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Abstract Individuals of many species spend a large portion
of their lives within groups of conspecifics. Within such
groups, there can be considerable diversity in size and other
traits, with some, perhaps larger or stronger, animals laying
claim to a greater than fair share of available resources. We
use the word quality as a single measure of individual ani-
mal phenotypes within such a group and develop a model
of resource division through contests between animals of
differing quality. We investigated the effect of varying
environmental factors on the level of aggressiveness used
in such contests and the division of resources among the
group. A numerical example shows that maximum discrimi-
nations between individuals on the basis of quality occur for
medium-sized costs of aggressive encounters, but resources
are divided more equitably at either extreme, when costs
are either high or low.

Key words Escalation - Fighting cost - Fixed reward - Evo-
lutionarily stable strategy - Dominance hierarchy

Introduction

Within and between populations, there is great diversity in
the form and intensity of aggressive conflicts between indi-
viduals over resources (Hand 1986). One particular puzzle
is that apparently similar resource items can induce contests
of very different intensity. The reasons behind this observa-
tion are two fold. First, it does not make sense for an indi-
vidual always to fight for so long and hard as it possibly can,
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because there will be a cost to fighting (e.g., time, energy, or
risk of injury) that will increase with the extent or intensity
of a fight. Hence, individuals have an optimal level of in-
vestment in a contest, which will often be less than their
physiological maximum. An important feature of the prob-
lem is that a contest occurs between two individuals, and the
success of the strategy (in terms of investment in the con-
test) of one depends on the strategy played by the other. As
such, this is a perfect situation for the application of game
theory (see Dugatkin and Reeve 1998 for an overview of
applications of game theory to biological questions). The
situation becomes particularly interesting when individuals
differ from each other in some respect. Sometimes, the
situation is especially complicated because individuals do
not have knowledge of the intrinsic qualities of their oppo-
nent and must try to assess these during a contest. In other
circumstances, individuals are able to gauge both their own
abilities and those of their opponent. Such situations may
occur when differences are easily detected (e.g., size) or
opponents have previous experience of each other. We
consider this latter case, in which individuals have perfect
knowledge of their opponents’ abilities.

A related problem is how resources are divided among a
group of animals. The spatial and temporal distribution of
resources affects the degree to which they can be monopo-
lized by a few dominant individuals and so may have an
important effect on the strategies adopted by individuals
(see Emlen and Oring 1977). Often such groups form domi-
nance hierarchies in which there is a priority order among
the individuals. How such dominance hierarchies are
formed was considered by Mesterton-Gibbons and
Dugatkin (1995) and Broom et al. (2000a,b). An important
series of papers, starting with that by Vehrencamp (1983)
and including those by Keller and Reeve (1994) and Reeve
and Keller (1996), considered the concept of reproductive
skew, which concerns the problem of how resources are
divided within a dominance hierarchy. In particular, those
authors suggested that dominant individuals grant subordi-
nates “stay and peace incentives” and limited mating rights,
to prevent them from either leaving the group or challeng-
ing for dominance.
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We consider a particularly simple situation in which each
contestant (independently) chooses between two strategies:
the cautious “dove” or aggressive “hawk” (defined below).
Such a situation for phenotypically different individuals
playing repeated hawk—dove games has been previously
investigated by Maynard Smith and Parker (1976), who
considered a hawk—dove contest between pairs of individu-
als, each of which has a 50% probability of taking one of
two phenotypes or roles (e.g., territory holder and invader),
such that the opponents always take opposite roles. We
extend their model in a number of ways: we remove the
limit on the number of different phenotypes in the popula-
tion, and we assume that the phenotype of an individual is a
fixed intrinsic property of the individual, rather than being
determined by coin-toss. This approach is generally realistic
for many phenotypic components, for example, size; if one
individual is bigger than another in one contest, it is likely to
remain so in future contests. Further, although Maynard
Smith and Parker assumed that contests in which both
individuals play dove are decided by the toss of another
unbiased coin, we retain this stochasticity but allow the coin
to be biased by the phenotypes of the two contestants. Last,
previous studies assumed that the full cost of an escalated
(hawk versus hawk) contest is paid by the loser with no cost
to the winner, whereas we consider that both may pay a
penalty for escalation, which may still be different for win-
ner and loser.

