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a b s t r a c t

Recently, models of evolution have begun to incorporate structured populations, including spatial

structure, through the modelling of evolutionary processes on graphs (evolutionary graph theory). One

limitation of this otherwise quite general framework is that interactions are restricted to pairwise ones,

through the edges connecting pairs of individuals. Yet, many animal interactions can involve many

players, and theoretical models also describe such multiplayer interactions. We shall discuss a more

general modelling framework of interactions of structured populations with the focus on competition

between territorial animals, where each animal or animal group has a ‘‘home range’’ which overlaps

with a number of others, and interactions between various group sizes are possible. Depending upon

the behaviour concerned we can embed the results of different evolutionary games within our

structure, as occurs for pairwise games such as the Prisoner’s Dilemma or the Hawk–Dove game on

graphs. We discuss some examples together with some important differences between this approach

and evolutionary graph theory.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Modelling structured populations

Recently, models of evolution have begun to incorporate struc-
tured populations using evolutionary graph theory (Lieberman et al.,
2005; Antal and Scheuring, 2006). These models embed standard
games such as the Prisoner’s Dilemma, or the Hawk–Dove game
within a graph structure (Ohtsuki et al., 2006; Santos and Pacheco,
2006; Hadjichrysanthou et al., 2011). One limitation of this other-
wise quite general framework is that interactions are restricted to
pairwise ones, through the graph edges despite the fact that animal
interactions can involve many players. Thus, the models may be
appropriate for some special situations, such as territorial animals
with non-overlapping territories, but not the fluid situations with
multiple overlaps that we describe below. The same applies to the
related concept of cellular automata see e.g. Nowak and May (1992,
1993) and Ermentrout and Edelstein-Keshet (1993).

In this paper we discuss a more general framework of interactions
of structured populations focusing on competition between territor-
ial animals. We can embed the results of different evolutionary
ll rights reserved.

om),
games within our structure, as occurs for pairwise games on graphs.
Graph models have three elements: graph, game and dynamics.
We can use the dynamics (almost) unchanged, see the discussion in
Section 6, once we have evaluated the fitnesses of the individuals
using the underlying game and structure. However, a more general
mode of interaction is needed, as well as the possibility of involving
multi-player games. Our method in general allows for this extra
flexibility.

1.2. Animal groups and territoriality

Animals of many species live alone or in distinct groups on
a (reasonably) well-defined territory, and they forage for food
almost exclusively within that territory. Similarly, it may be that
the males of the species occupy territories for the purposes of
mating. In either case, territories will often be defended against
rivals and so interactions occur at the boundaries of territories. In
this scenario, we can think of non-overlapping areas with inter-
action only at the borders.

However, it is often the case that the area that an animal or
animal group uses for foraging is not in fact exclusive to itself, but
can overlap considerably with the territories of others. In this
case, the more general term home range (Burt, 1943) is used for
the area that an individual or group utilises. Thus, there will be parts
of the environment that are utilised by two or more individuals or
groups and there can be interactions between these groups when
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they meet. Such interactions may occur just when the groups meet,
or a meeting and competition may be caused by the presence of
major items of food. We note that even when territories are non-
overlapping, intrusion into the territory of others can still cause
these types of interaction.

A good example of this phenomenon occurs in the case of the
African wild dog. Woodroffe et al. (1997) and Woodroffe and
Ginsberg (1999) describe aspects of the territorial behaviour of
wild dogs. The size of home ranges varies considerably from site
to site, ranging from 500 km2 up to over 1500 km2. In fact, these
areas vary in size throughout the year as well; for instance packs
use much smaller areas when they are feeding pups at a den.
Across different sites, with such large home ranges, a common feature
is significant home range overlap, where there can be interactions
between different dog packs. Ginsberg and Macdonald (1990) mea-
sured a home range overlap from 50% to 80%. The size of the regions
of interaction can vary throughout the year, and the environment and
the likelihood of interactions are thus very fluid.

Other examples of animals using overlapping home ranges
include cheetahs (Marker et al., 2008), roadrunners (Kelley et al.,
2011), caracara (Rodrı́guez-Estrella and Rivera-Rodrı́guez, 1992),
woodchuck (Swihart, 1992), chimpanzees (Herbinger et al., 2001)
and lynx (Schmidt et al., 1997). In some cases many groups
can interact at significant food sources, and often food loss to
neighbours can be considerable (Jetz et al., 2004).

1.3. Outline of the paper

In the following sections we shall outline the model frame-
work in its full generality before focusing on some example
population structures which illustrate how the model may be
applied. The first of these applications considers a simple model
of animal interactions where territories are distinct. For example,
we shall see in Fig. 2 two alternative ways to view the model; the
natural way involving real space, and a more general graphical
representation. We repeat this process with the other examples as
well. We then consider an example involving a particular evolu-
tionary game, and come to some conclusions about the influence
of the population structure on the outcome of the game. This is
followed by a discussion of our results, and ideas for how to
develop this work.
Fig. 1. Representing an independent model as a bi-partite graph where the weight

between the vertex representing individual In and place Pm is pn,m .
2. The model framework

2.1. The population and its distribution

We consider a population of N individuals I1, . . . ,IN who can
move between and potentially interact at M distinct places
P1, . . . ,PM . Let XðtÞ ¼ ðXn,mðtÞÞ be a binary N�M matrix represent-
ing the presence of individual In at place Pm; i.e.

Xn,mðtÞ ¼
1 if In is at place Pm at time t,

0 otherwise:

(
ð1Þ

The nth row of X, ðXn,JÞ represents individual In and the mth
column of X, ðXJ,mÞ represents place Pm. As a whole, XðtÞ
represents the distribution of the population over the whole
habitat (all of the places) at time t. We use a matrix representa-
tion instead of a single vector with N elements (where the nth
value would be the position of In) in order to talk more easily
about probability distributions of the position of In.

