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A B S T R A C T

Many animals acquire food by stealing it from others. There are species of specialist thieves, but more

commonly animals will search for both food items and items already found by others, often conspecifics,

that can be stolen. This type of behaviour has previously been modelled using a range of approaches. One

of these is the Finder–Joiner model, where one animal, the ‘‘Finder’’, discovers a food patch that takes

some time to be consumed. Before consumption of the patch can be completed, another individual, the

‘‘Joiner’’, discovers the Finder and its food patch, and has the opportunity to attempt to steal it.

Depending upon how large the patch was, and how long the Finder has been alone on the patch, there

may be much or little food remaining. In this paper, building on previous work, we consider a version of

this game where the Finder knows the value of the remaining food patch, but the Joiner does not. We see

that depending upon the model parameters, the extra information possessed by the Finder can be

beneficial or detrimental in comparison to the case where both individuals have full information.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

To survive and reproduce animals need a variety of resources,
including food. Often these resources have[9_TD$DIFF] been acquired in
competition with other animals, often conspecifics, but sometimes
also those of other species. The nature of the competition will
depend upon the animals and resources involved. For example
territories may be of value for a long period of time, whereas food
resources might be available for a relatively short period of time
(Kruuk, 1972; Hamilton and Dill, 2003; Iyengar, 2008; Kokko, 2013).

In this paper it is competition over food in particular that we are
interested in. Many animals acquire food by stealing it from others
(see Iyengar, 2008 for a good review). Whilst there are species of
specialist thieves, a more common situation is where animals
search for both food items and items already found by (usually)
conspecifics, that can be stolen. If a food item can be consumed
immediately by the individual that discovered it, then there is no
chance for another to steal it. Often, however, food items need
some preparation time prior to consumption, ‘‘handling time’’,
which allows a potential thief a chance. This can be because the
food item needs to be transported to a nest for offspring, or it might
take a while to consume because it has [10_TD$DIFF]a tough exterior that needs
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to be penetrated, like a shell, or needs to be consumed in pieces
which requires a bird to land to eat it (Spear et al., 1999; Steele and
Hockey, 1995; Triplet et al., 1999). This type of scenario has been
modelled by Broom and Ruxton (2003), Broom et al. (2004, 2008),
Broom and Rychtář (2007), Broom and Rychtář (2011).

Alternatively the resource might be a food patch containing a
large number of small items which takes time to consume, which is
the focus of producer-scrounger/finder–joiner models (Barnard
and Sibly, 1981; Barnard, 1984; Caraco and Giraldeau, 1991;
Vickery et al., 1991), see Giraldeau and Livoreil (1998), Kokko
(2013), Broom and Rychtář (2013) for more general reviews. In this
type of model one animal, the ‘‘Finder’’, discovers[11_TD$DIFF] such a food
patch[1_TD$DIFF]. Whilst the animal is still feeding on the patch, a second
individual, the ‘‘Joiner’’, discovers the Finder at the patch, and has
the opportunity to attempt to steal the patch, or at least to steal
some of the food within it. In most such models, in particular that
of Dubois et al. (2003), the competitors play a classical [12_TD$DIFF]Hawk [13_TD$DIFF]Dove
game (Maynard Smith and Price, 1973; Maynard Smith, 1982),
where they have the choice of a passive strategy ([13_TD$DIFF]Dove) or an
aggressive strategy ([12_TD$DIFF]Hawk).

Depending upon how large the patch was initially, and how
long the Finder has been feeding on the patch prior to the arrival of
the Joiner, the amount of food remaining can take a variety of
values, from very small to very large. In previous models, and in
particular Dubois et al. (2003), it was assumed that both animals
knew the value of the resource. In this paper, building on previous
work of Broom and Rychtář (2013), see also Broom et al. (2013a,b),
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we consider a version of this game where the Finder knows the
value of the food patch at the start of the contest, but the Joiner
does not. This is reasonable in any case where the value of the
patch is not immediately apparent from a distance, but can be
ascertained (or at least estimated) by close observation, for
example a nest of eggs. In the following sections, we detail the
mathematical assumptions of the model, perform a general
analysis for our model, and then investigate the results. In
particular we compare our results to the alternative case where
both individuals know the value of the food patch. Finally we
discuss the implications of our results both biologically, and for
future models.