Our aim is to find the most general set of evolutionarily
stable strategies (ESSs) for individuals of all phenotypes in
contests with individuals of all phenotypes. In this simple
model, we assume that an individual’s strategy depends on
its own state and that of its opponent in a simple manner. In
every contest, each individual aims to maximize its payoff in
that contest with no expectation of the future, although it
may use knowledge of previous contests between the two to
do this. Thus, any complicated behavior based upon a se-
quence of games is prohibited, but if there is more than one
stable solution for the single game, history can influence
which solution is reached. We then use the strategies that
we have found to consider two questions. First, how are the
resources split between different individuals in a group? In
particular, we consider whether this split is equitable or
uneven. Second, we consider to what extent there is a clear
dominance relationship between individuals; we say that
individual A dominates B if and only if, in a contest be-
tween the two, A always plays hawk and B always plays
dove. We implicitly assume a large, well-mixed population,
and that any changes in the size of the population have no
bearing on the ESS. For a more general approach, which
integrates evolutionary and population dynamics, see Rand
et al. (1994).

The model

We consider a population of individuals that interact in a
series of contests, each over identical individual resource
items. Each contest occurs between two individuals. The

outcome of the contest depends on a number of factors.
One factor is chance; outcomes of contests are determined
stochastically, thus in the following we think in terms of
the long-term average outcome of a large number of con-
tests. Individuals can, however, influence the outcome of a
contest through the strategy they adopt in each contest.
Here we characterize strategy very simply; each player can
choose either to play aggressively (hawk) or defensively
(dove). When two individuals enter into a contest, both
select one or the other of these strategies. They do this
simultaneously, without knowledge of the strategy adopted
by the other contestant. We also assume that individuals can
differ in some univariate parameter that we call quality, the
value of which indicates an individual’s ability to compete
in both escalated contests when both individuals choose to
be aggressive and play hawk and nonescalated contests
when both play dove. When selecting the strategy to employ
in a given contest, each contestant can use knowledge of
both their own and their opponent’s quality. This study
considers how an evolutionarily stable method of strategy
selection depends on an individual’s quality, the quality of
the opponent, the value of the resource being contested,
and the cost of either winning or losing an escalated
contest.

Consider a contest between two individuals of intrinsic
qualities s and ¢, respectively. We assume that each contest
is over a resource item of value V, where V > 0. If both
individuals play dove then neither pays any cost and the
winner obtains reward V. We assume that the probability
of the player of quality ¢ winning against an opponent of
quality s is given by 0.5 + d(t,s). If one individual plays dove
and the other hawk, then the dove gets nothing and the
hawk gets the full prize (V). In the final case, where both
play hawk, then we again assume that the winner gets the
full prize (V); however, both winner and loser each incur
a cost of the extended contest: the winner pays aC and
the loser (1 — a)C: C > 0,0 = a = 0.5. We assume that the
probability of the player of quality ¢+ winning is given by
0.5 + r(t,s).

The rules of probability imply that the functions r(z,s)
and d(z,5) have the following properties:

r(r,t)=0, d(1,t)=0
—0.5=r(1,5)=0.5, —0.5=d(1,5)=0.5
r(s.t)=—r(t,s), d(s,t)=—d(t,s)
Let us define P as the strategy of playing hawk with prob-

ability P and dove with probability (1 — P) in any given
contest.

