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A game theoretical approach to conspecific
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We constructed a game theoretical model to predict optimal patterns of egg laying in systems where individuals lay in the nests
of others as well as in their own nests. We show that decreasing the effect of position within an egg-laying sequence on the
worth of an egg should lead to reduced parasitism. Indeed, parasitism can only flourish if the worth of an egg to its biological
parent declines with the total number of eggs laid in that nest. Further, we found that increasing the intrinsic costs of egg
production should lead to an increased propensity for conspecific brood parasitism. The model also predicts that variation in
hosts’ ability to reject parasitic eggs has little effect on parasitism until this ability is well developed. Key words: conspecific brood
parasitism, egg dumping, host–parasite systems, intraspecific parasitism, parental care. [Behav Ecol 13:321–327 (2002)]

Yom-Tov (1980) defines conspecific brood parasitism as the
laying of eggs in the nest of another individual of the

same species without taking part in the subsequent processes
of incubation and caring for the hatchlings. At the latest
count (Eadie et al., 1998), such behavior had been recorded
in 185 species. The recent advent of molecular techniques
such as DNA fingerprinting has greatly aided field study of
this behavior. This may explain why, unusually for behavioral
ecology, empirical study greatly dominates theoretical under-
pinning of this subject. Hence we begin to redress this im-
balance by using a game theoretical approach to explain the
observation of parasitism by individuals that also raise a brood
themselves.

Davies (2000) described three different kinds of conspecific
brood parasitism. The first type involves individuals that at-
tempt to nest normally but whose nest is destroyed, say, by
weather or predators. If such a female has begun the process
of egg laying, then she may not have time to rebuild the nest,
and she may turn to parasitism to ‘‘make the best of a bad
job.’’ In the second type, some individuals make no attempt
to nest themselves but instead choose pure parasitism. Clearly,
the success of such a strategy depends on the number of in-
dividuals adopting it. The more parasites there are, the more
competition there is between them for fewer nests. Such a
situation can best be understood using game theory, as ap-
plied to this problem by Andersson (1984) and Eadie and
Fryxell (1992). The final type of brood parasitism occurs when
parasitic individuals build nests that are not destroyed and lay
eggs in their own nests, but also lay some of their eggs para-
sitically. This is the type that concerns us here, and it was first
considered theoretically by Lyon (1998).

Lyon (1998) argued that the worth of an egg to its parent
can be thought of in terms of a ‘‘fitness increment,’’ defined
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as survival of offspring from that egg minus the costs to pro-
ducing it and any negative impact that the egg or its hatchling
has on the survival of siblings because of competition for lim-
ited parental care. This constraint on the investment that par-
ents can make means that every egg laid in the home nest
yields a lower fitness increment than the last. In the absence
of the option to parasitize, the optimal number of eggs to lay
is n, where the n � 1 egg would be the first to yield a negative
fitness increment. However, if the average fitness increment
that a parent can obtain from a parasitic egg is some positive
value (P), then the optimal number of eggs to lay in an in-
dividual’s own nest changes. Now an individual should lay n1

eggs in its own nest, when the n1 � 1 egg is the first to provide
a fitness increment below P, all subsequent eggs should be
laid parasitically. Lyon’s key prediction was that n1 would be
less than n; in other words, the opportunity to parasitize
would force a reduction in the optimal clutch size laid in an
individual’s own nest.

One important simplification in this argument is the as-
sumption that the benefit gained from a parasitic egg (P in
Lyon’s model) is a constant. In practice, the worth of a par-
asitic egg will depend on both the number of eggs that indi-
viduals lay in their own nest and the amount of parasitism.
However, both of these will be influenced by the worth of
parasitism. To cope with this interdependence, a game theo-
retical model is required. The aim of this study was to develop
such a model. This model should predict the optimum num-
bers of eggs laid in an individual’s own nest and laid parasit-
ically and predict how these numbers are influenced by eco-
logical variables, such as the costs of egg production and
strength of competition between nest mates.