In general, the probability of XðtÞ taking any particular value
x¼ ðxn,mÞ may depend upon the entire history of the system
xo t ¼ ðx1,x2, . . . ,xt�1Þ. We write this conditional distribution as

PðXðtÞ ¼ xÞðxo tÞ ¼ PðXðtÞ ¼ x9Xð1Þ ¼ x1, . . . ,Xðt�1Þ ¼ xt�1Þ: ð2Þ
Individuals have to be at some place, and since they cannot be at
two places at the same time (places are distinct), at any time every
row of X contains exactly one 1, and there is a unique distribution of
the population over the places. This gives the following:X

x

PðXðtÞ ¼ xÞðxo tÞ ¼ 1 8 t,xo t : ð3Þ

Let pn,m,tðxo tÞ ¼ PðXn,mðtÞ ¼ 1Þðxo tÞ denote the probability of
individual In being in place Pm at time t given the history of the
system xo t . For any given individual, we thus haveX

m

pn,m,tðxo tÞ ¼ 1 8 n,t,xo t : ð4Þ

It may be that not all individuals can go to all places, and that
each individual In has a subset of the overall set of places Pn

available to it. A home range or territory of individual In is defined by

Pn ¼ fPm; pn,m,tðxo tÞ40 for some t and some history xo tg ð5Þ

i.e. is the set of places that In has a non-zero probability of visiting at
some point.

In our general framework, the whole population follows a
single random process, which can depend upon its entire history.
This would be very complex, and perhaps not very realistic, and
there are a number of simplifications that we can make based
upon different types of independence, some of which we discuss
in Appendix A. We consider two important concepts only here.

It may be that a given population distribution is independent
of the history of the process so that

PðXðtÞ ¼ xÞðxo tÞ ¼ PðXðtÞ ¼ xÞ: ð6Þ

In this case, we call the model history-independent.
If the process satisfies

pn,m,tðxo tÞ ¼ pn,m 8 n,m,t,xo t ð7Þ

we simply call the model independent and can think of it in terms
of a bi-partite graph as in Fig. 1. In Appendix A we discuss some
intermediate cases between history independence and (full)
independence.

2.2. Fitnesses

To model the evolution of a population, we must evaluate the
fitnesses of the individuals. In general, the fitness of each individual
depends upon which place(s) it visits, which other individuals also
visit the same place, and possibly even which individuals visit which
other places (e.g. if others deplete resources which it might wish to
use later). In general, the reward for individual In at time t given the
current distribution of individuals XðtÞ ¼ x and the historical dis-
tributions xo t will be denoted by Rðn,x,t,xo tÞ.

The reward to an individual will in general be a weighted
combination of contributions from a succession of time points.
Here, we shall consider cases where only the current distribution
affects the reward. In such a case the history can be ignored, and
as we are only evaluating the fitness at a snapshot in time, the
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time index is not strictly necessary either, and so the reward to In

thus becomes Rðn,xÞ. Note that if fitness did directly depend on
time, and not just through how time affected the distribution of
individuals, and we had to evaluate fitness at different time points
e.g. to update the population composition through evolutionary
dynamics, then the explicit inclusion of time would still be neces-
sary. We also note that for homogeneous history independent
processes (see Appendix A) this is entirely equivalent to more
general reward functions, since in this case Rðn,x,t,xo tÞ � Rðn,xÞ.

Perhaps the most natural reward function, and the one that we
will generally use, is the mean reward, which we label Rn where

Rn ¼
X

x

PðX¼ xÞRðn,xÞ: ð8Þ

If xn,m ¼ 1, then individual In is at place Pm in the group G of
individuals

G¼ fIj; xj,m ¼ 1g: ð9Þ

Let PðXJ,m ¼ wGÞðxo tÞ be the probability of group G meeting at
place Pm at time t, given the history xo t . Assuming our model is
row-independent i.e. players move independently of each other
(see Appendix A), we obtain

PðXJ,m ¼ wGÞðxo tÞ ¼
Y
jAG

pj,m,tðxo tÞ
Y
j=2G

ð1�pj,m,tðxo tÞÞ: ð10Þ

For the independent model, this becomes

PðXJ,m ¼ wGÞ ¼
Y
jAG

pj,m

Y
j=2G

ð1�pj,mÞ: ð11Þ

Often the reward to an individual will only depend upon the
place that it occupies and the group of individuals at that place. We
label such payoffs as direct group interaction payoffs, and in such cases

Rðn,xÞ ¼ Rðn,m,wGÞ, ð12Þ
Fig. 2. Territorial interaction model. (a) The territory of individual I1 is the square

in grey, the territory of I2 is the square encompassed by the dotted lines, the

territory of I3 is the square encompassed by full lines; (b) is the corresponding

graphical representation as a general independent model.

Fig. 3. The boundary interaction model. (a) Individuals are guarding their areas; (b) is th

is an alternative visualisation as pairwise interactions on graphs.
where Rðn,m,wGÞ is the reward to In at place Pm occupied by group G

and then

Rn ¼
XM

m ¼ 1

X
G

PðXJ,m ¼ wGÞðxo tÞRðn,m,wGÞ: ð13Þ

3. Example models

3.1. Territorial interaction model

Here, we introduce a general model of interactions within a
population with overlapping territories, and illustrate it with a
simple example. Consider the scenario in Fig. 2a where there are
three individuals I1,I2,I3 and each one of them can move freely
within a territory in the shape of a square. The individuals’
territories overlap, creating six distinct places P1, . . . ,P6. Assuming
the territories are relatively small and that individuals roam
freely and randomly, we may assume that at any given time,
the probability of an individual being at a place within its own
territory is proportional to the area of the place. We thus get an
independent model with

ðpn,mÞ ¼

1
2

1
4

1
4 0 0 0

0 0 1
4

1
2

1
4 0

0 1
4

1
4 0 1

4
1
4

0
BB@

1
CCA: ð14Þ

We get, for example, that all of the individuals can be together
only at place P3 and, by (11), that happens with probability

p1;3p2;3p3;3 ¼
1

64. Also, a group G¼ fI1,I3g can meet either on P2 or

P3 and we get

PðXJ,2 ¼ wGÞ ¼ p1;2p3;2 ¼
1

16, ð15Þ

PðXJ,3 ¼ wGÞ ¼ p1;3p3;3ð1�p2;3Þ ¼
3

64: ð16Þ

3.2. The boundary interaction model

We similarly introduce a general model of interactions within
a population with non-overlapping territories, and illustrate it
with a simple example. Consider the scenario in Fig. 3a where
there are four individuals I1,I2,I3,I4 and each one of them can
move freely within an area in the shape of a regular hexagon;
guarding the boundaries of their own area. An interaction
between individuals can thus occur only at the boundaries and
assuming the probability of the presence of an individual at a
particular boundary segment is proportional to the length of the
segment relative to the total length of the guarded boundary,
we get that the interactions can only be pairwise with the
e corresponding graphical representation as a general independent model; and (c)
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corresponding pn,m given below. We get

ðpn,fi,jgÞ ¼

2
3

1
3 0 0 0

2
4 0 1

4
1
4 0

0 1
3

1
3 0 1

3

0 0 0 1
2

1
2

0
BBBBB@

1
CCCCCA: ð17Þ

In general, we consider a graph with I1, . . . ,IN as individuals on
vertices, and places as edges, as shown in Fig. 3c. Any place can
contain at most two individuals and there are M¼NðN�1Þ=2
places, some of which may be empty with probability 1, if the
edge does not exist on the graph. We write Pfn,n0g for a place at the
edge between individuals In and I0n.

