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Abstract Conflict occurs throughout the animal world. Such conflicts are often modelled by
evolutionary games, where individual animals make a single decision each within the game.
These decisions can be sequential, in either order, or simultaneous, and the outcome of the
game can depend strongly upon which case is assumed to occur. Real conflicts are generally
more complex, however. A fight over a territory, for instance, can involve a succession of
different stages and, therefore, choices to be made by the protagonists. In this paper we
thus introduce a method of modelling a more complex class of interactions, where each
individual can make a sequence of decisions. We show that despite the inherent complexity,
under certain assumptions, the resulting game often leads to the case where both animals
fight to the fullest extent or where one concedes immediately, thus mirroring the outcomes
of simpler single decision games. However, for other cases we see that the outcome is not so
simple, and intermediate level contests can occur. This happens principally in cases where
the duration of contests is uncertain, and partially governed by external factors which can
bring the contest to a sudden end, such as the weather or the appearance of a predator. We
thus develop a theory grounded in simple evolutionary models, but extending them in various
important ways.
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1 Introduction

Conflict is ubiquitous throughout the animal world, taking many different forms (see e.g.
[22]). Such conflicts can be modelled using evolutionary game theory, where different
behaviours within the conflict, for example be aggressive or passive, are represented by
the game strategies [4,19,29,31]. A common feature of evolutionary game theoretical mod-
els is that contests are often assumed to involve only a single decision by each participant.
These decisions can be taken simultaneously, without knowledge of the other player’s choice,
or in sequence, so that the second player observes the choice of the first before making its
own decision. It is well known that whether the decisions are simultaneous or sequential, and
if sequential which order the decisions are made, can fundamentally change the outcome of
the game [21].

A classic example of the type of behaviour that we are interested in involves stags, which
compete for territories and the associated mating opportunities with females. These contests
can be complex, involving observation of the size of opponents, parallel walking, pushing
and potentially lethal fighting. The contests are thus not just single events, but go through
stages,where the protagonists canmake decisions at different points. Such a situationwas first
modelled byMaynardSmith [29],MaynardSmith andPrice [32] using theHawk–Dove game,
one of the most important games in biology. In the classical game, two individuals compete
over a resource of value V , with two available strategies, the aggressive Hawk strategy and
the passive Dove strategy. If one player plays Hawk and the other Dove, the Hawk-player
gains V and the Dove player 0. If both play Dove, the winner is selected at random, so each
receives an average reward of V/2. If both playHawk, they fight until one receives an injury of
cost C , the other then receiving the reward; the winner is decided at random, so the average
reward is (V − C)/2. Assuming that C > V , if each simultaneously chooses a strategy,
for indistinguishable individuals, the unique evolutionarily stable strategy (ESS) is a mixed
strategy, where Hawk is played with probability V/C (and Dove with probability 1−V/C).
For a sequential game, the unique ESS is that the first player plays Hawk and the second
Dove, so that the first to play always gains the reward. Here the initial choice by the first
player of Hawk commits that player to fight if the other also chooses Hawk, so that the second
player knows that a choice of Hawk commits it to obtain the negative reward (V − C)/2,
forcing it to choose Dove. The Hawk–Dove game was extended to involve asymmetries with
the owner–intruder game [31] and this has been elaborated more recently in a number of
ways (see e.g. [42], for a review).

Real animal conflicts are often more complex than just involving a single decision by
each combatant, and animals may make a sequence of decisions affected by the decisions
made by themselves and their opponent, and the outcomes of those decisions, earlier in the
contest. This is the case in the example of stags competing for a territory considered above.
Gameswith a single decision are often a useful simplification for themore complex case, with
the significant advantage of analytical simplicity, but the potential disadvantage of a lack of
realism. Thus in the sequential Hawk–Dove game, the first player gains from the unrealistic
assumption that its initial aggressive act commits it to fight with full aggression for the whole
contest. The models of Mesterton-Gibbons et al. [34,35] consider a contest for a resource
which can feature many stages of challenge and rechallenge. The model is based upon an
iterated Hawk–Dove game, which has similar features to the iterated Prisoner’s Dilemma
[1], in that optimal behaviour is heavily influenced by both the expectation of an opponent’s
future strategy and also the likelihood of further contests.
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An alternative situation that can lead to complex contests is animal foraging. Whlist for-
aging, animals may discover patches of resources, the value of which can vary considerably,
and they must balance out the benefit of staying in the patch and continuing to feed, or to
leave and seek a potentially richer patch elsewhere. If there is a single individual only and the
patch becomes increasingly depleted though time, the individual does not have to consider
the choices of an opponent (though the value of patches elsewhere may depend upon some
population strategy of others), and it must simply pick the best time to leave [8]. However,
if there is more than one individual, the choices of others are important. For a non-depleting
patch with no movement costs, this relates to the Ideal Free Distribution [11,13]. When
resources become depleted, then individuals play a game where costs and benefits change
through time, and this becomes a generalized war of attrition [3]. This is a development of the
classical war of attrition [2] where two individuals compete for a reward by trying to outwait
the other individual, see also [18,31]. A specific example with parasitiod wasps visiting a
patch of host larvae is given in [16].

In this paper we introduce a method of analysing an animal conflict over an indivisible
valuable resource, as in the Hawk–Dove game, involving a potentially long sequence of
decisions. These are binary in form, where individuals choose to persist in the contest (at
some additional cost) or concede, concession allowing the opponent to take the resource.
The costs may vary, depending upon the stage of the contest, for example if the nature of
the contest changes (as in the case of the mentioned stags above). Each possess a level of
resources which may prevent them from competing indefinitely. Similarly the contest may
eventually stop due to some external influence, for example the arrival of night or a predator,
and at that point the resource will be allocated to one of the individuals at random (generally
not uniformly at random, however). We analyse our game under a number of scenarios, and
also connect it to the dollar auction, a game from economics with some similar features.

2 The Model

Two individuals I1 and I2 compete for a valuable resource, which is worth Vi to individual
i for i = 1, 2. The contests follow a sequence of alternating decisions, one at each time
step, starting with I1, where the individual can remain in the game at a cost, or concede the
resource to its opponent. As individuals have to pay a cost any time they decide to remain in
the contest, we will also refer to the decision to stay in the contest as an investment and we
will denote the cost of the j th investment of individual Ii by ci, j . We assume that ci, j ≥ ε,
for some 0 < ε < min(a1V1, a2V2) and all i, j . We assume that the game may continue for
up to T ∈ N ∪ {∞} time steps.