2. The model

In this paper we will follow the work of Dubois et al. (2003) and
model an interaction of two individuals by a sequential Hawk–
Dove game. A Finder discovers a food patch and a Joiner arrives
subsequently and [14_TD$DIFF]tries to take some of the food. We assume that
the Finder utilizes the resource before [15_TD$DIFF] the Joiner arrives and that
the Joiner does not know[16_TD$DIFF] the true value of the resource at the time
of its arrival.

We let the total value of the patch be F (either a number of
distinct items, or a single easily divisible item), of which value a,
the Finder’s share, has already been consumed by the Finder before
the Joiner arrives. The sequential Hawk-Dove contest is modelled
as a game in extensive form as in Fig. 1. In this game the Finder
makes an initial choice of strategy Hawk or Dove. This is observed
by the Joiner which then responds with a choice of Hawk or Dove
itself. Given this sequence of choices the payoffs are then given as
shown in Fig. 1.

When two Doves meet, they share the remaining resource, each
trying to eat as much as they can (scramble competition), but it is
assumed that it is eventually divided equally. When a Hawk meets
a Dove, the Dove retreats and the Hawk consumes the entire
remaining resource. When two Hawks meet, they fight and both
pay an energetic cost of value C. The loser retreats and the winner
keeps the entire resource, the probability of the Finder winning the
contest being denoted by a.

Unlike as in Dubois et al. (2003) where the authors investigated
the full information case (both the Finder and Joiner know the
value of a and of F, C, a), here we will consider a asymmetric
information case when only the Finder has the information about
the amount of food already eaten a 2 (0, F). The Finder’s strategy
will thus depend on F, C, a, a, while the Joiner’s strategy will

[(Fig._1)TD$FIG]

Fig. 1. The sequential Finder–Joi
depend only on F, C, a and the choice of the Finder. For a fixed F, C, a
we are interested for which values of a the Finder will play Hawk,
and for the corresponding response of the Joiner.

In full generality, the strategy for the Finder will be a function
p(a) = p(a, F, C, a) where p(a) 2 [0, 1] for a 2 (0, F) represents the
probability of the Finder playing Hawk given the amount of food
already eaten is a. The strategy for the Joiner will be a pair (pH, pD)
where pH (pD) is [17_TD$DIFF] the Joiner’s probability to play Hawk given the
Finder played Hawk (Dove).

We will look for evolutionarily stable strategies (ESSs) of the
game. For an asymmetric game with two players, an ESS is a
strategy pair, i.e. a strategy for each player, where either individual
would obtain a strictly worse payoff if it unilaterally changed its
strategy.

To help us distinguish the ESSs, we will assume that Finders
make rare mistakes. This is the principle of the ‘‘trembling hand’’
(Selten, 1975; van Damme, 1991; Broom and Rychtář, 2013), which
suggests that individuals should make optimal choices even in
situations which, formally, do not occur when all others also play
optimally. This discriminates among a large set of apparently
equivalent strategies, which differ only in their responses to
situations which do not occur in the ESS. We specify the nature of
these mistakes in Section 3.

We assume that a has either[18_TD$DIFF] a uniform continuous distribution
with the density function d(a) = 1/F on (0, F) or that a takes values
in {iF/n ; i = 1, 2, . . ., n � 1} each with a probability 1/(n � 1). In both
cases, the expected value of a is F/2 and [19_TD$DIFF]the probability of having
a = 0 or a = F is 0.

3. Analysis

It follows from Fig. 1 that regardless of the value of a, the
optimal value of pD is 1. Indeed, for any given a, the Joiner should

play Hawk when F � a> F�a
2 , which is always satisfied since a < F.

Consequently, if the Finder plays Dove, it receives a payoff of a and
the Joiner receives a payoff F � a.