In Appendix B we discuss the reward function for the bound-
ary interaction model, and discuss some potentially important
consequences for the evaluation of reward functions for evolu-
tionary games on graphs.

3.3. The territorial raider model

Now, consider a special case of the territorial interaction
model. Assume that there are N individuals I1, . . . ,IN each living
in their own place P1, . . . ,PN . The individuals can also move to one
of the places neighbouring theirs. Such a situation with N¼4 is
shown in Fig. 4a.

This can be modelled by a graph (V,E), where the vertices
represent both the individuals as well as the places of interac-
tions. An individual can stay at its own place or it can move and
raid one of the neighbouring places. For example, consider a star
graph with node I1 in the centre, and N�1 leaf nodes I2, . . . ,IN (see
Fig. 4c).

Suppose that for each individual on a leaf, the probability that
they go to the centre is l, and so the probability that they stay on
the leaf is 1�l, and that the probability that the individual from
the centre stays in the centre is m, it going to each leaf with equal
probability ð1�mÞ=ðN�1Þ otherwise.

We get

ðpn,mÞ ¼

m 1�m
N�1

1�m
N�1 . . . 1�m

N�1

l 1�l 0 . . . 0

l 0 1�l . . . 0

^ ^ ^ & ^

l 0 0 . . . 1�l

0
BBBBBB@

1
CCCCCCA
: ð18Þ

An individual from the leaf can be in the following groups:
�

Fig
cen

rho

mu
alone (either on the leaf or in the centre),

�
 with the centre individual only (either on the leaf or in the

centre),

�
 with the centre individual and k others (in the centre); there

are ðN�2
k Þ such distinct groups,
. 4. The territorial raider model. (a) Individual In lives in place Pn but can raid neigh

tral smaller triangle. The territory of I2 is the rhombus encompassed by full lines, the

mbus encompassed by dashed lines; (b) is the corresponding graphical representati

lti-player interactions on a graph.
�
 without the centre individual but with k others (in the centre);
there are ðN�2

k Þ such distinct groups.

The respective probabilities of seeing such a group are as
follows:

PðG¼ fIngÞ ¼ lð1�mÞð1�lÞN�2
þ 1�

1�m
N�1

� �
ð1�lÞ, ð19Þ

PðG¼ fI1,IngÞ ¼ lmð1�lÞN�2
þ

1�m
N�1

ð1�lÞ, ð20Þ

PðG¼ fI1,Ing [ fk40 othersgÞ ¼
N�2

k

� �
lmð1�lÞN�2�klk, ð21Þ

PðG¼ fIng [ fk40 others from the leavesgÞ

¼
N�2

k

� �
lð1�mÞð1�lÞN�2�klk: ð22Þ

An individual from the centre can be in the following groups:
�

bou

ter

on a
alone (either in the centre or on one of the leaves),

�
 with one other individual, either in the centre or on one of the

leaves; there are N�1 distinct pairs for each of these two
possibilities,

�
 with k41 others (in the centre); there are ðN�1

k Þ such distinct
groups.

The prospective probabilities thus become

PðG¼ fI1gÞ ¼ mð1�lÞN�1
þð1�mÞl, ð23Þ

PðG¼ fI1g [ fone othergÞ

¼ ðN�1Þ mð1�lÞN�2lþ
1�m
N�1

ð1�lÞ
� �

, ð24Þ

PðG¼ fI1g [ fk41 othersgÞ ¼
N�1

k

� �
mð1�lÞN�1�klk: ð25Þ

If E(n) denotes the mean size of the group where In is, we get from
above that

EðnÞ ¼

2�l�mþlmN for the centre individual ðn¼ 1Þ,

1þlmþðN�2Þl2

þ
ð1�lÞð1�mÞ

N�1
for a leaf individual ðn41Þ:

8>>><
>>>:

ð26Þ

For fixed l and m and any 2rnrN, we get that the ratio EðnÞ=Eð1Þ
tends to l=m in the limit N-1. When l¼ 1=2 and m¼ 1=N, we get

EðnÞ

Eð1Þ
¼

N2
þ2Nþ4

4ð2N�1Þ
�

N

8
for large N: ð27Þ

Numerical values for a specific example are shown in Table 1.
ring places. The territory of I1 is the whole triangle and the home place is the

ritory of I3 the rhombus encompassed by dotted lines and the territory of I4 the

s a general independent model; and (c) is an alternative visualisation as some



Table 1

Numerical values of Pð9G9¼ iÞ and expected group size E½9G9� on the star for

N¼ 5,l¼ 1=2 and m¼ 1=5. The randomly selected individual has probability of 1/5

of being in the centre which gives the values for the average individual.

i¼1 i¼2 i¼3 i¼4 i¼5 E½9G9�

Focal from leaf 0.45 0.2625 0.1875 0.0875 0.0125 1.95

Focal from centre 0.4125 0.45 0.075 0.05 0.0125 1.8

Average 0.4425 0.3 0.165 0.08 0.0125 1.92

Table 2
Notation for the costs and benefits in the territorial raider model with strategic

movement.

Symbol Meaning

BH The benefit of foraging at its home place

BI The benefit of foraging at the place of any of its neighbours

LH Cost per foreign forager at its place when it is at home

LI Cost per foreign forager at its place when it is at a neighbouring place

FH Cost per fight when at its home place

FO Cost of a fight against the owner of a place

FI Cost of a fight for each other intruder of the neighbour
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4. The role of strategy and example games

In general, we would often find the distribution of groups as
above, then play the game within each possible group. Thus, if we
can define the payoffs in any given mixture of individuals, we can
find the payoffs in the overall game. This is the scenario in our first
example. It is possible also that how individuals move between
places is a strategic decision, and we explore this possibility in our
second example.