Model assumptions

First, we assume that the worth (as defined by Lyon, 1998) to
the genetic mother of the ith egg laid in a nest that has an
eventual clutch size of T is given by

i�1V�
f (i, T ) � , (1)

T1 � �

where V � 0 and 0 � � � � � 1. The biological basis for this
assumption, and the meaning of the parameters, can be un-
derstood as follows. Each egg laid is less valuable than the last;
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indeed, its worth is always a constant fraction, �, of that of the
preceding egg:

f (i � 1, T )
� � � 1. (2)

f (i, T )

This can be thought of as an effect of competition, with ear-
lier-laid eggs leading to dominant individuals likely to be able
to outcompete nest mates for food. The smaller the final
clutch size, the larger the worth of an egg in a given position:

T�1f (i, T ) 1 � �
� � 1. (3)

Tf (i, T � 1) 1 � �

Hence the parameter � is used to control the effect of final
clutch size on the worth of eggs in individual positions in the
laying sequence. This can be thought of in terms of finite
resources leading to more intense competition in larger
clutches. There is a cost to parasitism implicit in this assump-
tion: parasitism leads to increased clutch sizes and so reduces
the worth of all eggs in the clutch because of increased com-
petition. The extent of this effect is controlled by the value of �.

The total worth of a clutch is given by
T TV 1 � �

f (i, T ) � , (4)� T� �� �1 � � 1 � �i�1

which (because � � �) increases with T. The theoretical max-
imum worth of a clutch is obtained by allowing the clutch size
T to tend to infinity:

� V
f (i, T ) � .�

1 � �i�1

Hence the parameter V scales the overall worth of a given
clutch of eggs to parental fitness. For example, it will be lowest
in species where individuals make several breeding attempts
during their life span and highest in those where reproduc-
tion occurs only once.

Second, we assume that the probability that the owner of a
nest does not reject a newly laid parasitic egg is a constant 	
∈ (0, 1).

Third, we assume that the fitness cost of laying an egg is
also a constant (C) and is greater than zero. The effect of this
cost on the relative payoffs of different strategies depends only
on its size relative to the available reward, and so we will work
with a variable (R), which is the maximum worth of a clutch
divided by C:

V
R � .

C(1 � �)

The fourth assumption is that all individuals begin laying
on the same day.

The final assumption is that each individual lays a single
egg each day. A given individual’s strategy is defined as {n1,
n2}, indicating that it lays its first n1 eggs in its own nest, then
lays another n2 eggs. Each of these is placed in the nest of
another individual, chosen at random from the available pop-
ulation, independently for each egg. Effectively, each laying
sequence is split into two rounds: in the first, all individuals
lay in their own nests; in the second, any remaining eggs are
laid parasitically. It is generally true that parasites lay their
parasitic eggs before laying eggs in their own nests (Davies,
2000), but the key biological feature that we need to capture
is that parasitic eggs are not the first to be laid in a nest.
Females reject alien eggs placed in their nests before they
have started their own laying (Davies, 2000). Hence, in our
model, we assume that parasitic eggs are always laid after all
of the host’s eggs. This slightly underestimates the effective-

ness of real parasitism, but we believe it is an acceptable com-
promise between analytic tractability and biological realism.

The evolutionarily stable strategy

We now find the evolutionarily stable strategy (ESS) of our
model. The concept of an ESS was introduced by Maynard
Smith and Price (1973; see also Maynard Smith, 1982). If a
system possesses a unique ESS, then (usually) the population
should settle on playing that strategy by natural selection; if
there are multiple ESSs, then the one that the population
chooses depends on the initial conditions of the system and
chance (see Hofbauer and Sigmund, 1988, 1998, for a de-
tailed discussion of the dynamics of biological systems). It has
not been possible to prove that our game always yields a
unique ESS. However, in every case that we consider, we have
been able to find only one ESS, despite often considering
several potential candidates.

Suppose all N individuals in the population play {n1, n2}.
Every nest contains n1 of the owner’s eggs and a number of
parasitic eggs. If N is large, because parasitized nests are cho-
sen at random, then the number of parasitic eggs in any given
nest will be closely approximated by a Poisson distribution; in
other words, the probability of a given nest having j parasitic
eggs is given by

j(	n ) exp(�	n )2 2P( j) � , j � 0, 1, 2, . . . (5)
j!

and the average number of such eggs in a nest is 	n2.
To find the ESS (or more properly, as discussed above,

ESSs), we now need to consider two pair of strategies in com-
petition: {n1, n2} versus {n1, n2 � 1} and {n1 � 1, n2} versus {n1,
n2}. The way the model has been formulated, the choice of
whether to lay one more (or less) parasitic egg and whether
to lay one more (or less) egg in an individual’s own nest are
independent. In addition, because increasing n1 or n2 both
reduce the worth of extra eggs, if laying more than one extra
egg is beneficial, then laying exactly one extra certainly will
be, and so these two competitions are the only ones we need
consider.