Evolutionarily stable strategies

When two players of intrinsic qualities s and ¢ meet in a
contest, we wish to specify the strategy that each should
adopt, such that if the whole population of s and ¢ individu-
als play these strategies, then no individual of either quality



would increase their expected gain from s versus ¢ contests
by switching to any other strategy. We define the expected
gain of an individual of quality ¢ playing strategy 7 against
an individual of quality s playing strategy S as E,[7.S].
Then

V-C

E,[T.S]= TS[ +r(ts)(V+(1- 2(1)C)} o
1

+T(1=S)V+(1-T)1- S)VG +d(1, s))

Consider a situation where the population of quality s
individuals is made up of 1 — ¢ P, players and €Q, players.
Similarly, the population of quality ¢ individuals is made up
of 1 — ¢ P, players and ¢ Q, players; where ¢ and ¢ are very
small. We assume that both Q, # P, and Q, # P,; effec-
tively, this assumption indicates that there is always a non-
zero rate of mutation producing new strategies throughout
all parts of the population. We wish to find the conditions
for which {P,,P,} is an evolutionarily stable pair: the condi-
tions for this are Eqs. A1-A4 in Appendix A.

Selten (1980) showed that such a system could not have
a mixed ESS unless s = t. If we assume that s = ¢, then this
reduces our problem to the standard hawk-dove model
with no asymmetry between competitors. The ESS for this

is well known:
| %
—, V=C
P=P=1C ()
1, v>C

Hence, we concentrate on the case where s # f, where
Selten has shown that the ESS values of P, and P, can only
be 0 or 1.

We now consider all the possible pairs of {P,,P,} in turn,
starting with the case where both individuals always play
hawk and we always have escalated contests: i.e., {P,,P,} =
{1,1}, which (using Eqgs. A6-AS8 from Appendix B) is an ESS
if and only if
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V-C
|’(’»S)|—W 3)

Substituting {0,0} into Eq. AS5a implies that V < 0, which is
not true. Hence, {0,0} is never an ESS.
Using Egs. A9 and A10, we find that {0,1} is an ESS if

c-Vv

2(V +(1-2a)C) ®

r(t, s) <

Similarly, we can show that the only condition for {P,,P,} =
{1,0} to be an ESS is

—(c-V)

r(t,s)> ®)

Note that the form of the ESS pair {P,,P,} depends not on
the absolute values of V and C independently, but on their

. . \%
ratio. For convenience, we define R =—.

In summary, there are two cases (see Fig. 1):

(i) 0<R<1

1-R 1
1 P =
L0} 2(R+1—2a)<r(t’s)<2
010l 2L < yey)
T SRT1-24) Y

IS S R
2(R+1-2a)

{R,R}, s=t

r(t,s)

log(R)

Fig. 1. a The ESS (evolutionarily stable strategy) pairs for different values of R and r(z,s) when a = 0.0. b As a, for three different values

of a
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(i) R=1
R-1 1
L0}, N cp(rs) ==
{10} 2(R+1-2q) r(ts) =3
1-R
L1, N
hpl= {11} 2(R+1—2a)<r(t’s)
1>£2 R_l
= @ @@
2(R+1-2a)
1 1-R
1 =< - r
(0.1}, =5 =rles) < 2(R+1-2a)

Every contest involves one (or both) of the players playing
pure hawk, and so the mechanism with which dove versus
dove contests are decided has no influence on the strategies
that individuals adopt, and optimal play is independent of
d(t,s). Hawk versus hawk contests occur only if two condi-
tions are satisfied; namely, the cost of losing is relatively
small (it must be less than the reward) and the two individu-
als are relatively evenly matched, although the range of
such opponents can become large if V' is much greater than
C. When there is a large difference between competitors,
the superior individual plays hawk and the inferior dove, so
that the superior individual is dominant over the other and
always receives the reward. If the cost is large, but the
individuals are not too dissimilar in ability, then both {1,0}
and {0,1} are ESSs. Which of the two alternate ESSs occurs
is a function of chance and the history of the system. Thus,
it is possible that the inferior individual will dominate the
superior one. This paradoxical ESS may occur when the
relative ability of two individuals have reversed over time;
i.e., a juvenile grows older and more able to compete with a
mature individual but continues to back down.

