probability a group of i fighters is challenged if found

p The challenging strategy, p = (p1,p2,p3, . . .)

Vk The strategy to challenge groups of size < k only

πi The probability of becoming a handler when currently in a group of size i

ρi The probability that a new individuals joins a group of size i

Xk Any value X if all individuals play a strategy Vk

(e.g. gi becomes gi,k)

g2 = tcμ1p1thνf f s2

1 + tcμ2p2s
, (5)

gi = g2

i∏

j=3

(
μj−1pj−1s

μjpj s + 1/tc

)
, (6)

where s is a solution of

1 = s(1 + thνf f ) + thνf f s

∞∑

i=2

i

i∏

j=2

(
tcμj−1pj−1s

tcμjpj s + 1

)
. (7)

Since the right-hand side of (7) is monotone in s, it is clear that there is always
a unique solution of (7). Also note that if p1 > 0 and pi = 0, for all i > 1, then (7)
recovers the original Broom and Ruxton (1998) model.

As further shown in Appendix A, the expected time to become a handler for a
searching individual who uses a strategy q = (q1, q2, . . .) in the population where
everybody else uses a strategy p = (p1,p2, . . .) is

TS = 1 + tc
∑∞

i=1 μigiqi

νf f + ∑∞
i=1 μigiqiπi+1

, (8)
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Fig. 1 Schematic description of the model

where

πi = 1

i
−

∞∑

l=i

1

l(l + 1)

l∏

j=i

(
tcμjpj s

1 + tcμjpj s

)
(9)

is the probability to become a handler when currently in the group of size i. Clearly,
0 < πi ≤ 1/i and πi is decreasing in i.

Note that TS can be considered as the sole indicator of the fitness of an individual:
the shorter the time, the higher the fitness. The fitness of an individual is in reality
the rate at which it consumes food. It can consume food (at average rate 1/th) if and
only if it is the handling state, so that an individual’s mean consumption rate is h/th
(Broom and Ruxton 1998). Any individual goes through searching periods of length
TS when it is either looking for a food item or fighting for an item as a challenger
and through handling and defending periods where it is either handling or defending
the food item against challenger(s). Varying an individual’s own challenging strategy
has an effect on the duration of the searching period. However, since in this paper we
assume that the handler has to defend the food whenever challenged and no individual
can give up the fight at any moment, an individual cannot vary the time it spends in
the handling period once it begins handling (nevertheless, the length of the period
depends on the behaviour of others). Consequently, to maximise the proportion of
time spent handling h, and thus its fitness, the individual should try to minimise TS .
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688 Broom and Rychtář

3 Evolutionarily stable strategies

We now consider the various situations that an individual may face, and what the best
strategy is in each case. In particular, if a group of i individuals involved in a contest is
observed, should a bird challenge or not (i.e. what should its value of pi be)? We shall
assume that all other individuals in the population play the strategy p = (p1,p2, . . .)

and we consider a mutant individual playing q = (q1, q2, . . .). We find what ESSs are
possible, and then conditions for each of them to actually be ESSs.

3.1 Possible ESSs

Here, we show that any ESS must be a strategy Vk which challenges any groups of
size less than k and no other. When faced with the opportunity to challenge a group
of size i the best option is the one which has the least expected time to become a
handler. If an individual does not challenge, the expected time is TS . If it challenges,
the Markov property guarantees that the contest takes an average time of tc no matter
whether and how many challengers join the group. Thus the expected time taken for
an individual to become a handler when joining such a contest already containing i

individuals is

tc × πi+1 + (tc + TS) × (1 − πi+1) = tc + TS × (1 − πi+1).

Comparing TS with the above shows that an individual should join a contest if

πi+1

tc
>

1

TS

. (10)

Thus, by (8), qi = 1 is optimal if

πi+1 − tcνf f + tc

∞∑

j=1

μjgjqj (πi+1 − πj+1) > 0. (11)

Otherwise, qi = 0 is optimal. In particular, a population playing an evolutionarily
stable strategy should be of the form pi ∈ {0,1} for all i.

Moreover, by (9), the left-hand side of (11) is clearly decreasing with i, so that
for any internally consistent set of qis (i.e. each qi is optimal in conjunction with
q = (q1, q2, q3, . . .)), optimal invading strategies must be of the form qi = 1, for
i < k and qi = 0, for i ≥ k, for some constant k; i.e. groups up to a certain size only
should be challenged. We can thus confine our attentions to the strategies Vk which
are the only possible ESSs.