Next, consider the population where Joiners play (pH, 1) and
assume the Finder has already eaten a by the time that the Joiner
has arrived. We will evaluate R(a, pH), the difference [20_TD$DIFF]in payoff for
the Finder between playing Hawk and Dove. The Joiner will not
fight with probability (1 � pH). If the Joiner does not fight and a
Finder plays Hawk, the Finder receives an additional payoff of F � a

(on top of the already secured payoff of a which is also the payoff
the Finder would receive if playing Dove). The Joiner will fight with
ner game in extensive form.
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a probability pH resulting in an additional payoff of pH(a(F � a) � C)
for the Finder if it plays Hawk. Hence, we get

Rða; pHÞ ¼ pHðaðF � aÞ � CÞ þ ð1� pHÞðF � aÞ (1)

Although the function R(a, pH) is formally defined only for a 2 (0, F),
we will use the formula (1) to extend the function [22_TD$DIFF]to a 2 [0, F]. Note
that, by (1), the function R(a, pH) is decreasing in a for any fixed
value of pH. Consequently, there is at most one critical value
acrit(pH) 2 [0, F] such that

Rða; pHÞ
>0; 0< a< acrit;
¼ 0; a ¼ acrit 2 ð0; FÞ;
<0; F > a> acrit:

8<
: (2)

It follows that for any given strategy (pH, 1) of the Joiner, the
optimal strategy of the Finder must be of the form

pacrit
ðaÞ ¼ 1; a< acrit

0; a� acrit :

�
(3)

Thus it plays Hawk if and only if a < acrit.
We will consider two types of mistakes that a Finder can make.

When a Finder mistakenly follows a wrong strategy pã [23_TD$DIFF] instead of
the intended strategy pa0

(for ã 6¼ a0 and typically ã� a0), we will
call it a mistake of the first kind. When the Finder tries to follow the
correct strategy pa0

but still plays [2_TD$DIFF] Hawk by mistake (with a very
small frequency) for a > a0 and[2_TD$DIFF] Dove by mistake when a < a0, we
will call it a mistake of the second kind. The mistake of the second
kind thus amounts to playing a strategy

pa0 ;eðaÞ ¼
1� eH; a< a0;
eD; a� a0

�
(4)

instead of strategy pa0
. When Finders make a mistake of the first

kind, we get that E½F � a� ¼ F � ã
2. When Finders make a mistake of

the second kind, we will still have that E[F � a] is different from
F � a0

2 . Note that for a0 = 0, a mistake of a second kind is equivalent
to a (big) mistake of the first kind with ã ¼ F.

Let us now assume that all Finders follow a strategy pa0
for

some a0. We have to find the optimal value of pH for the Joiner.
When the Finder plays Hawk, the expected payoff to a Joiner
playing pH is

pHðð1� aÞE½F � a� � CÞ (5)

where E[F � a] denotes the expected value of the remaining
resources given the Finder played Hawk. When Finders follow the
strategy pa0

exactly and without mistakes, we get that

E½F � a� ¼ F � E½a� ¼ F � a0

2
: (6)

The payoff to a Joiner playing Dove would be 0, and thus the
optimal value of pH is given by

pH;opt ¼
1; when ð1� aÞE½F � a� � C>0;
0; when ð1� aÞE½F � a� � C<0:

�
(7)

The case when

ð1� aÞE½F � a� � C ¼ 0 (8)

could potentially lead to a Joiner’s mixed strategy pH 2 (0, 1).
However, the exact equality in (8) cannot hold when Finders do
make mistakes and thus the stable value of pH will always be either
0 or 1.
We will now investigate all possible candidates for ESSs and we
will look for them as pairs (acrit, pH). Here acrit represents the
strategy pacrit

of the Finder given in (3) (to play Hawk if and only if
a 2 (0, acrit)) and pH represents the strategy of the Joiner (to play
Hawk with probability pH given the Finder has already played
Hawk).

3.1. Case acrit = 0

If acrit = 0, we have

Rð0; pHÞ ¼ pHðaF � CÞ þ ð1� pHÞF � 0: (9)

Since pH � 1, and R(0, pH) = F � pH((1 � a)F + C) is decreasing in pH,
we must have

Rð0;1Þ ¼ aF � C � 0: (10)

Let p0 = min {pH ; (9)holds}. Clearly p0 > 0. Also, when (10) holds,
all pairs (0, p) for any p � p0 > 0 are possible candidates for an ESS.