If T < ∞, then the game ends no later than after step T by either (a) an individual giving
up at any step T ′ ≤ T , or (b) the contest reaching the stopping point just after step T . If T is
odd, the stopping point happens after I1’s investment; if T is even, the stopping point happen
after I2’s investment. In any case, an individual Ii can invest up to a maximum of Ji times
where

J1 = int
T + 1

2
, (1)

J2 = int
T

2
. (2)

At the stopping point, Ii gains the reward with probability ai , so that a2 = 1 − a1. See
Fig. 1 for an illustration of the game. After their j th investment, Ii has paid a total cost
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step 1: I1 chooses

I1 gets 0
I2 gets V2

concedes

step 2: I2 chooses

continues

I1 gets V1 − c11

I2 gets 0

concedes

step 3: I1 chooses

continues

I1 gets −c11

I2 gets V2 − c21

concedes

step 4: I2 chooses

continues

I1 gets V1 − c11 − c12

I2 gets −c21

concedes

Stopping point

continues

I1 gets a1V1 − c11 − c12

I2 gets a2V2 − c21 − c22

Fig. 1 An example of the game for T = 4 where each individual can make (up to) two choices

Ci, j = ∑ j
k=1 ci,k . Each individual has a maximum level of resources Ri that they can invest,

so that Ci, j can never exceed Ri . When Ri < ∞, this condition together with the minimum
investment level ε > 0 guarantees that individuals have to eventually concede at some point.
There are three distinct cases for the payoffs in this game.

1. If I1 concedes at its j th decision, then I1 receives payoff −C1, j−1 and I2 receives V2 −
C2, j−1.

2. If I2 concedes at its j th decision, then I1 receives payoff V1 − C1, j and I2 receives
−C2, j−1.

3. If neither concedes and the game reaches the stopping point after step T , I1 receives
payoff a1V1 − C1,J1 and I2 receives a2V2 − C2,J2 .

We are interested in finding the optimal strategy for each player. Assuming that an indi-
vidual can find itself in the I1 or I2 role, a strategy is then a combination of what to do as
I1, and what to do as I2. Each player only has the chance to play if all previous investments
of both players have been made, so that a pure strategy is simply the round in each case that
an individual would concede, assuming it was reached, as I1 or I2. This can be reduced to a
pair of integers (including infinity as an allowable choice), so that S j1, j2 represents invest in
the first ji − 1 rounds and then concede as Ii .

We shall consider a number of cases. In Sect. 3 we consider the case where all parameters
Vi , ci, j , ai , Ri and T are a priori fixed and known to both players. In Sect. 4 we will consider
parameters Vi , ci, j , ai , Ri fixed and known but will assume that T follows a random distri-
bution, i.e. the stopping time is not a priori fixed, and so unknown to either of the players. In
Sect. 5 we will consider the parameters Vi , ai , Ri and T known and fixed, but we will allow
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individuals to choose the cost of staying in the game themselves (under the condition that if
the game reaches step T , their total investment must reach an a priori known and fixed value
Ci ). Finally, in Sect. 6, we will consider the dollar auction game [43], as a special case of our
game and in particular we will solve a variant of the dollar auction game where individuals
are assumed to have no memory.

3 Fixed and Known Parameter Values

In this section consider the game Γ = 〈T, Vi , Ri , ai , ci, j 〉 described above where the values
of Vi , ci, j , ai , Ri and T < ∞ are a priori fixed and known to both players. Since the ci, j
and T are fixed and known, Ii knows how much it will have to invest to reach the end of the
contest, which we denote by C1 = C1,J1 and C2 = C2,J2 , for I1 and I2, respectively; here
J1 and J2 are given by (1) and (2).

We can work from the end of the contests, using the standard backwards induction method
(see e.g. [4]), to solve the game. We shall take this approach throughout the paper; when
applying this method we shall use the shorthand “working backwards”. Note that, less often,
we shall need to work from the start of the game, denoted as “working forwards”.

Let Bi, j denote the expected future payoff to Ii before its j th choice and let Ai, j denote
the expected future payoff after its j th choice (assuming that it has not conceded). At any
step j , the individual Ii chooses the better of the following two options

1. to concede, get no reward (and pay the cost Ci, j−1 after already investing j − 1 times),
or

2. to continue, pay the cost ci, j (plus the cost Ci, j−1 of already investing j − 1 times), and
expect to get payoff Bi, j .

However, the individual can continue only if it has sufficient resources to do so. Consequently,

Bi, j =

⎧
⎪⎨

⎪⎩

0, if Ri < Ci, j ,

−ci, j + Ai, j , if Ri ≥ Ci, j and Ai, j > ci, j ,

0, otherwise,

(3)

where

A1, j =
{
V1 if B2, j = 0, and

B1, j+1 otherwise;
(4)

A2, j =
{
V2 if B1, j+1 = 0, and

B2, j+1 otherwise.
(5)

In (3) the cases appropriately correspond to (a) inability to continue due to not having suf-
ficient resources, (b) ability to continue and a profitability of doing so, and (c) ability to
continue but not a profitability of doing so. If (a) happens, we say that Ii reached a point
of concession by inability. If (c) happens, we say that Ii reached a point of concession by
unprofitability. A block is a point of concession by unprofitability where ci, j ≥ Vi (note that
Ai, j is never more then Vi ).

We note that in Eqs. (4) and (5) we have assumed that if the expected future reward for
the two choices of continuing and conceding are identical, then the individual concedes. If
ties were (sometimes) resolved the other way, then our equations would be slightly different.
Often in evolutionary games, we make the generic payoff assumption [4,39], assuming that
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Table 1 Summary of the results for the case of fixed and known parameter values

Conditions Outcomes

R1, R2, P1, P2 I1, I2 invest at every step

R1, R2, P1,¬P2 I2 concedes immediately

R1, R2, ¬P1, P2 I1 concedes immediately

R1, R2, ¬P1,¬P2 and (15) and (16) hold for some j I1 concedes immediately

R1, R2, ¬P1,¬P2 and neither (15) nor (16) hold for any j I2 concedes immediately

R1, ¬R2 I2 concedes immediately

¬R1, R2 I1 concedes immediately

¬R1, ¬R2 and (11) holds for some j I1 concedes immediately

¬R1, ¬R2 and (12) holds for some j I2 concedes immediately

For strict inequality of parameter conditions these are strict NEs and so ESSs, otherwise they are NEs

as payoffs occur from nature, following some natural variation, such ties never occur. This
assumption is reasonable for games where there is a clear end point, which we consider in
the rest of this section, Sect. 5 and the first part of Sect. 6.1. There are complications when
there is not such an end point, as then the selection of mixed strategies (allowing concession
at a given position with a probability between 0 and 1) can generate equalities. In cases with
clear roles, such mixtures are unstable [41], so that the assumption is valid for the rest of
the paper too, with the exception of Sect. 6.3, where extremely limited memory but infinite
resources allows a game without roles and which carries on indefinitely (and where we see
that such mixed strategies feature).