For a population all playing Vk , the maximum group size is k, occurring when a
group of size k − 1 is challenged. We can use (7) to find the value of s, and then (4),
(5), (6), and (9) to give the values of h, g2, gi , and πi . Each of these will depend upon
the value of k and we thus label the values of s, h, gi and πi for a population playing
strategy Vk as sk, hk, gi,k, and πi,k, respectively.

For illustration, we give a numerical example; the densities of the various group
sizes for the example population V7 are shown in Table 2. As the rate of finding food
increases, the densities of searchers declines, the density of handlers increases, and
the density of groups of each size first increases and then declines.
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Table 2 Proportion of individuals and groups (times 103) for strategy V7 as νf f varies. Other parameter
values are th = 1, tc = 1,μi = μ1 = 1. Note that the proportion of individuals involved in a fight in the
group of size i is igi and not gi

νf f 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 1.21 2.51

s7 963 749 640 568 515 474 441 414 321 213

h7 9.63 82 134 176 211 242 269 294 389 535

g2,7 4.73 35 52 64 72 78 82 86 95 94

g3,7 2.32 15 20 23 24 25 25 25 23 16

g4,7 1.14 6.47 7.97 8.36 8.31 8.06 7.72 7.35 5.59 2.90

g5,7 0.56 2.77 3.11 3.03 2.82 2.59 2.36 2.15 1.36 0.509

g6,7 0.27 1.19 1.21 1.10 0.960 0.83 0.72 0.63 0.03 0.01

g7,7 0.26 0.89 0.78 0.62 0.5 0.4 0.32 0.26 0.11 0.02

3.2 Conditions for strategy Vk to be an ESS

Consider a population of individuals playing Vk . When can an individual playing Vl

invade?
If l > k, then groups of resident individuals form only up to size k, so that our

individual may challenge such a group, but will never get the opportunity to chal-
lenge larger groups. Thus, the strategy indicated for encounters with such groups is
irrelevant, and the payoff to any strategy Vl , l > k is identical, and so equal to the
payoff of Vk+1.

Now suppose that l < k. Vl invades Vk when TS is smaller for the invader than for
the resident. By (8), this happens if

1 + tc
∑l−1

i=1 μigi,k

νf f + ∑l−1
i=1 μigi,kπi+1,k

<
1 + tc

∑k−1
i=1 μigi,k

νf f + ∑k−1
i=1 μigi,kπi+1,k

which is equivalent to

k−1∑

i=l

μigi,k

(
νf f tc − πi+1,k + tc

l−1∑

j=1

μjgj,k(πj+1,k − πi+1,k)

)
> 0. (12)

The term in brackets in (12) increases with both l and i. For l = k − 1, there is
just a single term, and if this is negative then invasion does not occur. If l < k − 1,
then the expression consists of the sum of several of these terms, all smaller than the
i = l = k − 1 term, so that invasion of Vl cannot occur for l < k − 1 if it does not
occur for Vk−1.

A strategy Vk is thus an ESS if and only if it can resist invasion by both Vk−1 and
Vk+1 for k ≥ 2 (V1 must resist invasion only from V2). This is equivalent to saying
that in a population of Vk individuals the optimal strategy when encountering a group
of size k − 1 is to challenge (qk−1 = 1) and the optimal strategy against a group of
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690 Broom and Rychtář

Table 3 Group sizes for ESSs as νf f varies, other parameter values: th = 1, tc = 1,μi = μ1 = 1

νf f 0.11 0.21 0.31 0.31 0.41 0.51

ESS k = 7 k = 4 k = 3 k = 2 k = 2 k = 1

sk 0.749 0.644 0.577 0.596 0.540 0.662

hk 0.082 0.135 0.179 0.185 0.221 0.338

g2,k 0.035 0.053 0.065 0.110 0.119 0

g3,k 0.015 0.021 0.038 0 0 0

g4,k 0.006 0.013 0 0 0 0

g5,k 0.003 0 0 0 0 0

g6,k 0.001 0 0 0 0 0

g7,k 0.0009 0 0 0 0 0

size k is not to challenge (qk = 0). By (11), this is equivalent to

tcνf f >
1

k + 1
− tc

k−1∑

i=1

μigi,k

(
πi+1,k − 1

k + 1

)
, (13)

tcνf f <
1

k
− tc

k−1∑

i=1

μigi,k

(
πi+1,k − 1

k

)
, (14)

since, in a population of Vk individuals, πk,k = 1/k and πk+1,k = 1/(k + 1) for any
mutant that challenges a group of size k; note that πi,k < 1

i
for i < k by (9).