4.1. A multi-player Hawk–Dove game in the territorial raider model

We consider a multiplayer game with Hawks and Doves,
competing for a single reward. If all individuals in a fighting
group are Doves, they split the reward, so each receives the
reward divided by the number in the group. If there are any
Hawks, all the Doves flee and get 0, all the Hawks fight and one of
them receives the reward, and all of the others receive a cost C.

Thus, if we denote RD
d,hðR

H
d,hÞ as the reward for a Dove (Hawk) in a

group with d other Doves and h other Hawks, we get

RD
d,h ¼

0 if h40,
V

dþ1
if h¼ 0,

8<
: ð28Þ

RH
d,h ¼

V�hC

hþ1
: ð29Þ

Thus, this situation is an example of direct group interaction
payoffs introduced in Section 2.2, since the behaviour of indivi-
duals outside the group has no effect on the fitness of group
members. We suppose that all individuals play a mixed strategy
with probability a of playing Hawk (and so probability 1�a of
playing Dove). Thus, conditional upon the size of the group being
kþ1 the number of Hawk groupmates an individual will have
follows a Binomial distribution with parameters k and a, so that
the probability that an individual will have h Hawk and d¼ k�h

Dove groupmates is given by

k

h

� �
ahð1�aÞk�h:

The expected payoff for Dove (ED) and for Hawk (EH) are thus
given by

EDðaÞ ¼
XN�1

d ¼ 0

XN�1�d

h ¼ 0

Pð9G9¼ dþhþ1Þ
dþh

h

� �
ahð1�aÞdRD

d,h; ð30Þ

EDðaÞ ¼
XN�1

d ¼ 0

Pð9G9¼ dþ1Þð1�aÞd V

dþ1
, ð31Þ

EHðaÞ ¼
XN�1

d ¼ 0

XN�1�d

h ¼ 0

Pð9G9¼ dþhþ1Þ
dþh

h

� �
ahð1�aÞd V�hC

hþ1
: ð32Þ

Let us now consider this game on the star with N¼ 5,l¼ 1=2
and m¼ 1=5,V ¼ 1 and C¼2 as described in Table 1. In particular,
we shall assume a large population consisting of many identical
star structures, with mixing over time. We seek the Evolutionarily
Stable Strategy (ESS) value of a where the payoff EHðaÞ for playing
Hawk is the same as the payoff EDðaÞ for playing Dove. It should
be noted that we have assumed that individuals do not distin-
guish between whether their home vertex was the centre or a leaf
when choosing their strategy; if they did so we would have an
asymmetric contest which would be significantly more compli-
cated (there would be two distinct roles here for the star, but in
general there could be many roles). We further note that to
consider evolution on a finite population fully, we would need to
explicitly consider the dynamics of the process, which is outside
the scope of this paper. Since, by (31) and (32) and the values
in Table 1

EHðaÞ�EDðaÞ ¼ 0:33�1:05aþ0:35a2�0:0675a3þ0:005a4 ð33Þ

we get that a¼ 0:353 is the only root of (33) in the allowable
interval [0,1]. Furthermore, the derivative of the right-hand
side of (33) with respect to a is negative, so a¼ 0:353 is the
unique ESS.

4.2. The territorial raider model with strategic movement

Consider a territorial raider model, so that a graph G¼(V,E) is
given, individuals live at places Pm and can either stay in their own
place or visit a neighbouring place. Consider a regular graph with
every vertex having degree d. Suppose that individuals play a
strategy where they stay at their home place with probability
1�p and move to each of the neighbouring places with equal
probability p/d. Thus, here strategy affects the movement of indivi-
duals and the distribution of the population over the places, but it
does not affect the payoffs conditional on this distribution. This is
the reverse of the previous example, where the strategy affected the
payoffs but not the population distribution. It is of course possible
for strategies to affect both the population distribution, and the
payoffs conditional on this distribution.

Let us assume that all but one individual plays p and find the
optimal strategy for our focal individual. We look for values of p

such that p is the best choice of our focal individual in a population
of p-players. In order to determine the rewards to the individual, we
will use a cost-benefit model, R¼ B�C, where benefits come from
foraging at a particular place and costs come to an individual in two
forms—direct costs from (potential) fights with others trying to
forage at the same place and indirect costs from having its home
place foraged by others. The notation for this model is summarised
in Table 2.

If our individual stays at home, it will get a benefit BH but will
have to fight and the place will be depleted by on average d �

p=d¼ p other individuals. The expected reward will thus be

EHome ¼ BH�pðFHþLHÞ: ð34Þ

If our individual goes to a neighbouring place Pm, it will get the
benefit BI. There will be on average ðd�1Þ � p=d other intruders in
Pm and the owner will also be there with probability (1�p); our
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focal individual will have to fight with all of them. There will still
be on average d � p=d¼ p individuals coming to its home; it will
not fight with them but will pay the indirect cost LI per individual.
Thus, the expected reward when leaving the home place is

EIntrude ¼ BI�pLI�p
d�1

d
FI�ð1�pÞFO: ð35Þ

We see that this situation is not an example of direct group
interaction payoffs, since the fitnesses of individuals within the
group can be affected by those outside of the group. The difference
between the payoffs from staying or intruding in a population
where everybody else intrudes with probability p is

f ðpÞ ¼ EHome�EIntrude ð36Þ

f ðpÞ ¼ ðBH�BIÞþFO�p ðLH�LIÞþFHþðFO�FIÞþ
1

d
FI

� �
: ð37Þ

We can now perform the ESS analysis. If

0o f ð0Þ ¼ ðBH�BIÞþFO ð38Þ

then staying at home is the best response to everybody staying at
home. Note that typically FO40. However, it may still be that
BH�BI o0 because an individual may be careful not to over-
harvest its own place, but may not mind over-harvesting neigh-
bouring places when on them. On the other hand, if

04 f ð1Þ ¼ ðBH�BIÞ�ðLH�LIÞ�ðFH�FIÞ�
1

d
FI ð39Þ

then always intruding is an ESS. When neither (38) nor (39) holds,
then there is a mixed ESS pAð0;1Þ given by

p¼
ðBH�BIÞþFO

ðLH�LIÞþFHþðFO�FIÞþ
1
dFI

: ð40Þ

It is clear that if (38) and (39) do not hold, then the numerator and
the denominator of (40) are negative. Conversely, if they are both
positive, then there is an unstable equilibrium and both (38) and (39)
hold so that all staying at home and all intruding are both pure ESSs.