Given acrit = 0, no Finder should ever play Hawk and thus the
value of pH does not really matter if there are no mistakes in the
population. If there are mistakes, there will be an occasional Finder
playing Hawk and the exact value of pH will thus matter. Since our
candidate value must satisfy pH � p0 > 0, we have that the only
possible ESS is (0, [3_TD$DIFF]1) and that will happen when
(1 � a)E[F � a] � C > 0. When there are mistakes of the first kind
and occasionally a Finder plays a strategy pã instead of p0, the pair
(0, 1) is an ESS if and only if (10) holds and

ð1� aÞ F � ã

2

� �
>C: (11)

Here we have ã� acrit ¼ 0, and so inequality (11) becomes

ð1� aÞF >C: (12)

When there are mistakes of the second kind, acrit = 0 implies that
Hawk is equally likely to be played by the Finder for any value of [4_TD$DIFF], so
that E[F � a] = F/2. This gives the equivalent condition to (11) as

ð1� aÞ F

2
>C: (13)

3.2. Case acrit = F

If acrit = F, we must have

RðF; pHÞ ¼ x2212;C pHx2265;0 (14)

[5_TD$DIFF]which is possible only if pH = 0. It thus remains to investigate when
the pair (F, 0) is stable. Clearly, the Finder’s strategy is optimal
against the Joiner’s strategy pH = 0 (regardless of any parameter
values).

By (7) and (6), pH = 0 is an optimal response to the Finder’s
strategy pF (and the pair (F, 0) is stable) if and only if

ð1� aÞE½F � a� � C ¼ ð1� aÞF
2

� C<0: (15)

3.3. Case acrit 2 (0, F)

Since R(acrit, pH) = 0, we must have pH > 0. It follows from above
that[24_TD$DIFF] the Finder’s strategy is optimal when the Joiner plays pH and
we only have to check when pH = 1 is optimal for the Joiner.



Table 1
Summary of the ESSs. An ESS pair (acrit, pH) means that the Finder will follow a

strategy pacrit
as in (3) and the Joiner will play Hawk with probability pH if the Finder

played Hawk or with probability 1 if the Finder played Dove.

ESS Condition

(0, 1) (1�a)F>C>aF (for mistakes of the first kind) or

ð1� aÞ F
2 >C>aF (for mistakes of the second kind),

F � C
a ;1

� �
C<aF and C(3a�1)<a(1�a)F

(F, 0) C> 1�a
2 F

[(Fig._2)TD$FIG]

Fig. 2. ESSs of the game for the asymmetric information case, where all terms are as

defined in Table 1. The label ‘‘(0, 1)’’ denotes a region where there is an ESS of (0, 1)

for the case of mistakes of the first kind (Finder plays Hawk for small values of a).

The label (0, 1) denotes a region where there is an ESS of (0, 1) for either kind of

mistakes.
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If pH = 1, we get that R(a, 1) = a(F � a) � C and thus

acrit ¼ F � C

a
: (16)

Hence, acrit > 0 only if

C<aF (17)

which complements the condition (10) for (0, 1) being an ESS. By
(7), the value pH = 1 is optimal for the Joiner only if

0< ð1� aÞE½F � a� � C ¼ ð1� aÞ F � acrit

2

� �
� C

¼ ð1� aÞaF þ C

2a
� C

¼ ð1� aÞF
2

þ C
1� 3a

2a
(18)

which is equivalent to

Cð3a� 1Þ<að1� aÞF: (19)

The inequality (19) always holds for a < 1/2 since we already must

have C < aF and for a < 1/2 we also have (3a � 1) < (1 � a).

Hence, ðF � C
a ;1Þ is an ESS if C < aF and a < 1/2 or when C < aF,

a > 1/2 and C(3a � 1) < a(1 � a)F.
Table 1 shows the summary of the conditions on various ESSs

and the situation is also shown in Fig. 2.