Notice that the right-hand side of (13) is always smaller then the right-hand side
of (14). Thus, since (13) is satisfied for sufficiently large tcνf f , there is an interval
of values of tcνf f for which Vk is an ESS.

It follows directly from (13) that V1 cannot be invaded by V2 if and only if

tcνf f >
1

2
.

It is easy to see from (14) and the fact that 1/k ≤ πi,k < 1/i for i < k, tcνf f < 1
2

is a necessary condition for Vk to be an ESS when k > 1.

3.3 Overlapping regions and multiple ESSs

We start to consider the possibility of multiple ESSs with a range of numerical ex-
amples. Table 3 shows the different group sizes for the ESS strategy for varying νf f

with other parameters fixed (note that for νf f = 0.31 there are two ESSs and both of
these are given).

Figure 2 shows the range of values of νf f for which each of the strategies Vk are
ESSs for k = 1,2, . . . ,10. We are particularly interested in the overlaps between the
regions, when there are multiple ESSs.

Table 4 shows the range of νf f where specific Vk are ESSs for different values of
μi , following on from Fig. 2. The cases with multiple ESSs require the combination
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Fig. 2 Ranges of νf f for specific Vk to be ESS. (a) μi = μ1 = 0.1, (b) μi = μ1 = 1, (c) μi = μ1 = 10,
(d) μi = μ1 = 100, (e) μi = μ1 = 1000. Other parameter values are th = 1 and tc = 1

of little food and large encounter rates, leading to intense contests and very little
consumption, which of course is not realistic. However, for more realistic encounter
rates, there will be overlaps, but perhaps not more than two or three ESSs for any
given value of νf f .

By comparing the right-hand side of (13) for Vk and the right-hand side of (14)
for Vk+1, as we do in Appendix A, we see that there is an overlap between successive
regions.

For small encounter rates μi ≈ 0 the conditions (13) and (14) reduce to

1

k
> νf f tc >

1

k + 1
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692 Broom and Rychtář

Table 4 Ranges of νf f where each specific Vk is an ESS with varying μi ; other parameter values: th = 1,
tc = 1

μi

k 0.1 1 10 100 1000

1 [0.5,∞) [0.5,∞) [0.5,∞) [0.5,∞) [0.5,∞)

2 [0.330, 0.500) [0.304, 0.500) [0.207, 0.500) [0.068, 0.500) [0.0100, 0.500)

3 [0.246, 0.329] [0.220, 0.314] [0.149, 0.296] [0.053, 0.289] [0.0078, 0.286]

4 [0.196, 0.245] [0.170, 0.222] [0.113, 0.194] [0.046, 0.184] [0.0077, 0.178]

5 [0.163, 0.195] [0.137, 0.170] [0.089, 0.136] [0.039, 0.125] [0.0079, 0.118]

6 [0.139, 0.162] [0.114, 0.136] [0.071, 0.101] [0.035, 0.087] [0.0080, 0.083]

7 [0.121, 0.138] [0.098, 0.113] [0.058, 0.078] [0.030, 0.065] [0.0081, 0.061]

8 [0.108, 0.120] [0.085, 0.097] [0.049, 0.062] [0.025, 0.050] [0.0080, 0.046]

9 [0.097, 0.107] [0.075, 0.084] [0.041, 0.051] [0.023, 0.039] [0.0078, 0.036]

10 [0.087, 0.096] [0.068, 0.074] [0.035, 0.042] [0.020, 0.032] [0.0075, 0.028]

which means almost no overlaps between the ESSs. On the other hand, for extremely
large μis, any fight effectively ends up as a fight between k individuals, and thus
πi,k ≈ 1/k which means that the condition (13) becomes

νf f tc > 0

and so there are significant overlaps between a large number of strategies.

4 Discussion

Kleptoparasitic contests involving multiple competitors are common in nature (Steele
and Hockey 1995), but have not before now been modelled mathematically. In
this paper, we have developed the model of Broom and Ruxton (1998) to al-
low for such contests. In contrast to previous models (Broom and Ruxton 1998;
Broom and Rychtář 2007) when a group of individuals contesting a food item is
observed, it is possible for the observer to join the contest in the hope of acquiring
the food item. The chance of success will decrease with the number of other com-
petitors, and we investigate a number of possible scenarios. For a defined challenging
behaviour we find the equilibrium distribution of the sizes of the population density
in each of the different categories of activity; there is a single equation for the density
of searchers, from which all other densities can be found.