Laying an extra egg parasitically costs an extra amount, C.
It is laid after all the other eggs and will be the last egg laid
in a nest that already contains n1 � j eggs, where j is drawn
from the Poisson distribution of Equation 5. Thus the worth
of this egg is

	E[ f (n � j � 1, n � j � 1)]1 1

� n �j j1V� (	n ) exp(�	n )2 2� 	 � n �j�1� �1 [ ]1 � � j!j�0

n1� 	V� exp(�n 	)2

� j(n 	)2 j n �1 j 2(n �1) 2 j1 1
 � [1 � � � � � � � · · ·]�� �[ ]j!j�0

n1� 	V� exp(�n 	)2

� �j j(n 	�) (n 	��)2 2n �11
 � �� �� j! j!j�0 j�0

� 2(n 	�� )22(n �1)1� � � · · ·� �j!j�0

�

n k k(n �1)1 1� 	V� exp(�n 	) exp(n 	�� )� . (6)�2 2� �k�0

This is a decreasing function of both n1 and n2. That is, the
more eggs that individuals of the ‘‘resident’’ phenotype lay,
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the less advantageous it is for a ‘‘mutant’’ to lay an extra par-
asitic egg. This is as we would expect. For this strategy not to
be advantageous, this benefit must be at most equal to C:

�

n k k(n �1)1 1	V� exp(�n 	) exp(n 	�� )� � C. (7)�2 2� �k�0

We now consider the costs and benefits to a single individ-
ual of switching to an alternative strategy where it lays the
same number of parasitic eggs as the other individuals but
lays one more egg in its own nest before switching to parasit-
ism. We assume that this mutant individual lays its n1 � 1 egg
in its own nest before any parasitic eggs are placed in it, but
that this has no effect on the eventual number of parasitic
eggs laid in this nest. In addition, we assume that this also has
no detrimental effect on the positioning of the individual’s
own parasitic eggs. These assumptions are likely not to be
quite true in real systems. In reality, the number of parasitic
eggs laid in the individual’s nest may be less because other
individuals may prefer nests with fewer eggs to parasitize. On
the other hand, the individual will start laying its own parasitic
eggs a day later, so that their worth will, on average, be less.
Hence, these two assumptions have opposite effects on the
payoff to the mutant. These simplifying assumptions are
adopted because the effects are small and not additive, and
they buy significant tractability to the analysis. Thus, from its
own nest, the individual gains an extra amount given by

n �1 n1 1

f (i, n � 1 � j) � f (i, n � j), (8)� �1 1
i�1 i�1

where j is drawn from the Poisson distribution in Equation 5.
However, the mutant individual’s cost will be increased be-

cause it lays one more egg. For this strategy not to be advan-
tageous, the benefit of laying the extra egg must be at most
equal to C:

n �1 n1 1

f (i, n � 1 � j) � f (i, n � j) � C. (9)� �1 1
i�1 i�1

Thus, for a mutant not to benefit, we require
n �1 n� 1 1j i�1 i�1(n 	) exp(�n 	) � �2 2 V �� � �n �1�j n �j� � � � ��1 1j! 1 � � 1 � �j�0 i�1 i�1

� j(n 	) exp(�n 	)2 2� V �
j!j�0

n �1 n1 11 � � 1 � �

 �

n �1�j n �j� �1 1(1 � �)(1 � � ) (1 � �)(1 � � )
�n �111 � �

k(n �1) k1� V exp(�n 	) � exp(n 	� )�2 2� 1 � � k�0

�n11 � �
kn k1� � exp(n 	� )� 2 �1 � � k�0

� C. (10)