The value of « has little effect when R is high but acts to
increase the range of r(z,s) values where both ESS pairs
coexist. A nonzero value for a means that, for sufficiently
low R values, coexistence occurs for all possible values of
r(t,s). This relationship can be seen clearly from Fig. 1b,
because increasing a penalizes winners of contests; hence,
the more asymmetric the quality of the two individuals, the
more extreme the value of r(¢,s) will be, the more often the
better-quality competitor will win, and so the more it will be
“punished” by increasing «. Thus, increasing o will decrease
the likelihood of the better competitor playing hawk and
the poorer one playing dove being the only ESS.

An example of the function of r(i,s)

We now specify the exact form of r(z,s) of Mesterton-
Gibbons (1994):

exp(/l(t - s)) -1

_ 2
r(t,s) - exp(—/l(t - s)) ©)

2

where 4 is a positive constant. Note that r is not a function
of the two competitive abilities ¢ and s separately but only of
the difference between them. Where such a “quality” is an
arbitrary measure, then A is a mere scaling factor of no
importance. We envisage, however, that the quality in ques-
tion is some obvious physical trait (Mesterton-Gibbons
1994 used the example of horn size), so that A has a natural
meaning. The higher the value of 4, the more effectively any
advantage that one individual has over another in quality is
translated into success in contests. Hence, from the explana-
tion just given, it is no surprise that the larger 4 becomes,
the smaller the range of differences in quality that lead to
coexisting ESS pairs (Fig. 2).

When R = 1, if an individual of quality ¢ plays one
of quality s, then using Egs. A1l and A12 we have the
following:

It receives reward V if

s<t— (%)ln[—R ;_1 ;aza] =X (7)

It receives reward zero if

1 R+1-2a
s>t+| — |Inf —
A 2—2a

Otherwise, it receives reward

Y (8)

V-C

+ r(t,s)[V + (1 - 2a)C] 9)

Division of resources among a population of animals

Let us assume that the distribution of individual quality in a
population is normal with mean u and variance o”. Thus, an

log (R)

Fig. 2. The ESS pairs for different values of R and ¢t — s when a = 0.0
and A takes on three different values, when r(z,s) is defined by Eq. 6.
Between the two lines, both ESS pairs where one individual plays hawk
and the other dove coexist for log(R) < 0, and {1,1} is the only ESS
when log(R) > 0; outside these regions, the ESS pair always has the
higher-quality individual playing hawk and the poorer-quality indi-
vidual playing dove



individual of quality # receives reward V against a propor-
tion of opponents:

o554
o
where @ is the cumulative distribution function of the
standard normal distribution.
Using the function of Mesterton-Gibbons (1994) and the

Eqgs. A13-A15, the reward to an individual of quality ¢ is
evaluated as

(10)

aCP|

/N
Q

X_”j—(l—a)cq{y_”J

(11)

The parameters A and o only affect this reward through the
product Ao. The proportion of contests in which it is in-
volved, where one individual is not dominant, is

54
o o
The total proportion of nondominant contests is equal to

the probability that two random individuals have a quality
differing by less than

1 R+1-2a
=| = |In| 22 —=—2£=
p (1) n[ 2(1-a) }
If the qualities of the individuals are s and ¢, then
s — t ~ N[0, 2¢°]. Thus,

(12)

(13)

s A ()
(14)

which is the proportion of nondominant contests. This pro-
portion will be large if ¢ is small (if almost all individuals are
evenly matched) or if R is large (the reward is large relative
to the cost).

If R <1, then all contests are of the hawk—dove form and
for every pair of individuals one is dominant over the other.
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However, for individuals of sufficiently similar quality, it is
not obvious which is the dominant one. We assume that this
is decided by the historical relationship between the two; for
example, the elder may be dominant because of past en-
counters unless the two have never met, in which case the
“default” behavior may be for the larger to be dominant.
The superior individual is thus dominant in a proportion y
= 0.5 of cases. Note that, in general, y may depend on the
degree of difference.