In particular, we are interested in the possible strategies of individuals, and find-
ing the best strategies under different conditions. We find ESSs for various parameter
values. It is likely of course, that some of the parameter values will vary during the
course of an individual’s life, especially throughout the year. For example, food avail-
ability is likely to be affected by seasonal factors. Thus, if individuals played only
the fixed strategies that we mention here, they could be outcompeted by those with
more flexible strategies. In common with earlier models (Broom and Ruxton 1998;
Luther and Broom 2004; Broom et al. 2004), we assume that individuals rather have
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Kleptoparasitic Melees 693

the ability to respond to certain cues to gauge the level of different parameters, and
so be capable of adjusting between the different Vk over the course of a season. Pro-
vided individuals are capable of making this switch efficiently, then consideration
of the ESSs for any fixed set of parameters is sufficient to find the correct behav-
iour. However, if there is more than one ESS for a given parameter set, the history
of the parameter values could play an important role in determining which solution
would be chosen in practise. Thus, it would be of interest to investigate such variable
parameters.

It should be noted that strategies considered in the present paper are more complex
here than in most previous models, e.g. Broom et al. (2004). In this and related mod-
els, when a challenge is made (and resisted) then the contest duration is fixed, its real
cost is determined by the level of foraging success that could be expected when not
in the contest and the benefit of being in the contest is fixed as well (often, the contest
is won 50% of the time). In our model, further individuals may challenge groups and
this makes the evaluation of the benefits of entering the contest more complex. It is
for this reason that we see many possible strategies, and that multiple ESSs can occur
for a given set of parameters.

Earlier models did come up with interesting predictions based upon different as-
sumptions to the model in the current paper. For instance, Broom et al. (2004) al-
lowed individuals to decline to resist attacks, and the strategy of attacking but never
resisting, termed Marauder, was shown to be stable for a large range of parameter
values. Such short contests with the defender offering no resistance have been dis-
covered in real populations, for example in wading birds (Stillman et al. 1997). The
model of Broom and Ruxton (2003) allowed individuals to feed on items which had
constant handling time, and to make choices based upon the length of handling time
remaining. Optimal choices were found which depended upon the critical remain-
ing handling time, so that items which were consumed continuously were challenged
for only if there was sufficient remaining handling time, but items which were con-
sumed at once at the end of the handling time, as here, were challenged for only if
the remaining time was sufficiently short.

We show that when individuals may or may not challenge groups of any size, the
only viable strategies involve only challenging groups up to a certain size, and always
challenging these. Thus, there are an infinite number of possible strategies. Individu-
als display varying levels of “Hawkish” behaviour, rather than just Hawk or Dove, or
more appropriately (since all individuals resist attacks) Hawk or Retaliator (Maynard
Maynard Smith 1982). We have derived conditions as functions of our parameters for
different strategies to be ESSs. It should be noted that since the rate that the popula-
tion acquires food (its uptake rate) is proportional to the proportion of handlers hk ,
it decreases with the size of group individuals are prepared to challenge. Its largest
value is given by the classical result from Holling (1959) when no individuals chal-
lenge, but only forage, and falls away sharply if individuals challenge handlers only
(Broom and Ruxton 1998, and see also Ruxton and Moody 1997, when all individuals
were compelled to fight).

We have found that there is always at least one ESS. As we vary the food density
we can see how the pattern of ESSs changes. From high food availability we move
from never challenging being an ESS, to challenging only handlers, to challenging
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handlers and fighting pairs and so on. As the availability of food declines, individuals
are willing to challenge larger and larger groups. As the population moves from one
situation to the next, there is an overlap region where both strategies are ESSs (ex-
cept when going from no challenges to challenging handlers only). If the encounter
rate is small, the overlap is small, and in most scenarios there will be a single ESS.
However, for larger encounter rates this overlap can become substantial; in fact it
can be sufficiently large for there to be three or more ESSs. It should be noted that
these situations only occur for very (generally unrealistically) large encounter rates,
when competition for food is intense. They are theoretically possible, however, and
situations where there are three ESSs are plausible.

In Broom and Ruxton (1998) and subsequent models, this overlap has not pre-
viously been observed, because only handlers could be challenged, and there is no
overlap between the no challenge (V1) and only challenge handlers (V2) regions. It
is possible to have two ESSs simultaneously, because an individual chooses to chal-
lenge a group of given size if and only if the rate that it finds food by not challenging
is sufficiently poor. Unless we are considering the rate of finding food of an individ-
ual which does not challenge handlers (which is always νf f ), this rate is reduced the
more others in the population are prepared to challenge, and so it can be best to chal-
lenge if all others are going to challenge, and not challenge if they are all not going to
challenge. Situations with more than one ESS have been found in other models, often
for similar reasons (that the strategies of others not involved in a particular contest
affects this background uptake rate) but never a potentially unlimited number of ESSs
as in the current paper.