Equations 7 and 10 can be used to find evolutionarily stable
combinations of n1 and n2 for specified values of �, �, 	, and
R. These occur at equality for the two equations when the
ESS values of n1 and n2 are both positive. In general, these
will not be integer valued. If we find that the ESS value of n1

is 6.7, then this should be interpreted as follows. If the whole
population lays six eggs in their own nests, then a mutant that
lays seven would do better; conversely, if the population all
lays seven eggs in their own nests, then a mutant laying six
would do better. Hence, in the population at equilibrium, we
would expect to find 70% of individuals laying seven eggs and
30% laying six. If Equation 10 is satisfied when n2 � 0, then

the expected reward for laying a parasitic egg is less than its
cost, even when no others are laying parasitically, so that the
optimal strategy is n2 � 0, and no parasitic eggs should be
laid. If Equation 10 is not satisfied, then (n1, n2) is not an ESS;
if Equation 7 is not satisfied, then a parasitic level greater than
n2 is favored, so that again (n1, n2) is not an ESS. Parasitism
makes no positive value of n1 viable, so no nest building is
optimal.

Due to the complexity of Equations 7 and 10, the ESSs can
generally only be found numerically. Before we do this, we
explore four limiting cases, where analytical methods are ef-
fective.

Case 1: the worth of an egg does not decrease with clutch
size

If we make the assumption that � � 0, so that the worth of
an egg depends only on the position of that egg in the nest
and is independent of the total number of eggs in the nest,
then considerable simplification occurs. Equation 7 becomes

n1	V� exp(�n 	)exp(n 	�) � C. (11)2 2

Similarly, Equation 10 gives
n �1 n1 11 � � 1 � �

n1V � � V� � C. (12)� �1 � � 1 � �

Because the number of parasitic eggs has no effect on the
payoff to hosts, it is no surprise that this expression for n1 is
independent of n2. Unless � and 	 are both equal to 1, the
left-hand side of Equation 11 is always less than that of Equa-
tion 12, so that the only solution is to satisfy Equation 12 with
equality and Equation 11 with inequality, so that the optimal
value of n2 is zero, and parasitism should not take place. This
makes intuitive sense because laying further eggs in your own
nest does not decrease the worth of previously laid eggs, so
(in this case) there is no advantage to parasitism, and individ-
uals should lay all their eggs in their own nest.

Equation 12 can be rearranged to give the optimal number
of eggs laid in an individual’s own nest, namely

V
ln� �C

n � � . (13)1 ln(�)

Case 2: parasitic eggs are never rejected

If 	 � 1, then for n2 � 0 to be evolutionarily stable, from
Equations 7 and 10, we require that

n n �1 n1 1 1V� V 1 � � 1 � �
� C � �

n �1 n �1 n� �1 1 11 � � 1 � � 1 � � 1 � �

n n1 1V � (1 � �) V�
� � , (14)

n �1 n �11 11 � � 1 � � 1 � �

which gives a contradiction, and so n2 � 0 can never be an
ESS in this limit. This result, that parasitism will always be
favored in our model when parasitic eggs are never rejected,
is unsurprising because adding an extra egg in your own nest
devalues previously laid eggs, whereas laying parasitically does
not.

Case 3: the total clutch worth is independent of the number
of eggs it contains

In this case � � �, and so there is a fixed worth, R, to be
divided between all members of the clutch, no matter how
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Figure 1
The factor, Q, to which the worth of an individual egg is
proportional as a function of the total clutch size (T) for three
values of the parameter �.

many there are. It is clear that if n2 � 0, then the left side of
Equation 10 reduces to 0 because adding an extra egg to the
nest does not increase the overall worth at all, so that there
is no value of n1 that generates such an ESS solution. Thus,
in this case also, some parasitism is always favored. This can
be explained as follows. Laying extra eggs in your own nest is
especially detrimental to the original eggs because any worth
obtained by the new egg corresponds with an identical drop
in worth from the others, so that relatively few eggs are laid
in an individual’s own nest. Indeed, if there was no parasitism,
a single egg would be optimal. Thus parasites will take advan-
tage of this fact because they do not mind devaluing existing
eggs.