If R > a, then, using Eqs. A16-A18, the payoff to an
individual of quality ¢ is shown to be as follows.
The payoff is V if

+ —
s=r— L RELZ 200 _ (15)
A 2R —2a
The payoff is yV if
x<s<t (16)

And, the payoffis (1 — y)Vif

1 (R+1—2a)
t<s<t+—In ——F|=y

17
A 2R—2a 1n

Thus, the overall reward to an individual of quality ¢ is

V@(x_”jqub[—t_”)—yvq{x_”j
o o o

. (18)
- YTH_- —u
+(1 y)V@( - ) (1 y)V@( - j
which simplifies to
X—u r—u
v{(l—y)qb( - )4—(2)}—1)@[7)
(19)

{22

If R = a, then no individual is clearly dominant over an-
other, so that the overall reward for an individual of quality
tis

V{yq{%‘j (1= V)(l “p[t o B}
_ v{@ —y)+(2r- 1)4’(%}

We shall now consider the division of resources for a
range of values of R. Without loss of generality, we can use
u=0,0"=1,and V = 1. In addition, we shall set & = 0, 1
= 0.1, and vy = 0.7. The reward to an individual of quality ¢
is given by Eqs. A19 and A20 (Fig. 3). From this figure, it is
clear that when R = 1, the high-quality individuals perform
a lot better than the lower-quality ones and that this advan-
tage is more extreme than for either R = 10 or R = 0.1 and

(20)



218

1.0 —
0.8 —
0.6 —

04 — ) »47"/,,/-‘ -

Expected payoff

0.2 —

Quality

Fig. 3. The expected payoff to individuals of differing quality in a
population where quality is N(0,1),a =0,A =1,V =1,and y = 0.1, for
different values of R. Alternate long and short dashes, R = 0; long
dashes, R = 0.1; solid line, R = 1; short dashes, R = 10; long dashes and
two short dashes, R = «©

considerably more extreme than in the asymptotic cases R
= 0 and R = . When R is large, there are many hawk
versus hawk contests so that the average payoff for the
population is lower than for low or medium-sized R (the
mean payoff for the population is 0.5 for both R = 0.1 and
R =1, and is = 0.4 for R = 10). However, it is the medium-
to higher-quality individuals that suffer from this; low-
quality individuals do better here than they do with low-
or medium-sized R. Note that when R = o« there are no
longer any costs to contests, yielding the most even distribu-
tion of resources.

Discussion

Two aspects of our results are worth discussion in a wider
context: the predicted strategies and the consequential
division of resources. A mixed strategy is one where an
individual’s probability of playing a given strategy in a con-
test is neither zero nor one. In our model, mixed strategies
can only occur in the very restrictive circumstance in which
both competitors are identical. Previous workers (e.g.,
Maynard Smith and Parker 1976; Mesterton-Gibbons 1994)
have raised concerns about the potential heritability of such
strategies. Mesterton-Gibbons concluded that “an ESS in
pure strategies is a very much more convincing solution to
an evolutionary game than an ESS in mixed strategies.”
This is not to say, however, that we would expect such
purity in the real world. Natural situations are always much
more complicated than the model situations described in
theory, and we would not expect perfect matching. How-
ever, this conclusion may suggest that we would expect the
behavior of real individuals to be close to pure strategies
and that we should be slow to assume that any deviation
from the pure strategy is necessarily the result of natural
selection for a mixed strategy.