3.1 Blocks and Unblocking

Here, we present themain four results for gameswithout blocks. The games in this section are
all examples of truly asymmetric finite extensive form games, and thus, following Theorem
4.5.3 of Cressman [10], there is a one-to-one correspondence between ESSs and strict Nash
equilibria (NE). If we assume generic games and no equalities, then the solutions for each
of our main results yields a unique strict NE, which is thus the unique ESS. Without this
assumption, they are (perhaps non-strict) Nash equilibria only. The results are summarised
in Table 1.

Theorem 1 The first individual that would reach a concession point must concede immedi-
ately, i.e. before making its first investment.

Proof Suppose without loss of generality that I2 reaches the concession point first and that
it happened at its j th investment, j > 1. In this case, we have:

1. B2, j = 0 (I2 reached a concession point),
2. B2, j−1 > 0 (it was the first concession point for I2),
3. B1, j > 0 (I1 has not reached a concession point yet).

Hence I1 invests at the previous step and thus A2, j−1 = B2, j = 0 which leads to

B2, j−1 = max(−c2, j−1, 0) = 0, (6)

and so I2 should concede at its j − 1th step, which is a contradiction. Thus if I2 would reach
a concession point first, it should concede at j = 1. 
�
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In general, a gamemaycontain a number of blocks, say at time stepsTb1 , Tb2 , . . ..However,
the game must stop at Tb = min j {Tb j }. Any game can be unblocked by considering a game
with identical parameters except that Tb replaces T and (0, 1) (or (1, 0)) replaces (a1, a2) if
Tb is odd (or even). Here the outcome (i.e. the optimal strategies and eventual payoffs) of the
unblocked game is the same as the original one.

3.2 Solving Games with No Blocks or Unblocked Games

The solution of the unblocked game depends upon two types of conditions:

Condition R1: R1 ≥ C1; (7)

Condition R2: R2 ≥ C2; (8)

Condition P1: a1V1 > C1; (9)

Condition P2: a2V2 > C2; (10)

Note that condition R holds if the individual has enough resources to continue to the end and
condition P holds if it is profitable for the individual to do so.

Theorem 2 In the unblocked game, if either condition R1 or condition R2 (or both) does
not hold, then at least one individual would run out of resources before T is reached and the
first individual who would run out of resources must concede immediately. Specifically, if,
for some j

R1 −
j∑

k=1

c1,k < 0 while R2 −
j−1∑

k=1

c2,k ≥ 0 (11)

then I1 should concede immediately. If, for some j ,

R2 −
j∑

k=1

c2,k < 0 while R1 −
j∑

k=1

c1,k ≥ 0 (12)

then I2 should concede immediately.

Note that it is clear that at most one of (11) and (12) can hold.

Proof The first individual to run out of resources has reached a concession point. Assume
that it is individual I2. As the game is an unblocked game, individual I1 has not yet reached
a block or a point of concession by inability. Working backwards, there is no earlier point of
concession by unprofitability.
Indeed, once B2, j = 0, then A1, j = V1 > 0. Since there is no block, V1 > c1, j and so
B1, j = V1 − c1, j > 0, i.e. it is not a point of concession by unprofitability for I1. Also,
A2, j−1 = B2, j = 0 and thus B2, j−1 = 0 and so on. Thus, I2 reaches a first concession point,
and must thus concede before making the first investment by Theorem 1. 
�

Theorem 3 In the unblocked game, if conditions R1 andR2 hold, but at least one of condition
P1 and P2 does not, then at the start of the contest, the expected reward of remaining in the
contest is non-positive, conditional on the other player not conceding, for at least one player.
Moreover, the player for which this expected payoff becomes positive last should concede
immediately.
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Proof Suppose that T is even, and thus J1 = J2 = T/2. We let J = J1. Then we have

B2,J = max(0, a2V2 − c2,J ). (13)

Assuming that A2,J > 0 we then obtain

B1,J = max(0, a1V1 − c1,J ). (14)

Supposing that, working backwards, the first time that the expected future reward to either
individual becomes negative is for I1 at the point where it would make its j th investment.
Sequential application of (3)–(5) yields

B2, j = max

⎛

⎝0, a2V2 −
J∑

k= j

c2,k

⎞

⎠ > 0, (15)

B1, j = max

⎛

⎝0, a1V1 −
J∑

k= j

c1,k

⎞

⎠ = 0. (16)

This means that I1 should concede at stage j , which then yields A2, j−1 = V2 − c2, j−1 > 0
because there are no blocks. Working then follows that for Theorem 1, and so I1 should
concede at the very start of the game. Working is similar whether T is odd, or if I2’s future
expected reward becomes negative first. 
�

We note that here the individual which would make large investments towards the end
of the contest is the one that has to concede. Thus an individual that would make large
investments at the beginning of the contest might never have to make them, as its opponent
concedes immediately. We revisit this idea in Sect. 5.

Theorem 4 If conditions R1, R2 and P1, P2 hold, then each player has positive expected
future reward at the start of the contest no matter what the other player does, so both should
continue to the end of the contest.

Proof Suppose again that T is even and thus J1 = J2 = T/2. We let J = J1. Then we have

B2,J = a2V2 − c2,J > 0, (17)

B1,J = a1V1 − c1,J > 0. (18)

Sequential application of (3)–(5) yields

B2, j = a2V2 −
J∑

k= j

c2,k > 0, (19)

B1, j = a1V1 −
J∑

k= j

c1,k > 0. (20)

Since ai Vi ≥ Ci = ∑J
k=1 ci,k , both individuals should clearly invest at every stage. A similar

argument holds for odd T . 
�
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4 A Variable Stopping Time

Now suppose that T follows a random distribution. In particular, we shall assume that con-
ditional upon not having stopped prior to this point, the probability that the game stops after
the j th investment of Ii is γi, j .