Also, note that whether (39) holds depends on d. The only
effect of d is on the contribution from FI; the larger the degree of
the graph, the more likely that other intruders will have to be
fought. It is reasonable to assume that FI 40, and so the larger d

is, the less attractive intruding is. It may thus happen that
intruding is an ESS when d is small but it is not an ESS when d

is large (even if the other parameters stay the same), see Fig. 5a.
When there is a mixed ESS, from (40), increasing d decreases the
probability of intruding at the ESS, see Fig. 5b. Similarly, when there
are two pure ESSs the threshold value of the unstable equilibrium
increases.
Fig. 5. Graphs of f(p) from (37) for varying d. In (a), BH�BI ¼ 1,FO ¼ 3,LH�LI ¼ 0,FH�FI ¼

is always an ESS, p¼1 is an ESS only if do3. In (b) BH�BI ¼�2,FO ¼ 1,LH�LI ¼�2,FH�F

p¼0 is never an ESS, p¼1 is an ESS only if dr5 and there is a mixed ESS for d45.
5. Comparing place structures

5.1. Fair comparisons

We are particularly interested in seeing how (if at all) different
place structures can affect payoffs. Payoffs are usually dependent
on the type of interactions in the population, and this in turn
depends on the possible group sizes. Hence, if the group sizes vary
between two given different structures, we expect the payoffs to
vary as well.

However, we also want to know whether the structure
influences the payoffs in some other way as well. We take the
approach of comparing a given place structure with an appro-
priate well-mixed population. This would then allow us to
compare different place structures with each other through the
medium of their respective well-mixed populations; making it a
fair comparison not biased by the different group sizes. In this
section we shall only consider independent processes, as such
comparisons are harder in other cases. We will call a comparison
between a given place model and a well-mixed population fair if
the mean group size of the two situations is the same.

What do we mean by a well-mixed population? In the game
theoretical literature concerning pairwise games, a well-mixed
population is one where any pair of individuals is equally likely to
meet, so that for any given individual its opponent is equally
likely to be any other individual. This idea can be generalised so
that a well-mixed population means one where any group of size
k is equally likely to meet; however this says nothing about the
relative likelihood of groups of size k and jak forming. In the
context of our models, a well-mixed population is one where all
individuals move following an identical distribution over the
places (i.e. pn1 ,m ¼ pn2 ,m for all n1,n2,m). These movements need
not be independent; for instance in pairwise games each contest
only involves two players, so knowing that a given player is
involved necessarily reduces the chance of the involvement of a
given second player (and so such a situation is not row indepen-
dent according to our definition from Appendix A). As we are only
considering independent processes here, there is a natural inter-
pretation of well-mixedness in this case; namely that in addition
to all individuals having an identical distribution over the places,
they all move independently of each other.

This does not fully specify a unique well-mixed distribution,
and to make fair comparisons it would be convenient to do so. We
have already specified that all individuals are equivalent, and
if we extend this to all places being equivalent also (i.e.
pn,m1

¼ pn,m2
), then this gives the required uniqueness. Here, we

shall say that a population is completely mixed if and only if there
is a p such that pn,m ¼ p for all n,m. Note that a population of N
0,FI ¼ 3 and d¼2 (bottom line), d¼4,6 (middle lines) and d¼8 (top line); here p¼0

I ¼�1,FI ¼ 5 and d¼2 (bottom line), d¼4,6 (middle lines) and d¼8 (top line); here
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individuals and M places is completely mixed if and only if
pn,m ¼ 1=M. Yet, to allow any plausible mean group size associated
with any population size, at this point we generalise and allow
our parameter p to take any value between 0 and 1. This could be
achieved in our framework by going beyond the idea of a fixed
number of places (e.g. by letting there be M or Mþ1 available
places at any particular time, according to a given probability).

Assume a well mixed population with pn,m ¼ p and consider a
fixed focal individual (at any place). It is clear that the number of
other individuals at the same place as our focal individual follows the
binomial distribution with parameters N�1 and p, BinðN�1,pÞ. The
mean group size is thus 1þðN�1Þp (including the focal individual).

In making comparisons with well-mixed populations, our aim
is to match the mean group sizes. The right well-mixed popula-
tion corresponds to a unique (usually non-integer) number of
places, that will not generally be the number of places in the
structured game. The appropriate number of places is thus not
fixed in advance, and in principle we could define a distribution of
the number of places M, ranging from 1 to 1, which gives the
precise binomial distribution that we have.

We discuss the logical consistency of our model with the existing
concepts of well-mixedness and pairwise contests in Appendix C.

5.2. A simple example

Consider a star graph of three vertices (equivalent to a line
with three vertices), using the territorial raider model, with
parameters l¼ 1=2 and m¼ 1=3. We will first calculate the group
distributions. The probability of all three individuals being in the
same group is

P3 ¼
1
3 �

1
2

� �2
¼ 1

12 ð41Þ

and they can meet only at the centre. Similarly, there will be one
group of two and one group of one with probability

P2;1 ¼
1
3 �

1
2

� �2
ð2þ2þ1þ1þ2Þ ¼ 8

12: ð42Þ

Finally, there will be three groups of single individuals with
probability

P1;1,1 ¼
1
3 �

1
2

� �2
ð1þ1þ1Þ ¼ 3

12: ð43Þ

Hence, the probability of a randomly placed individual ending up
in a group of size 3, 2 and 1 respectively is

P9G9 ¼ 3 ¼
1

12, ð44Þ

P9G9 ¼ 2 ¼
8

12 �
2
3 ¼

4
9, ð45Þ

P9G9 ¼ 1 ¼
8

12 �
1
3 þ

3
12 ¼

17
36: ð46Þ

The mean group size is thus 29/18.
How do we find a fair comparable completely mixed popula-

tion for this case? We need 29=18¼ 1þ2p and thus p¼11/36.
Note that this yields the probability that the number in the focal
group from the corresponding well-mixed population will be

Pcm
9G9 ¼ 3 ¼ ð

11
36Þ

2, ð47Þ

Pcm
9G9 ¼ 2 ¼ 211

36
25
36, ð48Þ

Pcm
9G9 ¼ 1 ¼ ð

25
36Þ

2: ð49Þ

5.3. A comparison using a multi-player Hawk–Dove game

Consider the multiplayer Hawk–Dove game. We will compare the
example on the star introduced in Section 4.1 with the equivalent
well-mixed population. First, we must consider a completely mixed
population where the number of an individual’s groupmates follows
a BinðN�1,pÞ distribution, and each individual plays a mixed strategy
with probability of playing Hawk a as before.