The model developed in this paper predicts significantly different behaviour to
those allowed in previous models (Broom et al. 2004; Broom and Rychtář 2007;
Luther et al. 2007) in particular when food is quite rare and/or encounter rates are
large. When food is plentiful it pays nobody to fight, and the extra possibility of mul-
tiple contests adds nothing. If the encounter rates are small, individuals are unlikely
to chance upon competing groups; thus although theoretically their strategy might be
to challenge groups of size seven or less, they will rarely in practise experience such
a situation. Our model is also only realistic if individuals are foraging in close prox-
imity and it takes some time to handle the food. For instance, Shealer and Spendelow
(2002) examined a real situation where foragers travelled significant distances to find
food, but had to return to the nest site to feed their young, and kleptoparasites waited
near the nest to try to steal. Multiple fights would be possible in this situation, but the
symmetry of our model would be lost, as there would be at least two distinct types of
individual in the population, as modelled in Luther et al. (2007).

In this paper, we have extended the original and simplest of a series of recent game
theoretic models of kleptoparasitic behaviour, so that to allow for multiple contests
we have re-introduced some of the original simplifications of this model. It would be
of interest to develop the current model with some of the more complex features of
later models. For instance in Broom et al. (2004), individuals did not have to resist
challenges, and handlers had a different probability of success to subsequent chal-
lengers.
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Appendix A

A.1 Evaluating the proportions at the equilibrium

The solutions of the system of differential equations (1), (2), (3) tend to equilibrium
exponentially fast (see, e.g. Luther and Broom 2004). Hence, the time derivatives can
be considered 0 and by labelling the following summations

FT =
∞∑

i=2

igi,

GT =
∞∑

i=2

gi,

GS =
∞∑

i=2

μipigi

we obtain

0 = h

th
− νf f s + 1

tc
(FT − GT ) − μ1p1sh − sGS, (A.1)

0 = νf f s − h

th
− μ1p1sh + 1

tc
GT , (A.2)

0 = μ1shp1 − g2

(
1

tc
+ μ2sp2

)
, (A.3)

0 = (μi−1spi−1)gi−1 −
(

1

tc
+ μispi

)
gi, i = 3,4, . . . . (A.4)

Equation (A.4) rearranges to give

gi = μi−1pi−1s

μipis + 1/tc
gi−1 = g2

i∏

j=3

(
μj−1pj−1s

μjpj s + 1/tc

)
.

This in turn gives

FT = g2

∞∑

i=2

i

i∏

j=3

(
μj−1pj−1s

μjpj s + 1/tc

)
,

GT = g2

∞∑

i=2

i∏

j=3

(
μj−1pj−1s

μjpj s + 1/tc

)
,

GS = g2

∞∑

i=2

μipi

i∏

j=3

(
μj−1pj−1s

μjpj s + 1/tc

)
.
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We now have the system completely expressed in terms of known parameters, assum-
ing at this stage that the values of the pis are known, and the three unknowns s, h,

and g2. We now proceed to find expressions for each of s, h, and g2.
Equation (A.4) implies that

∞∑

i=3

gi +
∞∑

i=3

tcμipisgi =
∞∑

i=2

tcμipisgi

and hence

GT =
∞∑

i=2

gi = g2 + tcμ2p2sg2 = (1 + tcμ2p2s)g2.

From (A.4), we also get, for any k > i + 1,

tcμipisgi = (1 + tcμi+1pi+1s)gi+1

=
(

k∑

j=i+1

gj

)
+ tcμkpksgk =

∞∑

j=i+1

gj

using the fact that gi → 0 as i → ∞ (because gi = fi/i with fi ∈ [0,1]), and letting
k → ∞. Thus,

tcsGS =
∞∑

i=2

tcμipisgi =
∞∑

i=2

( ∞∑

j=i+1

gj

)

=
∞∑

i=2

(i − 2)gi = FT − 2GT

and so

FT − tcsGS = 2GT = 2(1 + tcμ2p2s)g2. (A.5)