This leads to a modification of Eqs. (3)–(5) into

Bi, j =

⎧
⎪⎨

⎪⎩

0, if Ri < Ci, j ,

−ci, j + γi, j ai Vi + (1 − γi, j )Ai, j , if Ri ≥ Ci, j and γi, j ai Vi + (1 − γi, j )Ai, j > ci, j ,

0, otherwise;
(21)

A1, j =
{
V1 if B2, j = 0 and

(1 − γ2, j )B1, j+1 + γ2, j a1V1 otherwise;
(22)

A2, j =
{
V2 if B1, j+1 = 0 and

(1 − γ1, j+1)B2, j+1 + γ1, j+1a2V2 otherwise.
(23)

4.1 Bounded Games

There are a number of ways in which a contest can have a clear endpoint, and we describe
each of these below. In these cases, we can work backwards, as usual.

(1) If there is a first block at time Tb (i.e. no block at time T < Tb), then, as we have seen in
Sect. 3.1, this is equivalent to a game with a fixed endpoint T = Tb and (a1, a2) = (0, 1)
or (1,0), and we analyse the game following the method from Sect. 3. We note that in this
case theoretically the game could continue indefinitely, if a player mistakenly invests at
a block, but optimal play leads to termination of the game.

(2) If there is at least one γi, j which takes value 1, then T is bounded above. If γI,J is the
earliest such γ , then we have a fixed endpoint at T = 2J + I − 2.

(3) If Ri is finite for i = 1, 2, then therewill be a pointwhen one playermust concede (assum-
ing that the contest reaches this point), so the future values at the point of concession will
either be (V1, 0) or (0, V2).

If there are both finite resources and T is bounded above, the earliest such occurrence deter-
mines which of the cases 2) and 3) occurs.

We thus have the following procedure for determining the optimal strategy.
Working backwards, as identified by 1–3) above,wefind the expected future reward following
Eqs. (21), (22) and (23). If this is ever 0, then an individualwould concede, and so the expected
future values when concession occurs will be either (V1, 0) or (0, V2). We can thus find the
expected future rewards for all positions in the game. Now, working forwards, individuals
should play until they reach the first value of Ai, j which takes value no greater than 0, at
which point the individual in question should concede.

We note that Theorems 2, 3 and 4 follow from a special case of the above procedure, since
as γi, j = 0 for all positions in the game, if ever A1, j <= 0, then this leads to A2,k > 0 and
A1,k <= 0 for k < j , and a similar result for A2, j .

The results in this section thus follow a similar pattern to those in Sect. 3, and are strict
NE/ESSs or NEs under the same conditions (the former if equalities of conditions can be
ruled out, the latter otherwise). The bound on the game means that there is a fixed end point
which we can work back from, and games will be divided into the same three categories;
those where I1 concedes, those where I2 concedes, and those where both players invest
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step 1: I1 chooses

I1 gets 0
I2 gets 4

concedes

step 2: I2 chooses

continues

I1 gets 3
I2 gets 0

concedes

Nature

continues

I1 gets 1
I2 gets 1

stop (γ)

step 3: I1 chooses

continue (1 − γ)

I1 gets −1
I2 gets 3

concedes

Stopping point

continues

I1 gets −2
I2 gets 1

Fig. 2 A scheme of the game with T = 3, V1 = V2 = 4, a1(= a2) = 1/2, c1,1 = c2,1 = 1, c1,2 =
3, γ1,1 = 0, γ2,1 = γ . Note that at step 3 I1 would gain −2 by investing, and −1 by conceding, so it should
concede. This means that the expected rewards after I2 invests at step 2 are 2γ − 1 and 3 − 2γ , respectively.
The latter is clearly greater than 0, so that I2 should invest at step 2. Thus I1 should invest at step 1 if and
only if 2γ − 1 > 0, i.e. γ > 1/2. Thus I1 should initially invest if the chance of the contest stopping at this
intermediate point is sufficiently large, and if the subsequent decision is reached, it should concede

until the end of the contest. In Sect. 3, however, the fact that games could only end by the
concession of one of the players led to a deterministic process that meant that if Ii would
concede, it would do so at the start of the contest. Here this is not so, because individuals
doomed to eventually concede can hope that chance intervenes and ends the contest before
that concession is necessary. We can see this in the example in Fig. 2.

4.2 Unbounded Contests with Infinite Resources

Now we shall assume that γi, j < 1 for all i, j , so that T has no upper bound, and that
resources are infinite. This case with unbounded contests is more complicated, as the game
could potentially carry on indefinitely. Thus our game becomes an infinite extensive form
game and the results from [10] do not extend to this case. In particular we shall make no
claim about ESSs here (or in later sections where there are an infinite number of available
strategies), and we claim only that solutions are Nash equilibria.

We shall only consider the case where:

1. γi, j is constant, so that γi, j = γ for all i, j (this corresponds to T having a geometric
distribution with parameter γ ) and



Dyn Games Appl

2. costs of investments are constant for each individual, so that ci, j = ci for all j .

As we shall see this can present us with significant complications, and without such
assumptions it is hard to make progress in any generality.

In this case, Eqs. (21)–(23) become

Bi, j = max
(
0,−ci + γ ai Vi + (1 − γ )Ai, j

)
(24)

A1, j =
{
V1 if B2, j = 0 and

(1 − γ )B1, j+1 + γ a1V1 otherwise;
(25)

A2, j =
{
V2 if B1, j+1 = 0 and

(1 − γ )B2, j+1 + γ a2V2 otherwise.
(26)

At any given step 2 j − 1, I1 should concede whenever

c1 > γ a1V1 + (1 − γ )Ai, j . (27)

Similarly, I2 should concede whenever

c2 > (1 − γ )a2V2 + (1 − γ )A2, j . (28)

If (27) holds, and I1 concedes at step 2 j − 1, this means that A2, j = V2, and thus assuming
V2 > c2 as above, I2 should invest at time 2 j −2. This in turn means that A1, j−1 = 0. Hence
(28) holds at step 2 j − 3 and consequently I1 should never invest.