For some contests between individuals of different but
similar qualities, we show that two very different ESSs are
possible: in one, the better competitor always plays hawk

and the other dove; in the other, the better competitor
always plays dove and the poorer one always plays hawk,
and so always wins. This second ESS is surprising and was
termed “paradoxical” by Maynard Smith and Parker
(1976), who considered that it was unlikely to occur in na-
ture. Their argument was that in their model (and ours) this
ESS always coexists with another ESS that “has a larger
‘zone of attraction’ and hence is more likely to arise.” We
agree that such paradoxical ESSs are unlikely to be wide-
spread in nature but suggest that they may be possible in
circumstances where the relative “quality” of individuals
changes over time. For example, adult animals are generally
stronger than juveniles, who would be expected to be sub-
missive to them. However, over time the juveniles will grow
stronger whereas adults may decline in quality with age,
leading eventually to a reversal in relative strength. How-
ever, it appears at least possible that the strategy of juvenile
submission may persist for a time after it has become strictly
“paradoxical” because of the history of the system
(Matsumura and Kobayashi 1998 and references therein).
Such situations in which the competitive abilities of indi-
viduals change over time are worthy of further empirical
and theoretical effect.

Using a particular function for r(z,s) and making the
simplifying assumption of a normally distributed population
of qualities, we find a number of interesting results. The
proportion of nondominant contests is zero if R < 1, but it
can be large for sufficiently large R or if the variance in
individual qualities is small. In particular, the relative fre-
quency of highly aggressive contests is high when the cost of
losing an escalated contest is small.

In practice, estimating the value of R for a given ecologi-
cal system is challenging, especially because the costs and
benefits of a contest are often measured in different curren-
cies. However, it is clear that R can vary greatly in size. For
example, blackbirds in winter often feed on worms in
groups and attempt to steal from each other. These contests
last a few seconds, and an individual can be involved in
hundreds each day. The costs of these contests must be low.
In spring, these birds form territories and the contest over
possession of a territory is generally only slightly longer
lasting and no more intense than contests over food items,
yet the benefit from obtaining a feeding territory is much
greater than from obtaining a single worm. Thus, individu-
als of this species will experience different types of contest
that differ in R by several orders of magnitude.

Figure 3 shows how resources are divided in a population
for a given set of parameter values for varying values of R.
When R is low (R = 0.1), the probability of contests where
both ESSs (1,0) and (0,1) occur is high, so that lower-quality
animals win some contests for historical reasons. If R is high
(R = 10), then many hawk—hawk contests occur and, as the
cost of losing is low, lower-quality animals can win contests
and do better than for medium R. Overall, the expected
reward is lower due to costs incurred, and medium- to high-
quality animals are hardest hit; thus, for high R the split of
resources is relatively equitable. For medium R (close to
unity), neither of these situations occur and low-quality
animals do poorly and high-quality ones well. Perhaps sur-



prisingly, maximum discrimination between qualities occurs
here rather than at either of the extremes, as is emphasized
by the asymptotic cases where R is set to equal either 0 or
where the division of resources is at its most equitable.
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Appendix A: General conditions

The conditions for P, and P, to constitute an ESS pair are

(a) E,[P.P,]= E,[O,.P] (A1)
and
(b) if Ezs[PbPz ] = E[S[QI’PZ] then Ets[Pl’QZ ] > Ets[Ql’QZ]
(A2)
for all Q, # P, and Q, # P,
and
(c) E,[P.P|= E,[Q,.P] (A3)
and
(d)if E,[P,.P|=E,[Q,.P ] then E [P,.0,]|> E[0,.0]
(A4)

for all Q, # P, and Q, # P,
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Equation Al can be reexpressed as

(P, -0, )VG - d(t,s)) +P(P,-0)
(ASa)
X (% +r(ts)(V +(1-2a)C) + d(t,s)V) =0

Similarly, we require that E [P,,P,] = E,Q,,P,], which
gives

P -0, )VG - d(s,r)) +P(P, - Q)
(AS5b)
X (% +r(s.0)(V +(1-2a)C) + d(s,t)V) =0

Appendix B: The different ESS possibilities

Substituting the values P, = P, = 1 into Eq. A5a gives

(1 —Ql)(v ¢ +r(ts)(V +(1—2a)C)j =0 (A6)
Because Q, < 1, this is only satisfied when
r(t,s) = €V (A7)