The reward to a Hawk EH is governed only by the number of
Hawks present (Doves flee, so are equivalent to individuals which
do not join the group). The reward to a Dove can be found by
summing over all of the possibilities of other individuals playing
Hawk, playing Dove or being absent. This reward is zero unless
there are no Hawks present. Thus, similar to (31) and (32) we get

EH ¼
XN�1

h ¼ 0

N�1

h

� �
ðpaÞhð1�paÞN�h�1 V�hC

hþ1
; ð50Þ

EH ¼
1�ð1�paÞN

Npa

 !
VþC �1þ

1�ð1�paÞN

Npa

 !
, ð51Þ

ED ¼
XN�1

d ¼ 0

N�1

d

� �
ðð1�aÞpÞdð1�pÞN�d�1 V

dþ1
; ð52Þ

ED ¼
ð1�apÞN�ð1�pÞN

Nð1�aÞp

 !
V : ð53Þ

Assuming that it is mixed (i.e. not pure Hawk), the unique ESS is
obtained by equating (51) and (53) giving

V

C
¼ ð1�aÞ Nap�1þð1�apÞN

1�ð1�apÞN�að1�ð1�pÞNÞ
: ð54Þ

We now go back to the example game on the star with N¼5,
V¼1, C¼2. As shown in Table 1, the mean group size from the star
was 1.92, so that the fair comparison here equates 1.92 with
1þðN�1Þp, giving p¼0.23. Inserting these values in (54) we find
that the ESS value is a¼ 0:394.

Thus, the star graph has a lower Hawk proportion than the
equivalent completely mixed population. This is because the
graph has a higher probability of small and large groups, com-
pared to the completely mixed population having a higher
probability of intermediate groups i.e. the group size on the star
graph is more variable. This is more damaging to Hawks than
Doves as Doves do well when they are alone but do not suffer
from being in large groups, whereas Hawks can pay large costs in
large groups.

We can illustrate this point about variability by the following.
If we set p¼1/N in the limit as N-1 for our Binomial distribu-
tion, we get the limiting Poisson (1) distribution, which has a
mean group size of 2 (the focal individual and one other). The
payoffs become

ED ¼
V

1�a ðe
�a�e�1Þ,

EH ¼
V

a
ð1�e�aÞþC �1þ

1

a
ð1�e�aÞ

� �
: ð55Þ

The unique ESS for such a completely mixed population with
random group sizes when V¼1 and C¼2 is 0.364 which is much
smaller than the equivalent value of a¼ 0:5 when the group size
is fixed at two.
6. Discussion

In this paper we have developed a new modelling framework
to consider the interaction of individuals in a non-homogeneous
environment. Individuals (or groups) move at successive time points
to different ‘‘places’’ where they may interact with no, one or more
than one other. Its most natural interpretation, and the one we have
focused on here, is that of a spatial relationship between individuals,
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so that some can go to some places but not to others. Individuals that
are closer are then more likely to meet. The main advantages of the
new framework are the capability to analyse and compare different
spatial structures, its flexibility and the potential to consider both
overlapping space use and multiplayer interactions just as easily as
well-defined boundaries and multiple pairwise interactions. These
features can set the framework apart from alternatives, which may
be less flexible and overly complex in analysing the influence of
spatial structure, multiplayer games and spatial overlap.

This framework has some similarities with the concept of
evolutionary graph theory, where the relationships between
individuals are given by a graph. There individuals interact in a
pairwise fashion only, through the edges of the graph (though see
van Veelen and Nowak 2012; which we discuss below). In our
framework any number of individuals can theoretically interact,
depending upon the nature of the structure involved.

Our framework does not include the definition of new games
in general, and we incorporate the existing game theoretical
models into our structure. Since multiple individuals can meet,
we can incorporate multiplayer models in such complex struc-
tures for the first time. One reason for doing this, as for pairwise
games on graphs, is to investigate how a particular population
structure may affect the evolutionary process which is governed
by particular game theoretical interactions. So just as in evolu-
tionary graph models where researchers investigate the structural
effect on the evolution of cooperation in the Prisoner’s Dilemma,
we may investigate the evolution of the level of aggressiveness in
a multi-player Hawk–Dove game, as we do in Section 5.3.

A key influence on the outcome of multiplayer games is the
number of players involved. Thus, if one structure generates
different size groups to another, then this can have a significant
effect just through the sizes of the groups generated. Such a group
size effect occurs for the multiplayer Hawk–Dove game, for exam-
ple. This is certainly of interest, but we are also interested in effects
caused by structural relationships between the individuals. To
consider this properly, we have defined the idea of ‘‘fair compar-
isons’’ between different models, which requires the mean group
size in each case to be the same. When considering evolutionary
games on graphs there is not the same problem, as all games are
pairwise. We note, however, that in this case there is the related
feature of the degree of a vertex, the number of connections of an
individual, and graph models are often compared using different
types of graphs with the same average degree.

As well as using the existing game models, there is also a
natural way to develop new game models in the context of our
framework; namely to have the strategies of the individuals
related to their probability to move to a given place. Thus, an
animal may decide to go to one place and not another, which will
not affect any interactions given that they occur, but will affect
the likelihood of any given interaction occurring.

When modelling using evolutionary games on graphs, games
played with other individuals through the population structure
lead to each individual acquiring a fitness, and as we have seen,
exactly the same occurs in our framework as well. For evolutionary
graph theory, the next step is for the population to evolve following
some appropriately defined dynamics. For example, the invasion
process (IP) selects a random individual according to its fitness, and
this individual then replaces a randomly chosen neighbour with a
copy of itself. We have not considered dynamics in this paper, but
we could use very similar dynamics to those used in evolutionary
graph theory. For example, an analogy of the IP would again pick an
individual to reproduce with a probability proportional to its fitness,
and then groups could be reformed at random, following the original
procedure, and a random groupmate then be selected to be replaced.
It is clear that the question of dynamics in such processes needs
serious consideration. The purpose of the current paper, however, is
to introduce a framework for modelling interaction within a
population, and so we leave the consideration of dynamics to
later work.