4. Comparisons between [25_TD$DIFF] the symmetric and asymmetric
information cases

In Dubois et al. (2003) [26_TD$DIFF](see also [7_TD$DIFF]Broom and Rychtář, 2013, p.
364), the authors investigated the Finder–Joiner game for the
symmetric information case (when a Joiner also knows the exact
value of a) and determined conditions on a, F, C, a for when the
Finder (and the Joiner) should play Hawk. Table 2 shows an
overview of the ESS actions for all possible values and available
information.
Table 2
Comparison of actions taken during the game in the symmetric and asymmetric inform

a�1/2

ESS 0< a< F � C
a F �

Finder Joiner Fin

Symmetric Hawk Hawk Do

(0, 1) Dove Hawk Do

ðF � C
a ;1Þ Hawk Hawk Do

(F, 0) Hawk Dove Ha

a>1/2

ESS 0< a< F � C
1�a F �

Finder Joiner Fin

Symmetric Hawk Hawk Ha

ðF � C
a ;1Þ Hawk Hawk Ha

(F, 0) Hawk Dove Ha
Comparing the symmetric information case with the asymmet-
ric information case when the ESS is (F, 0), it follows that the
asymmetric information case is never worse for the Finder and
never better for the Joiner (with the cases being same only when
C > (1 � a)F). Indeed, in the symmetric information case there may
be fights (when a < min {aF, (1 � a)F}) with positive expected
reward for both parties yet with a cost C associated with it, and the
Finder may give up for some values of a (when a < 1/2), whereas in
the asymmetric information case and (F, 0) ESS, the Finder always
gets F while the Joiner gets 0, i.e. the best outcome for the Finder
and the worst possible ESS outcome for the Joiner.

On the other hand, the asymmetric information case is better
for the Joiner (and worse for the Finder) when the ESS is (0, 1) or
similarly when it is ðF � C

a ;1Þ and a < 1/2. This is because for large
a, in the symmetric information case the Finder plays Hawk while
the Joiner gives up, i.e. the Finder gets F and Joiner 0, whereas in the
asymmetric information case, the Finder has to play Dove for large
a, thus getting only a and the Joiner getting F � a. Moreover, in the
case of a � 1/2 and a< F � C

a and the symmetric information case,
the Finder and the Joiner both play Hawk to get a positive expected
reward while in the asymmetric information case and (0, 1) ESS,
the Finder gives up, gets only a and the Joiner gets F � a (without
paying the cost of the fight).

Also, when a > 1/2 and F � C
1�a < a< F � C

a, then in the
symmetric information case the Finder gets F while[27_TD$DIFF] the Joiner [28_TD$DIFF]
ation cases and various ESSs.

C
a < a< F � C

1�a F � C
1�a < a

der Joiner Finder Joiner

ve Hawk Hawk Dove

ve Hawk Dove Hawk

ve Hawk Dove Hawk

wk Dove Hawk Dove

C
1�a < a< F � C

a F � C
a < a

der Joiner Finder Joiner

wk Dove Hawk Dove

wk Hawk Dove Hawk

wk Dove Hawk Dove
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gets 0, yet in the asymmetric information case and ðF � C
a ;1Þ ESS,

the Finder and Joiner fight, resulting in[29_TD$DIFF] a negative payoff for the
Joiner and a worse outcome for the Finder. Overall, if a > 1/2 and
for the ðF � C

a ;1Þ ESS, then the Finder does worse in the asymmetric
information case than in the full information case and the Joiner
may do better or worse depending on the exact parameter values.

5. Discussion

Food stealing behaviour has been modelled in a number of
ways, depending upon the exact scenario being modelled, and the
specific features of interest from that scenario. A common factor of
many of these models is that animals are faced with a choice
between a small range of options, often two. This could be to steal
or not to steal/to resist a stealing attempt or not to resist (Broom
and Ruxton, 2003; Broom et al., 2004, 2008; Broom and Rychtář,
2007; Broom and Rychtář, 2011) or to play aggressively or
passively within a contest (Barnard and Sibly, 1981; Barnard, 1984;
Caraco and Giraldeau, 1991; Vickery et al., 1991; Broom et al.,
2009; Grundman et al., 2009; Dubois et al., 2003). This kind of
choice is of course common to a variety of ecological scenarios,
such as patch foraging, where the choice may be to forage on a
particular patch or to leave and go to another (Fretwell and Lucas,
1970; Křivan et al., 2008).