Alternatively, if (27) does not hold, and (28) holds, I2 does not invest (while I1 would
invest if given a chance). This means that A1, j = V1 and thus I1 should invest at time 2 j −1.
This yields A2, j−1 = 0 and hence that I2 should never invest.

If (27) and (28) do not hold, then I1(I2) should invest at step 2 j − 1(2 j). Expressing the
reward for Ti at its j th step in terms of that at its j + 1st step yields

Bi, j = −ci + (γ + (1 − γ )γ )ai Vi + (1 − γ )2Bi, j+1. (29)

We shall now use the above equations to find the solution to our game under four distinct
cases. We note that Case 4 has close links to the classical dollar auction of [43], and we
discuss this is Sect. 6.

4.2.1 Case 1

Firstly let us assume that

c1 < (2 − γ )γ a1V1, (30)

c2 < (2 − γ )γ a2V2. (31)

Then, (27) and (28) never hold and thus individuals always invest. Here, the inclusion of the
uncertainty of ending makes the individuals continue rather than concede. The formula (29)
is a recurrence relation of the type

x j = αx j+1 + β (32)

with 0 < α < 1 and β > 0. Denoting x∗ = β/(1 − α) we obtain

x j+1 − x∗ = 1

α
(x j − x∗) =

(
1

α

)( j+1)

(x0 − x∗). (33)
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As 1/α > 1, then it is clear that unless x j = x∗ for all j , then |x j | → ∞ as j → ∞. But
the latter clearly cannot occur, as from (24) x j is bounded, so we must have that x j = x∗ for
all j . Consequently, the expected payoffs for Ii are given by

Bi, j =
(

ai Vi − ci
1 − (1 − γ )2

)

. (34)

4.2.2 Case 2

Now, assume that

c1 ≥ (2 − γ )γ a1V1, (35)

c2 < (2 − γ )γ a2V2. (36)

Thus, I2 should always invest, but perhaps I1 should not invest. If that is the case, then I1
should not invest at the beginning; whereas if I1 invests at the beginning it should always
invest. If I1 always invests, it obtains the expected reward

(

a1V1 − c1
1 − (1 − γ )2

)

= (2 − γ )γ a1V1 − c1
(2 − γ )γ

≤ 0. (37)

Consequently, I1 should concede at the beginning.

4.2.3 Case 3

Similarly, if we assume that

c1 < (2 − γ )γ a1V1, (38)

c2 ≥ (2 − γ )γ a2V2. (39)

then I2 will have to concede at the beginning.

4.2.4 Case 4

It remains to investigate the case of

c1 ≥ (2 − γ )γ a1V1, (40)

c2 ≥ (2 − γ )γ a2V2. (41)

Suppose that I2 does not concede. Then since inequality (40) holds, following Case 2 we
obtain the same expected reward as in inequality (37). Thus I1 should concede. Moreover,
if I1 concedes, it will clearly be best for I2 not to concede. Now suppose that I1 does not
concede. Then since inequality (41) holds, following Case 3 we obtain the expected reward
as in the equivalent inequality to (37). Thus I2 should concede. Similarly, if I2 concedes, it
will clearly be best for I1 not to concede.

So it is clear that one of the individuals must concede, but which should be the first to do
so? In the biological case that underlies this paper, this can be solved using the idea of roles
as previously discussed. If I1 chooses to (always) invest and I2 to concede immediately, the
strategy S∞,1, then this is a strict NE. Similarly S1,∞, I1 conceding immediately with I2
investing conditional upon I1 investing, is also a strict NE.
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5 Individuals Can Choose How to Allocate Their Investments

In this game we again consider fixed total costsCi , but further develop the model by allowing
individuals to choose how to split their investment, i.e. to choose ci, j so that

∑
ci, j = Ci .

Here we set no maximum number of moves T, though there will be an effective maximum
as we see below. Should the players pay a little or a large amount initially?

At first sight it would appear that any individual should simply either concede, or pay the
smallest cost possible to be able to remain in the contest.What benefit is there in payingmore?
As we shall see below (see Theorem 6), however, there are situations where an individual
should pay more than this minimum value.

We again assume that individuals have to invest at least some minimal ε > 0, unless they
have already invested more than Ci − ε, in which case they have to simply complete their
investment up to Ci . Specifically, ci, j have to satisfy

ci, j ≥ min{ε,Ci − Ci, j−1}, (42)

for some ε > 0 and all i, j . Here the length of the game tree is finite, but as any investment
can be chosen, there are an infinite number of choices at most vertices, and so we again make
no claim about evolutionary stability.

For a moment, assume Ri < Ci , for some i = 1, 2, i.e. at least one individual, namely Ii ,
does not have resources to invest to the end of the game. So the end of the game will not be
reached and thus both individuals should needs to invest as little as possible, i.e. at any point
they should either give up or will have to invest ε. This turns the game into the game from
Sect. 3 and we can solve it through the methods presented there.

If Ri < Ci , then Ii cannot make more than ji = int(Ri/ε) investments. Firstly assume
that Ri < Ci for i = 1, 2. If j1 ≤ j2 then I1 must concede immediately, otherwise I2
must concede immediately. If Ri < Ci for precisely one of i = 1, 2, following arguments
analogous to those of Theorem 2, the individual with insufficient resources must concede
immediately.

So, for the rest of the section, we will assume that

Ri ≥ Ci , i = 1, 2, (43)

and we will also consider only strategies for which ci, j < Vi . This way, we have a game
without blocks.

Theorem 5 a) If ai Vi ≤ Ci holds for exactly one individual, then that individual must
concede at the start of the contest. If I2 will be giving up, I1 will invest c1,1 = ε.

b) If (9) and (10) both hold, then both individuals invest until the end of the contest.

Proof a) follows from Theorem 3, and b) follows from Theorem 4. 
�

Theorem 6 Assume ai Vi ≤ Ci for both i . Let ji be such that

Ci − ji Vi < ai Vi ≤ Ci − ( ji − 1)Vi i = 1, 2. (44)

Then, I1 should concede immediately if and only if j1 > j2. Otherwise I2 should concede
immediately. More specifically, if j1 < j2, then I1 should invest c1,1 = ε and I2 should
concede immediately. If j1 = j2, then I1 invests (slightly more than) C1 − ( j1 −1)V1 −a1V1
which may be close to V1, and then I2 will concede immediately.
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Proof Assume that, during its first j moves, an individual Ii has already invested Ci, j =
∑ j

k=1 ci, j such that

Ci, j > Ci − ai Vi . (45)

Then, no matter what the other individual does, Ii now has to invest Ci − Ci, j < ai Vi in
order to get to the end of the contest and at the end it expects to win either ai Vi (when the
other individual continues to the end of the contest) or Vi (if the other individual gives up
before the end of the contest). In other words, when the condition (45) is satisfied for an
individual Ii after j moves, then the individual Ii will continue to the end of the contest since
the expected future reward is positive.