We should note here that an evolutionarily stable strategy is a
static concept suited to large populations, and can be used in our
context on the assumption that the population consists of a large
number of similar territorial structures, with sufficient mixing
between them. To consider evolution in finite populations fully,
we would need to consider the precise nature of the dynamics. This
will be an important priority in the development of our framework,
but as we explain earlier, is outside the scope of the current paper.

Hinsch and Komdeur (2010) consider an interesting model of
territorial interaction, which relates to the interaction of intruders
and defenders in Section 4.2. In their work, the cost of intrusion
resulting from the defence by the territory owner must be severe
to prevent significant intrusion and make the defence of a home
territory worthwhile. Their direct contests are only between the
owner and the intruder (and their model of fights is more sophis-
ticated than ours, which in this paper is used as an illustrative
example rather than a comprehensive model). On the other hand,
our model assumes that even two intruders can fight. A difference in
the outcomes is that such intruder–intruder contests can make
intruding ineffective when the number of neighbours is large with-
out any need of increased defending by the owner (as needed in
Hinsch and Komdeur, 2010).

Adams (2001) discusses a number of studies of territorial
behaviour considering the optimisation of territory area and shape.
They discuss the spatial organisation of territories (see Lewis and
Murray, 1993; White et al., 1996a, 1996b) where individuals
must organise themselves within a habitat, where spatial division
between individuals is flexible, but there are always territories with
well-defined boundaries. Thus, our model is more general, in the
sense that it considers the possibility of overlapping territories, and
indeed this possibility, allowing multiple interactions, was a prime
reason for developing the framework.

van Veelen and Nowak (2012) considered a model where
individuals occupy the vertices on a circle graph with N vertices,
and payoffs are evaluated by games played between all collec-
tions of n consecutive individuals on the circle. Thus, in effect
there are N possible groups of size n and each form with
probability 1/N. This fits into our framework and is an example
of a history-independent, but not row-independent, model with
N�nþ1 places, where a herd of n move to place 1 and others
move singly to places 2 to N�nþ1 with no background reward.
They analyse multiplayer versions of some classical games of
cooperation such as the stag hunt game and public goods games,
and found in general that cooperation is harder to achieve the
larger the groups involved, but under certain circumstances it is
easier to achieve on the circle than in a well-mixed population,
which is broadly consistent with results for two-player games,
where structure generally helps the evolution of cooperation.

As we have stated, an important feature of our framework is its
flexibility. Nevertheless, in the examples considered in the inde-
pendent model, the fundamental relationship between indivi-
duals and the overall habitat is constant, and truly dynamic
aspects of behaviour are absent. Thus, if animal interactions or
seasonal changes lead to changing the distribution of individuals
over a habitat and there are strong temporal correlations for
where an individual can move, quite complex dynamical beha-
viour could occur. This is a significant criticism of evolutionary
graph models too. These can be included within more general
models, for instance those which are neither history-independent
nor row-independent. In its fullest generality our framework
would be very complex, and so to model such situations some
intermediate level models should be used. We have given a brief
indication of some of these in Appendix A.
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We note that although we have focused on territorial behaviour,
our framework relates to many other situations. For example, the
model of van Veelen and Nowak (2012) considers the evolution of
cooperation on a simple structured population, and as this is a special
case of our framework, it is clear that our framework can be valuable
in investigating the evolution of cooperative behaviour in general.
Another example is the complex interactions within animal social
groups, for instance ungulates such as goats or sheep, but especially
primate groups. Family and dominance relationships within these
groups mean that interactions between some collections of indivi-
duals are more likely than others, and often contests for dominance
will feature multiple individuals, often in complex alliances. A
discussion of this, and a mathematical model, was developed in
Broom et al. (2009).

It will be of great interest to see how different types of structure
affect key evolutionary properties of populations. For example, in
Section 5.3 we see that the heterogeneous star graph induces a lower
level of aggression than the homogeneous well mixed population in
the Hawk–Dove game. The primary cause of this is that the star
graph causes more variability in the size of groups which meet, and
this has the consequence of making the aggressive Hawk strategy
less profitable. This leads to the question of whether spatial structure
of biological populations is a key factor in the variability of the sizes
of groups, and is this variability in turn a key predictor of important
within-group behaviour such as the level of aggressiveness or
cooperation? A second example is in the territorial raider model
with strategic movement, where it can be more beneficial to invade
other territories than defend your own when the degree of the graph
is sufficiently low. Thus, it would be interesting to investigate the
preponderance of territory invasion based upon the number of
neighbours (how to allow for such factors as territory size to make
a fair comparison is an interesting question). This paper is only able
at this stage to tentatively raise such questions, as we further develop
the framework. An obvious starting point is the consideration of
general multiplayer games (Broom et al., 1997; Bukowski and
Miekisz, 2004; Gokhale and Traulsen, 2010) within our framework.
There is enduring interest in the evolution of cooperation (Axelrod
and Hamilton, 1981; Nowak et al., 2004; Nowak, 2006) and it will be
of considerable interest to see how different types of our more
general structure affect the evolution of cooperation, in particular
when multiplayer games are involved. Other possibilities include
more concrete biological behaviours, for instance we could consider
models of kleptoparasitism (Broom and Ruxton, 1998; Broom and
Rychtář, 2011) or dominance hierarchies (Mesterton-Gibbons and
Dugatkin, 1995; Broom and Cannings, 2002) in an explicitly spatial
context. The exploration of this framework is clearly still in its very
early stages, and the range of possibilities is considerable.
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Appendix A. Some concepts of independence

As we saw in Section 2.1, a population distribution is history-
independent if

PðXðtÞ ¼ xÞðxo tÞ ¼ PðXðtÞ ¼ xÞ: ð56Þ

We call a history independent process homogeneous if the popula-
tion distribution is independent of time i.e.