2(V +(1-2a)C)

If r(z,s) is greater than the right hand side of Eq. A7, then
E, [P,P,] > E, [Q,,P,], but if equality holds then E,[P,,P,]
= E, [0,,P,], and so (for P, to be an ESS), we require E,
[P,0,] > E, [Q;,0,]- Substituting into Eq. 1, we obtain

(1-0,)(1-0,)V(05—d(t.s))>0

which is true for O, < 1 and Q, < 1.
Substituting in Eq. A5b gives
(A8)

(s0)=——C=V
= 2(V +(1-2a)C)

Thus, by similar reasoning, {1,1} is an ESS if Eqs. A7 and A8
hold.

However, because r(t,s) = —r(s,t), this simplifies to {1,1}
is an ESS if and only if Eq. 3 holds.

Let us now consider the conditions under which {P,,P,}
= {0,1} is an ESS. Substitution into Eq. AS5a gives

os)=——V (A9)
2(V +(1-2a)C)
Substitution into Eq. ASb gives the condition
v(% - d(s,t)j(l -0,)=0 (A10)

the left hand side of which is strictly positive for all
0, <1.
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We must again consider the case where equality holds.
Substituting into Eq. A2 we obtain (—Q,)(1 — Q,)V(0.5 —
d(t,s)) > 0, which is not satisfied.

Appendix C: Rewards received

When R = 1, using Eq. 6 an individual receives reward V if

1- —At— -

r(t,s)= exp( ( S)) > R-1 (A11)

2 2(R+1-2a)
which rearranges to give Eq. 7.
It receives 0 if
At—s))—1 —

r(t,s) = exp( ( s)) 1-R (A12)

2 2(R+1-2a)

which rearranges to give Eq. 8. Otherwise, it receives the
reward shown in Eq. 9.

An individual with quality ¢ receives V against opponents
with quality less than X. Against opponents whose quality is
between X and Y, it receives the following rewards:

v-c, (Vv+(1- za)c)_EXp(’l(tz_ 5)) -1
r=s=Y
Al3
V-C 1- exp(—l(t - s)) ( )

+(V +(1-2a)C) 5

t>s=X

Otherwise, it receives 0. The overall reward to an individual
of quality ¢ is thus

qu(X;”j
oA,

e
2 N2mo *p 20°

+[ 4 5 €4 (v+(- 2a)C)1 —exp(A(r - S))]

+jY(V;C+(V+(1—2a)C)

t

2

1 *(s - /4)2
X Tono exp( oy ]ds

(Al4)

Considering the moment-generating function of a N(u,0°),
the following equation holds:

z _ & a—u—co’
o
(A15)

These results together can be used to show Eq. 11.
When a < R < 1, the payoff to a quality ¢ individual is V
if

1-R
=
2 2(R+1-2a)

(A16)

which rearranges to give Eq. 15. The payoff is yV if

0< 1—exp(—/1(t—s)) 1-R
2 R+1-2a

(A17)

which rearranges to give Eq. 16. Finally the payoff is (1 —
y)V if

R-1

TS exp(/l(t—s)) -1<0

(A18)

which rearranges to give Eq. 17.

Appendix D: Equations for Fig. 3

R+1

o(t)— %@(r + IH(RTHD + exp(0.1¢ + 0.005)

R
x R*1 (D[t+0.1+ln(R;1D—(D(t+O.1)}
R+1
— exp(0.005 — 0.1¢) (¢ — 0.1
00050148 afeo1)
—¢(t—0.1—1n(R+1]]
2
(A19)
if R=1,or
03¢ t— 1| BELV )4 0.40(1) + 030 1+ 1| BE!
2R 2R
(A20)
iR <1.