Also, note that if (45) is not satisfied for an individual Ii , then it has to invest at least ai Vi
to get to the end of the contest.

Now, assume that for some j ,

C1, j > C1 − a1V1, (46)

C2, j−1 ≤ C2 − a2V2, (47)

and I2 is currently deciding whether and how much to invest. It follows that (a) I1 will stay
in the contest to its end, (b) I2 would have to invest at least a2V2 in order to stay to the end
of the contest, and (c) I2’s expected reward at the end of the contest is a2V2, i.e. I2’s future
reward at the j th decision is not positive. Consequently, I2 has to give up. Similarly, if

C1, j ≤ C1 − a1V1, (48)

C2, j > C2 − a2V2, (49)

and I1 is currently deciding whether and how much to invest, then I1 should give up.
Note that (44) means that Ii can achieve (45) in ji but not in ji − 1 investments (each

investment would have to be almost Vi ). So, if j1 > j2, then I2 can get to (45) faster than
I1 and at that point I1 will be forced to concede, following an inductive argument analogous
to that from the proof of Theorem 3. It follows that I1 should concede at the beginning.
Consequently, I2 will never have to invest over V2 unless I1 invests over V1 first. Since I1 is
not going to do that, I1 should concede at the beginning of the game.

By a similar argument, if j1 ≤ j2, then I1 can get to (45) faster than I2 and at that point I2
should concede. Thus, I2 should concede at the beginning. It remains to identify how much
I1 should invest before I2 gives up. Note that after an investment of c1,1 by I1, the game can
be seen as the game with changed roles, I2 starts first and has to invest C2, I1 plays second
and has to invest C1 − c1,1. Consequently, if j1 < j2, I1 just needs to invest ε (because even
after I2 invests V2 in the first round, I1 can get to (45) faster than I2). However, when j1 = j2,
then I1 needs to invest just over C1 − ( j1 − 1)V1 − a1V1, to make sure that when I2 invests
close to V2, I1 still gets to (45) faster then I2. 
�
Remark 1 If, within the setting of Theorem 6, j1 = j2, the exact amount of how much I1
should invest at the beginning may vary. If ai = 1/2,Ci ≈ Vi , then I1 needs to invest a bit
over V1/2. When ai = 1/2 and Ci = 3/2 ∗ Vi − δ (for some small δ > 0), then I1 needs to
invest almost V1, but when Ci = 3/2 ∗ Vi + δ, then I1 just needs to invest “a little bit” over
δ.

Remark 2 Consider the case when ai Vi ≤ Ci for i = 1, 2, C1 = C2, a1 = a2 = 1/2 and
V1 > V2. Then the resource is more valuable to individual I1 and according to Theorem 6,
I2 should concede immediately. Similarly, if ai Vi ≤ Ci for i = 1, 2, C1 = C2, V1 = V2
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and a1 > a2, then I1 is more likely to win the resource at the end of the game than I2 and
according to Theorem 6, I2 should concede immediately.

Remark 3 The advantage of a significant early investment can be clearly seen from the
following example. Suppose that a1 = a2 = 1/2,C1 = 0.7V,C2 = 0.6V, ε = 0.11V .

The expected reward for reaching the end of the contest is V/2. Thus any individual whose
remaining investment falls below V/2 should continue to invest rather than concede. Further,
if an individual to choose has a remaining investment of greater than V/2 whilst its opponent
has less than this, it knows its opponent will continue to the end, and so must concede.

Thus how should our first playing individual above proceed?

– If it concedes, it of course receives 0.
– If it invests less than 0.2V it will still have more than 0.5V to invest. Thus player 2

should keep investing, its minimum investment would take it within 0.5V so the first
player would then have to concede. Thus this choice yields player 1 a negative return.

– If it invests more than 0.2V , it will then have remaining investment under 0.5V , so that
player 2 will then have to concede, thus the expected return for player 1 will be V minus
this initial investment.

Thus the best investment level is “just over” 0.2V , i.e. almost twice the minimal required
level ε.

6 The Dollar Auction

The classical dollar auction was introduced by Shubik [43]. In this game a number of players
are invited by an auctioneer to bid for a dollar. In Shubik’s game there were potentially many
players, and any bids were allowed (although these had to be in a multiple of 5 cents). The
person who won the auction got the dollar minus the value of their winning bid, but crucially
the second highest bidder also had to pay the value of their own bid. If bids jump in small
amounts, at any stage a player has the potential of winning the “large” prize of a dollar for
a small extra outlay. If a player was convinced that their next bid would be the last, then
any bid up to (but not including) a dollar is worthwhile. An initial dollar bid is clearly a
bad idea, as 0 is obtained if no other player bids, and less than 0 otherwise (this would be a
non-optimal further bid, but we can assume this will happen with a very small probability,
using the classical idea of the “trembling hand” [36,40]). If any player is convinced that their
next bid would be the last, then any bid up to (but not including) a dollar is worthwhile;
however, for a player that is currently second highest bidder, any bid, including a bid of up
to (but not including) a dollar above their previous bid is worthwhile (if their bid will be the
last one). If a player was convinced that some other player will keep bidding then it is not
worth bidding themselves. There seems no sensible solution to such a game, at first sight.

We shall consider a variant of the dollar auction, where there are only two players, who
bid alternately (with one nominated to start), and are only allowed to raise the previous bid by
one cent (or bid one cent if it is the start of the auction). We thus have the game as described
in Sect. 4 with c1,1 = 1, ci, j = 2 otherwise, γi, j = 0, V1 = V2 = 100.We shall first consider
two cases a) with infinite resources, Ri = ∞ for i = 1, 2, and b) with finite resources. Then,
we will consider the dollar auction with no memory.
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6.1 A Dollar Auction with Full Memory and Infinite Resource

We start with the infinite resources case; this corresponds to the original idea from [43]. As
we have discussed previously, for a biological population, we can consider this as a game
with two distinct roles, where a strategy is a combination of what to do as the first player,
and what to do as the second.
The strategy S j1, j2 represents invest in the first j1 − 1 ( j2 − 1) rounds and then concede as
player I1 (I2). It is clear that S1, j2 is a Nash equilibrium for any strategy j2 where j2 > 50 and
S j1,1 is a Nash equilibrium for any j1 where j1 > 51, since in each case one player concedes
immediately, but would need to invest over a dollar to “win” if it changed its strategy. Within
a population comprised of individuals of this type, in Shubik’s terminology we would have
a (credible) threat, which is enough to force an opponent to concede. This is very similar to
the situation from Theorem 4, Sect. 4.2.4. See also [12] for a generalisation of this scenario.