From (A.5), it is clear that (A.1), (A.2), and (A.3) multiplied by two add to zero and
so there are really only two equations here. The third equation for our three unknowns
comes from the fact that every individual is in exactly one state, so that

s + h +
∞∑

i=2

fi = s + h + FT = 1. (A.6)

Equations (A.1), (A.2), and (A.5) yield

h = thνf f s. (A.7)

This now means, using (A.3) that

g2 = tcμ1p1thνf f s2

1 + tcμ2p2s
. (A.8)
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We thus have every other density term (h,g2, g3, . . .) expressed as a function of s.
Finally we obtain an equation for s by substitution into (A.6). This yields

1 = s + h + FT = s(1 + thνf f ) + g2

∞∑

i=2

i

i∏

j=3

(
tcμj−1pj−1s

tcμjpj s + 1

)

= s(1 + thνf f ) + thνf f s

∞∑

i=2

i

i∏

j=2

(
tcμj−1pj−1s

tcμjpj s + 1

)
.

A.2 Calculation of the searching time

Let TS be the expected time to become a handler for a searching individual who uses
a strategy q = (q1, q2, . . .) in the population where everybody else uses a strategy
p = (p1,p2, . . .) and let πi denote the probability of becoming a handler at the end
of the contest when presently in a group of size i. We shall first consider individuals
which join a contest. The Markov property guarantees that contests end at rate 1/tc
irrespective of the size of the group or whether new individuals have challenged since
our focal individual joined the group. Thus, the expected time taken for an individual
to become a handler when joining such a contest already containing i individuals is

tc × πi+1 + (tc + TS) × (1 − πi+1)

where tc ×πi+1 relates to the case that the individual eventually wins the fight in time
tc and becomes a handler, and (tc + TS) × (1 − πi+1) relates to the case that it loses
the fight after time tc and has to search again. Following on from this, the expected
time to become a handler from the searching position is

TS = 1

νf f + ∑∞
i=1 μigiqi

+ νf f

νf f + ∑∞
i=1 μigiqi

· 0

+ 1

νf f + ∑∞
i=1 μigiqi

∞∑

i=1

μigiqi

(
tc + (

πi+1 · 0 + (1 − πi+1)TS

))
,

where the terms correspond to (1) the time needed to encounter something, (2) the
probability of encountering a food item (times 0 as the food is already found), and
finally (3) the probabilities of encountering a group of size i times the time needed to
become a handler after such an encounter. Hence,

TS = 1 + tc
∑∞

i=1 μigiqi

νf f + ∑∞
i=1 μigiqiπi+1

. (A.9)

A.3 Calculation of πi

Since πi is the probability of becoming a handler when in a group of size i, clearly
π1 = 1. For groups of size at least two, the next event that occurs is either the resolu-
tion of a contest, so that all individuals have an equal chance of gaining the food, or
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a new individual joining a contest. A new individual joins with probability

ρi = μipis

1/tc + μipis
= tcμipis

1 + tcμipis
(A.10)

so that, for i ≥ 2,

πi = 1

i
(1 − ρi) + ρiπi+1. (A.11)

Note that it follows immediately from (A.11) that

πi+1 < πi

since, trivially, πi+1 < 1
i
. From (A.11), we also obtain

πi = 1

i
(1 − ρi) + ρi

(
1

i + 1
(1 − ρi+1) + ρi+1πi+2

)

= · · · = 1

i
−

∞∑

l=i

1

l(l + 1)

l∏

j=i

ρj = 1

i
−

∞∑

l=i

1

l(l + 1)

l∏

j=i

tcμjpj s

1 + tcμjpj s

since
∏l

j=i ρj → 0 as l → ∞.
We will now consider the overlaps between strategies Vk . From (7)—since for Vk ,

pi takes value 1 for i < k and 0 otherwise—it is clear that sk decreases with k. This
in turn means that hk , by (4), g2,k , by (5), and gi,k , by (6), all decrease with k. The
intuitively clear result that also πi,k > πi,k+1 for all i ≥ 2 and all k ≥ i was checked
numerically for a large range of parameter values, although we have been unable to
prove this mathematically. Assuming this result, we obtain

tc

k−1∑

i=1

μigi,k

(
1

k + 1
− πi+1,k

)
< tc

k∑

i=1

μigi,k+1

(
1

k + 1
− πi+1,k+1

)
(A.12)

because the extra term for i = k of the sum on the right-hand side of the above in-
equality is 0 since πk+1,k+1 = 1/(k + 1). Consequently, there are always some pa-
rameter values such that tcνf f lies between those two, and thus there is always an
overlap between Vk and Vk+1.
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