It is generally assumed that the value of the resources competed
for in these contests are known to both players, namely that they
have perfect information (van Damme, 1991). In fact it seems
reasonable that an animal that has possessed a food item for longer
may have more information than a challenging individual, so that
the first individual knows its value but the second does not; this is
a game of imperfect information, and that is the scenario that we
have considered. The key parameters in our model are three
general ones known to both animals, C the cost of a violent contest,
a the probability that the Finder will win the contest, F the value of
a complete food patch, and a single value known only to the Finder,
a, how much food has been consumed by the Finder before the
Joiner arrives. Thus the Finder’s strategy takes a into account, but
the Joiner’s cannot.

The Joiner either always plays the aggressive Hawk strategy or
always concedes if and only if the Finder plays Hawk (if the Finder
is not aggressive it clearly benefits the Joiner to be, as this secures
the resource). The Finder’s optimal strategy is to play Hawk for a

small enough i.e. when there is a sufficiently large amount of food
left to be worth fighting for (yet this may be to play Hawk always,
or never). There are three qualitatively different types of ESSs: (1)
(0, 1) when the Finder always plays Dove and the Joiner always
plays Hawk, (2) (F � C/a, 1) when the Finder plays Hawk only when
enough [30_TD$DIFF]resource is still left and the Joiner always plays Hawk, (3)
(F, 0) when[31_TD$DIFF] the Finder always plays Hawk and [32_TD$DIFF] the Joiner always
plays Dove. There is always an ESS, and in some circumstances
there are two simultaneous ESSs.

When C > F(1 � a), corresponding to the situation where it is
not beneficial for the Joiner to fight even for a maximal reward F

(this type of condition is common to such models, for example
Broom et al., 2004), there is no difference between the symmetric
or asymmetric information case. In both situations the Finder
always plays Hawk and the Joiner always plays Dove, so that
aggressive defence of the resource is sufficient to deter the Joiner,
and the Finder keeps the resource without any contest. Such a
situation will occur where costs are high, for example if the
animals have powerful weapons like horns or tusks, or if the Joiner
has only a small chance of winning the contest, for example if the
food patch is easy to defend.

When F(1 � a) > C > F(1 � a)/2, corresponding to the situa-
tion that it is not beneficial for a Joiner to fight for a reward of
average value F/2, then (F, 0) is an ESS. There may, however, be
other ESSs. One such ESS is (0, 1) for a < 1/2, when the Finder gives
up the resource without a fight. This corresponds to the
paradoxical strategy X (Maynard Smith, 1982). We note, however,
that in our scenario, this ESS is possible only if the Finder makes
mistakes of the first kind, i.e. if it plays Hawk for very small a.
Another possible ESS is (F � C/a, 1) which can happen for a > 1/3
(and C/F < 1/2). Here, the Finder fights when the value of the
remaining resource is large enough. Thus, the fact that the Finder
is prepared to fight is a good enough indication for the Joiner to
fight as well.

When C< F 1�a
2 , it is beneficial for a Joiner to fight for an average

reward of F/2. This will happen if the potential cost is small
compared to the value of the food, or if the Joiner’s chance of
winning [33_TD$DIFF]is high; this means that the Joiner will always fight. Thus
in the asymmetric information case that we consider here, the
Finder never challenges for large a as this fight would be for a small
amount of food left. Also, in this case, the Finder does worse in the
asymmetric information case [34_TD$DIFF]than it would do in the symmetric
information case. If, moreover a < 1/2, then the Joiner does better
in the asymmetric information case than in the symmetric
information case (although it knows less in the asymmetric
information case). This is caused by the fact that in the symmetric
information case, the Finder can play Hawk when a is large enough,
knowing that the Joiner knows F � a is small and thus it is not
worth fighting for. However, in the asymmetric information case,
the Joiner has no information about the exact value of a and since
the Joiner knows that it is not beneficial for the Finder to play Hawk
for small enough items, the Joiner plays Hawk whenever the Finder
plays Hawk. Such a strategy may or may not be harmful to the
Joiner (compared to the symmetric information case) when a > 1/
2, as then the Joiner fights even for items that are not worth
fighting for.