6.2 A Dollar Auction with Full Memory and Finite Resource

Now consider the case with finite resources, Ri < ∞ for i = 1, 2.
Clearly here the game cannot carry on indefinitely and must be terminated by the conces-

sion of one of the players. We can reformulate this game in the form of a game with a fixed
contest end from Sect. 3, but where the end time is such that Ri < Ci for i = 1, 2, which can
never be reached. Thus, following Theorem 2, the first player to run out of resources must
concede immediately (and since we have applied Theorem 2, this is a strict NE/ESS). Unless
both players have identical wealth, this will be the poorer of the two players. In the unlikely
case that the players are equally rich, the first to play must concede immediately if they
possess an even number of cents, otherwise the second to play must concede immediately.
Note that for any two players with given wealth, swapping their positions in the game does
not affect the result, unless their wealth is the same; this thus emphasises the symmetry of
the game. As in the previous section, see [12] for a generalisation of this scenario.

6.3 A Dollar Auction with No Memory

The idea of the original dollar auction was that the players kept returning to the identical
situation but with positions reversed. We interpret this as a game with no memory, where a
player sees only the choice ahead of them. Thus the roles I1 and I2 can no longer be distin-
guished, and we obtain a different kind of solution. Here we do not have a truly symmetric
game, and so the result of [10] cannot be applied, and so again we seek Nash equilibria only.
In this case there are effectively three positions, two of which require the player to make a
decision:

1. S: A player (either I1 or I2 selected at random) is about to start the game by potentially
investing a cent, or conceding;

2. D: A player (either I1 or I2) is about to make an investment after the game has started,
which must be of two cents, given it must go from one down to one up, or to concede;

3. U: A player (either I1 or I2) is a cent up, andwaiting to see if its opponent keeps investing.

We denote the expected future rewards for a player Ii in the three positions as Bi,S, Bi,D and
Bi,U , respectively, measured in cents.

We need to consider the best choice for a player in either of the two possible situations that
it can make a choice, namely in the initial position S or in the D position, when considering
the possible choices of the other player from the same positions. An individual’s optimal
choices depend only upon the choices that will be made subsequently, and so clearly they
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cannot depend upon what the other player might do in the initial position. Thus they depend
only upon the choice of the other player in position D. Without loss of generality, we can
thus restrict ourselves to considering the two choices of I1 against the possible choice of I2.

Now, assume that player I2 employs a strategy p2,D , i.e. concedes at position D with
probability p2,D . We are looking for an optimal response of player I1, i.e. we are looking for
optimal values of probabilities to concede at stage S, p1,S , and at stage D, p1,D .

Assume that at S a player I1 concedes with probability p1,S . If it invests, it is in the U
position, so that

B1,S = p1,S0 + (1 − p1,S)(B1,U − 1). (50)

Similarly at D a player Ii concedes with probability pi,D . If they invest they are again in the
U position, so that

B1,D = p1,D0 + (1 − p1,D)(B1,U − 2). (51)

At U players wait upon the decision of the other player, and it either receives 100 if the other
one concedes, or it moves to D if the other player continues. Thus,

B1,U = p2,D100 + (1 − p2,D)B1,D . (52)

First, observe that if we assume B1,U ≤ 2, we get, by (51), B1,D = 0. Thus, by (52),
B1,U = 100p2,D . Consequently p2,D ≤ 1

50 .
Similarly, if we assume that B1,U ≥ 2, we get, by (51), B1,D = B1,U − 2 and thus, by (52),
B1,U = 102 − 2

p2,D
. Consequently p2,D ≥ 1

50 .
Also, it follows from (51) that whenever B1,U < 2, it is optimal to pick p1,D = 1 (i.e.

always concede), (b) whenever B1,U > 2, it is optimal to pick p1,D = 0 (i.e. always invest),
and (c) if B1,U = 2, then any value of p1,D yields B1,D = 0 (and, from (50), it is optimal to
have p1,S = 0).

Putting the above observations together, we find that

– if p2,D < 1
50 , then the optimal response is p1,D = 1,

– if p2,D > 1
50 , then the optimal response is p1,D = 0,

– if p2,D = 1
50 , then the optimal response is any value for p1,D .

Consequently, pD(= p1,D = p2,D) = 1
50 is the unique Nash equilibrium value. This then

gives B1,U = 2 and from (50) it follows that pS = 1.
Thus an individual should invest at the first step and, then, invest at each subsequent

step with probability 49/50. Thus after the first step, each individual concedes following a
geometric distribution with parameter p = 1/50. Note that this solution is similar to that of
the war of attrition [2,3,29] where the solution follows an exponential distribution (in each
case the stopping time follows a distribution with the lack of memory property, discrete in
our case, continuous for the war of attrition, with a mean that yields an expected reward of
zero).

7 Discussion

7.1 Our Model and its Conclusions

In this paper we have considered an extension to the modelling of evolutionary contests
where contests follow a sequence of decisions, rather that a single instantaneous decision
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made by each protagonist. This is a natural extension of previous models such as the Hawk–
Dove game or the owner–intruder game, which can be regarded as overly simplistic, and not
allowing for dynamic interaction between the contestants.

An important conclusion of ourwork is that, undermany circumstances, individuals should
fight to the end of the contest, or one should concede immediately. These are thus no more
complex than the solutions of the original simple games from, e.g. [29], and provides in our
view a strong justification for employing these simple models as approximations of more
complex situations.

The exception to the above in our model is when the contest lasts a variable time, governed
by random events as well as by strategic decisions of the players, and so an individual may
continue to invest in the hope of a short contest, but when it becomes clear that the contest
will not be stopped by some early random occurrence and be protracted, it may then concede.
We note that in the model ofMesterton-Gibbons et al. [35] there was also a similar possibility
of random events terminating the contest. In their model, if termination probability was low,
then the classical Bourgeois solution to the owner–intruder model where the intruder always
concedes was stable, but other solutions were possible for higher termination probabilities.