Case 4: an egg’s worth is independent of how early in the
sequence it was laid

Here � takes its other extreme value, namely 1. Note that
Equation 10 is no longer valid, as it required � � 1. Through
similar working, we can obtain

�

k(n �1) k1V exp(�n 	) (n � 1) � exp(n 	� )�2 1 2� k�0

�

kn k1� n � exp(n 	� ) � C. (15)�1 2 �k�0

In this case the type of solution depends on the value of 	.
For there to be any parasitism, it is easy to show from Equation
7 that

C(1 � �)
	 � (16)

V

(for there to be any egg laying at all, we require the right-
hand term in Equation 16 to be less than 1). If Equation 16
is satisfied, then parasitism occurs, with the solution pair n1,
n2 satisfying the following pair of equations (derived from
Equations 7 and 15):

� C
k(n �1) k1� exp[n 	(� � 1)] � and (17)� 2 V	k�0

� C n � 1 � 	1kn k1� exp[n 	(� � 1)] � . (18)� 2 V	 nk�0 1

Hence, when the worth of an egg is independent of its posi-
tion in the laying sequence, parasitism can still occur, but only
if the probability of the rejection of a parasitic egg is suffi-
ciently low (such that Equation 16 is satisfied). If this is the
case, then solution of Equations 17 and 18 yields the positive
ESS values of n1 and n2. Generally the level of parasitism will
be low, even when it occurs, for sensible parameter values.

Numerical results: the general case

Equations 7 and 10 can be used to find the ESS combinations
of n1 and n2 for specified values of �, �, 	, and R. In order
to advance, we must now postulate values for these parame-
ters. The variable 	 is the probability that a host does not
reject a parasitic egg. Obviously, when 	 has a low value, then
parasitism is greatly disfavored, so we will concentrate on the
more interesting case, especially evolutionarily, where rejec-
tion is relatively unlikely, and assume that 	 lies somewhere
between 0.75 and 1.0. Each egg in a laying sequence is worth
a fraction, �, of the last laid one, and we postulate that � is
likely to lie in the range 0.7–1.0. The worth of an egg is also
proportional to a factor Q, which is a function of both the
total clutch size T and the parameter � according to

1
Q � .

T1 � �

Figure 1 shows Q as a function of T, for three values of �: 0.5,
0.7, and 0.8. This shows that � � 0.5 represents a relatively
small effect of total brood size on the worth of an individual
egg in a given position and � � 0.8 represents a strong effect.
We let � vary in the range 0.5–0.8. For each parameter, we set
a default value that we consider to be a reasonable value. We
then set each parameter at its default value, and vary the cho-
sen value over a range of plausible values. The chosen default
values are � � 0.7, � � 0.9, and 	 � 0.95. Further simulations
(not shown) suggest that our results are not qualitatively par-
ticular to these specific values. �he variable R is the maximum
possible return from a breeding event divided by the cost of
laying a single egg. Because this is very difficult to evaluate,
we consider it over a very wide range of plausible values from
10 to 500 and always consider several values of R as we vary
the other parameters.

Figure 2 explores the effect of the value of � on the ESS
strategy. Each egg in a laying sequence is worth a fraction, �,
of the last laid one. As we would expect, Figure 2a shows that
increasing both � and R increases the ESS number of eggs an
individual lays in its own nest. It is initially surprising that for
low values of R, this number decreases with � at very high
values. Perhaps even more surprising, because � has no effect
on the first-laid egg in a nest, n1 can fall below 1. This effect
occurs because R and � are not independent variables. In-
creasing � and keeping R constant can only be achieved by
increasing the cost of producing eggs (relative to their future
worth). Hence, at very high �, the cost of eggs has been raised
so high that any egg laying is prohibitively expensive. Gener-
ally, in Figure 2b we find that the ESS number of parasitic
eggs decreases with both � and R, since increasing both of
these factors make the cost of laying eggs in an individual’s
own nest smaller. Again, Figure 2b shows unusual behavior at
high � and low R because of the non-independence of these
variables. There is a critical value, which we denote Rc and
define as the highest value of R for which n2 is nonzero, and
so parasitism occurs. This value decreases dramatically with
increasing � (see Figure 2c).

Figure 3 explores the effect of the value of � on the ESS
strategy. As Figure 1 shows, at high brood sizes, the value of
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Figure 2
The effect of varying the value of � on (a) the ESS value of n1: the
number of eggs an individual lays in its own nest, (b) the ESS value
of n2: the number of eggs an individual lays parasitically, and (c) Rc,
the critical value of R, above which the ESS value of n2 is zero, and
parasitism is not seen. � � 0.7, 	 � 0.95 for all panels.