PðXðsÞ ¼ xÞ ¼ PðXðtÞ ¼ xÞ 8 s,tZ1: ð57Þ
A given population distribution may not be independent of the
history of the process, but may depend only upon the most recent
population distribution. In this case, we call the model Markov

and we have

PðXðtÞ ¼ xÞðxo tÞ ¼ PðXðtÞ ¼ x9Xðt�1Þ ¼ xt�1Þ ð58Þ

and we denote this quantity simply as PðXðtÞ ¼ xÞðxt�1Þ. For a given
individual we analogously write pn,m,tðxt�1Þ. Similarly, a Markov
process is homogeneous if

PðXðsÞ ¼ xÞðxs�1Þ ¼ PðXðtÞ ¼ xÞðxt�1Þ 8 s,tZ1: ð59Þ

It is possible that each individual in the population moves
independently of what others do at that time point, so can only
move conditionally on what has happened in the past, then for
any m1,m2 we have

PðXn1 ,m1
ðtÞ ¼ 1 & Xn2 ,m2

ðtÞ ¼ 1Þðxo tÞ ¼ pn1 ,m1 ,tðxo tÞpn2 ,m2 ,tðxo tÞ:

ð60Þ

In this case, we call the model row-independent. We note that this
will not necessarily be the case, for instance if the animals move
in groups such as herds, if individuals actively exclude conspe-
cifics or if they follow a strategy of opportunistic intrusion when a
conspecific is absent. We also note that the alternative concept
of column-independence can never occur, as knowledge of the
occupants of one place necessarily gives information about the
occupancy of others.

If the process is both row independent and history indepen-
dent, then the probability of an individual visiting a place
depends only upon the individual, the place and the time so that

pn,m,tðxo tÞ ¼ pn,m,t 8 n,m,t,xo t : ð61Þ

If in addition the process is homogeneous, then

pn,m,tðxo tÞ ¼ pn,m 8 n,m,t,xo t : ð62Þ

In this case, we simply call the model independent, again as
discussed in Section 2.1.
Appendix B. General results for the boundary interaction
model

In the boundary interaction model of Section 3.2, let A¼ ðAi,jÞ

be the adjacency matrix of the graph i.e. Ai,j ¼ 1 if there is an edge
between Ii and Ij and Ai,j ¼ 0 otherwise.

Suppose that In has degree dn ¼
P

jAn,j, so its possible groups
are either fIng (it is alone, which can occur on any boundary of its
territory), or fIn,In0 g (two individuals meet on the common
boundary of their territories) for each of the dn individuals In0

such that An,n0 ¼ 1.
It is possible that an individual is more likely to move to one

boundary than another (e.g. if the boundaries vary in size), as is the
case in Fig. 3. Supposing that this is not the case, and each boundary
is visited with equal probability, we get pn,fn,n0 g ¼ An,n0=dn. Hence,
assuming that the reward for a given individual being alone does not
depend upon which boundary of its territory it is at, we obtain

Rn ¼
X

n0

An,n0

dn
Reward from going to Pfn,n0g; ð63Þ

Rn ¼
X

n0

An,n0

dn

1

dn0
f n,fn,n0g þ 1�

1

dn0

� �
f n,fng

� �
; ð64Þ

Rn ¼ f n,fngþ
X

n0
An,n0

1

dn

1

dn0
½f n,fn,n0 g�f n,fng�, ð65Þ

where f n,fng is the payoff when alone, which can perhaps be
regarded as the background fitness and f n,fn,n0 g is the payoff when
being with individual n0.
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We note here that this reward function is different from that
usually used when modelling games on graphs. One common
reward function is the total reward (Szolnoki et al., 2008; Voelkl,
2010), where an individual plays a game against each of its
neighbours and the overall reward is the sum of the payoffs of
all of these games. The reward to individual In then is given by

Rt
n ¼

X
n0

Ann0 f n,fn,n0 g: ð66Þ

Why should individuals gain rewards only when meeting others,
and these rewards be cumulative? Perhaps when individuals
meet they swap information, so the more information that is
obtained the better for the individual. An alternative reward
function is the average reward, where an individual plays all of
its neighbours (Broom and Rychtář, 2008; Broom et al., 2010), but
its reward is the average of the payoffs from these games i.e.

Rm
n ¼

X
n0

1

dn
Ann0 f n,fn,n0 g: ð67Þ

In this case, perhaps the information obtained takes time to use,
and that time is split evenly between all of the pieces of
information obtained (e.g. when two bees meet and one commu-
nicates the location of flowers to the other). We contend that our
version of the fitness function Rn is the more natural fitness
function for most situations, and that more attention needs to be
paid to the fitness function used for any particular game.

We note that for regular graphs, the three fitness functions
described above are effectively the same differing only in the
addition of an arbitrary constant to all payoffs, but that for irregular
graphs there are significant differences between the three. It is
already well known that Rt

n and Rm
n can yield very different results;

this is easy to see, since, assuming payoffs are always positive, the
better connected vertices will have relatively higher fitnesses under
Rt

n than Rm
n . Similarly, if the payoff to being alone is larger than for

being in any larger group, for example, which is reasonable in many
foraging situations, individuals on the most connected vertices will
have highest fitness under Rt

n but lowest fitness under Rn.
Appendix C. Our framework in the completely mixed limit

Let us consider a population playing pairwise games within a
well-mixed population, but where groups are formed using our
completely mixed population, so each other individual is inde-
pendently in the same group as our focal individual with prob-
ability p (which may or may not correspond to a fixed number of
places M, with p¼ 1=M). Thus

PðG : where 9G9¼ kÞ ¼ pk�1ð1�pÞN�k, k¼ 1;2, . . . ,N�1: ð68Þ

As games are simple pairwise ones, these can be played within
a group by picking a random opponent from the group for each
individual, or, equivalently, averaging the payoffs gained by
playing all the others in a group. This gives a mean reward to In

within a group Gi, 9Gi9¼ k, of

Rðn9GiÞ ¼
1

k�1

X
n0anAG

Rðn,n0 Þ: ð69Þ

Thus, an individual’s total average fitness using the above formula isX
k

X
G,9G9 ¼ k

pk�1ð1�pÞN�k 1

k�1

X
n0anAG

Rðn,n0 Þ: ð70Þ

Each other individual is in precisely ðN�2
k�2Þ groups of size k that also

involve our focal individual, so (70) becomes

RðnÞ ¼
X

k

pk�1ð1�pÞN�k 1

k�1

N�2

k�2

� �X
n0an

Rðn,n0 Þ; ð71Þ
RðnÞ ¼
1

N�1

X
n0an

Rðn,n0 Þ, ð72Þ

which is the mean payoff in the well-mixed population for pairwise
games. Thus, our framework is consistent with standard results for
pairwise games.
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