An interesting prediction is that if individuals have a choice of how much they invest at a
given stage, they should often choose to invest heavily early on, even if this does not imme-
diately help them gain the reward, but means that their remaining investment is sufficiently
small that it demonstrates to their opponent that they will fight to the end of the contest, thus
forcing that opponent to concede. This at first sight appears to fall foul of the concorde fallacy
[46], namely the error of making decisions based upon past already lost investments, when
only future returns should matter. However, it works in this case precisely because there is a
direct correlation between past investments and required future investments, and choices are
made by both players based upon the future values rather than the past ones.

The one example in our paper where there was a stochastic solution was in a special
case of the classical dollar auction game discussed in [43], see also [9,15,24,37] and for an
overview see [44]. This is a game in economics with sequential investment which occurs in
a similar way to our model, and we obtain the stochastic solution by making the individuals
have no memories of past events, introduced as being in the spirit of the original problem.
As soon as individuals remember the sequence of bids, with a fixed starting point, then the
familiar solution of one individual conceding immediately appears.

7.2 Related Models

The main differences between our model and previous works can be summarised as follows.
Firstly we introduce sequential games to a repeated evolutionary game scenario. This is
different to standard time-based evolutionary contests such as the war of attrition in either
continuous or discrete time [2,3,7] (also see Axelrod [1] and the vast-related literature for
discrete simultaneous games more generally). Sequential evolutionary games with repeated
stages have been relatively underexplored (but see Cressman [10] for important general
theoretical work), although they aremore commonwhen each player has just a single decision
[21]. These models have been extended to consider a whole population where there are many
decisions, carried out simultaneously, but where only a subset of the individuals get to make
a decision at any given time point, whether any given individual gets to make the choice
depends upon its previous play (see e.g. [33]). Such sequential games are more common in
classical game theory, for example with the dollar auction [43], which is the closest example
to the type of game that we have considered. Below we explore some of the models most
similar to ours.
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The extended contests considered in our model are of a particular kind, namely contests
where each individual has a set of potential exit points, and at each point it decides whether
to continue, making a suitable investment, or concede the resource to its opponent. This is
thus reminiscent of the classical war of attrition [2,3], but with discrete stages which are
sequential, and so our game does not have this aspect of symmetry of the war of attrition.
This leads to a completely different character of solution, where the war of attrition has a
probability density function over the stopping times, our individuals either concede with
probability 1 or do not concede (although in the contests with an uncertain finish time, the
time of the contest follows a probability distribution due to a natural randomcontest duration).
We note that when other asymmetries, e.g. of reward values or costs, or even of perceived
role [18,31] are considered, mixed strategies similarly disappear (they are only maintained
through, for example, uncertainty of role).

Whilst simultaneous choices are perhaps natural for the passive waiting game that is
assumed in the war of attrition, more active contests might be better modelled using a sequen-
tial game as we consider here. We would contend that in many circumstances, such contests
would indeed involve a sequence of moves and counter moves, and so often this asymmetry
will be more representative of the real situation. This could happen in the fast timescale of
actual fights, such as those involved in food stealing [5,6,23], but can also be seen in con-
tests over a longer timescale, for example in the classical owner intruder type games, where
the dispossessed animal may subsequently rechallenge the resident; in these cases it is the
previous loser that has the first move [35]. An alternative type of contest where sequential
moves would also be appropriate is the modelling of brood care and desertion, as modelled
in Houston and McNamara [21]. Maynard Smith and Harper [30] argued that the standard
constant cost situation of the war of attrition is rarely satisfied in biology, and more complex
strategies than the simple memoryless “sit and wait” type as in the war of attrition would be
more appropriate. This provides some justification for our type of model, where a sequence
of distinct choices are made. Note that such complex animals interactions are demonstrated
in Hack [17], who considers many tactics of crickets in an “active” war of attrition type fight.
Even the classical real example of the war of attrition, between dung flies [38], involved an
active contest between the participants, rather than mere waiting.

In the economic literature, the concept of an all pay auction is discussed, which is equiv-
alent to the war of attrition (the dollar auction with two players is an all pay auction). Dekel
et al. [12] considered an all pay auction with alternating moves, which featured a minimum
investment level of ε, as in our game. They considered different values of the reward V1 and
V2, including versions with finite and infinite budgets. This paper is actually a generalization
of our game in Sects. 6.1 and 6.2 (our simplified versions were actually relatively straightfor-
ward, so we only discussed these briefly). Their work includes results which have similarities
to our Theorem 6 for this different case. An alternative model of an all pay auction/ war of
attrition is given inHörner and Sahuguet [20], who consider a gamewith incomplete informa-
tion where individuals can choose effort levels, and need to match efforts in sequence. Their
model yields similar results to some of ours; one player immediately concedes, so that the
stronger player wins at no cost. Note that this is also similar to the standard asymmetric war
of attrition which this can be considered a version of, as we have alluded to above (e.g. see
[18]). The original modelling work on choosing resource levels to invest in a contest was
carried out by Tullock [45] (see [6] for a biological model of this type).

Maskin and Tirole [28] consider an alternating move scenario, again of dollar auction
type; in particular related to the dollar auction with no memory. They consider a specific
competition game, where payoffs are similar to as in a Cournot competition game (see also
[14]). The alternating move system of the above games (and ours) are a special case of that
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in Libich and Stehlík [26], who consider a specific game (the “time inconsistency game”)
but in a general move setting with a series of move points, not necessary alternating between
the players (see also [25,27]).

7.3 Future Work

We note, finally, that a number of other generalisations of the single stage game are possible,
not just a sequence of choices of “continue to invest or concede”. It may be that individuals
can adjust their level of aggression at any time in a contest, and this may directly affect the
time of the end of the contest, and also the costs of both players to remain in the contest in
terms of energy usage or risk of injury. More generally individuals might have a range of
strategies and they might employ any given sequence of them, as in iterated games such as
the iterated prisoner’s dilemma [1] or in the ownership games of [34,35], with some reward
received at every potential decision point. The game we have considered here is thus just one
example (albeit, we would argue, an important one) of a game of this type, and there are a
number of other interesting cases which can and should be considered as the subject of future
research.
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