The Finder’s strategy is rather complex and can be prone to
mistakes. Consideration of possible mistakes was needed to
resolve which strategies are ESSs out of a potentially large number
of apparently identical strategies (these are only identical under
always perfect decision-making, which is of course not realistic).
We saw an interesting phenomenon, than the regions of ESSs
obtained in our solution differed depending upon the type of
mistakes the Finder can make. If the Finders are prone to making
only small mistakes in assessing acrit, then the ESS region of (0, 1) is
larger than in the case when Finders are prone to a mistake in the
execution of the strategy (such as playing Hawk when they should
play Dove).

Thus we have seen that depending upon the values of the
parameters, the extra information possessed by the Finder can be
beneficial, but it can also be harmful, when compared to the case
where both individuals have full information. It is thus reasonable
to ask under what circumstances will the asymmetric information
situation that we have described actually occur in real popula-
tions? This is more likely to happen when resources are either not
immediately visible to the animals, as in a large nest concealed
within a hedgerow or if the contest between the animals
progresses quickly so that the Joiner does not have chance to
assess the value of the reward. In contrast in situations where
contests progress more slowly and are of a clearly visible resource,
for example a dead animal on an open plain, we might expect the
full information case to hold.

An assumption made in our model is that the Finder chooses its
strategy before the Joiner. This might be reasonable for instance if
the Finder sees the Joiner approaching from a distance and has to
choose a defensive position which is associated with its strategy
choice. However there will be circumstances, for example if the
Joiner discovers the Finder and can challenge before the Finder is
aware of its presence, where it would be reasonable to assume that
the Joiner chose its strategy first. As we have seen here, but is
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generally well known, the order of players in a sequential game is
important. We have modelled the contest as a sequence of single
choices, but contests may be more protracted, with a number of
choices for each animal. This would also perhaps give the Joiner the
opportunity to gain more information about the resource, so that it
may potentially adjust its strategy as it learns more about the food
patch, for instance deciding to concede if the patch is shown to be
of low value. In general we see that the assumptions made in such
models, relating to different real scenarios, have a crucial effect on
the outcome both of the idealised model, but also, we would
contend, of real contests.

In our model we have also assumed that the value of the
Finder’s share ‘‘a’’ is uniformly distributed. This is reasonable for
circumstances where the food is consumed at a uniform rate, so for
example a carcass approached by a scavenger. In other circum-
stances this would not be the case, for example when the food
patch comprises a number of small prey items, e.g. ants, that need
to be captured. As the number diminishes, the rate of consumption
likewise goes down. In this case, it would be more likely that the
Finder’s share would be a large value rather than a low one. What
are the consequences of the distribution not being uniform?
Clearly, a large patch is still worth more than a smaller patch, so
that following the same working there will still be a critical
threshold acrit for when the Finder should play Hawk, leading to the
same results qualitatively, so that a similar figure to Fig. 2 would be
obtained. The calculation could be much more complex however,
and the nice clean solution for acrit displayed in the figure would no
longer hold.

A further assumption of our model is that F is a [8_TD$DIFF] fixed value[35_TD$DIFF] and
known, in particular by the Finder. This may not be true,
particularly in the multiple prey scenario discussed in the
paragraph above. In such circumstances the Finder can use the
level of the food that it has consumed a as an indication of the
richness of the patch, i.e. to estimate F. Here we would have a more
complex version of the game but still within our basic premise that
the Finder knows more than the Joiner. In this scenario a large a

acquired in a short time may indicate that there is a lot of food
remaining. To consider such a situation would need a more
complex model which takes into account the time that the Finder
has been at the food patch as well as the distribution of F values in
the environment. This would be a valuable development of the
model, and is a topic for future research.
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