Figure 3
The effect of varying the value of � on (a) the ESS value of n1: the
number of eggs an individual lays in its own nest, (b) the ESS value
of n2: the number of eggs an individual lays parasitically, and (c) Rc,
the critical value of R, above which the ESS value of n2 is zero, and
parasitism is not seen. � � 0.9, 	 � 0.95 for all panels.

� has little effect. This can be seen in Figure 3a, where at high
R values, the value of n1 is sufficiently big that it is insensitive
to �. But at lower brood sizes, increasing � does have a sig-
nificant effect, and this can be seen in the declining brood
sizes at high � values for intermediate R values. But for such
intermediate R values, individuals compensate at high � val-

ues by switching to laying eggs parasitically (Figure 3b). This
situation is carried to its extreme for low R values, where in-
dividuals lay more eggs parasitically and practically no eggs in
their own nest.

Note that when final clutch size (T) is low, increasing �
increases the worth of the eggs appreciably, so that n1 increas-
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Figure 4
The effect of varying the value of 	 on (a) the ESS value of n1: the
number of eggs an individual lays in its own nest, (b) the ESS value
of n2: the number of eggs an individual lays parasitically, and (c) Rc,
the critical value of R, above which the ESS value of n2 is zero, and
parasitism is not seen. � � 0.7, � � 0.9 for all panels.

es with �. Under these circumstances, our assumption that all
individuals build a nest is likely to be false, as individuals that
lay all their eggs parasitically would not build a nest. Again,
there is a threshold value of R above which parasitism is not
seen. As we would expect from earlier discussion, Rc increases
with �.

The variable 	 is the probability that a host does not reject
a parasitic egg. We have already seen a pattern that at high
values of R, parasitism is not observed. Hence it is no surprise
that Figure 4a shows that at high R values the value of n1 has
a negligible dependency on 	. Increasing 	 promotes parasit-
ism, but the effect of this is less marked than might be ex-
pected, (see Figure 4b,c). At lower values of R, there is a ten-
dency for n1 to increase slightly with increasing 	. These two
occurrences are linked and can be explained as follows. When
	 increases, the parasitic eggs are more beneficial (to the par-
asite), so that it is better for the parasites to lay more eggs.
Parasitic eggs have a significant detrimental effect on a host’s
eggs through increasing the clutch size and hence competi-
tion among nest mates for resources. If the host lays more
eggs in its own nest, this reduces the advantage to parasites,
thus reducing the number of parasitic eggs it is best to lay,
and so indirectly helping the host’s own eggs. Thus, as 	 in-
creases more host eggs are laid, and the rate of increase of
parasitism is less than might be expected.

DISCUSSION

One key assumption of our model is that the worth of the ith
egg placed in a nest is a function not only of its position in
the laying sequence (i.e., all the eggs placed in the nest before
it), but also of the final number of eggs (including all the
eggs that come after it). Without this assumption, parasitism
is never evolutionarily stable in our model. In this case, extra
eggs do not harm existing eggs, so there is no incentive to
avoid laying in your own nest; indeed, the risk of another
individual rejecting your egg makes it optimal not to do so.
Lyon (1998) did not make this assumption; he implicitly as-
sumed two classes of individuals, only one of which is able to
parasitize, and the other of which is only vulnerable to para-
sitism. We predict that when egg production is relatively cheap
(high R), then brood sizes will be relatively insensitive to the
strength of this effect, and parasitism will not be favored. Con-
versely, when eggs are relatively expensive (low R), the posi-
tion effect is high (low �) and within-brood competition is
strong (high �), then parasitism is highly favored. Indeed,
under such conditions we predict that many individuals would
opt to lay all their eggs parasitically. In this instance, our mod-
el needs some modification, as such individuals would not
build nests of their own. However, this result indicates that
case 1 of Davies (2000), discussed in the Introduction, where
birds become obligate parasites and do not build a nest, need
not be seen as a separate case to the one described here, but
rather both can be adopted within a more general framework.
We hope that the methodology presented here will be a useful
foundation for that framework.

It is no surprise that our model predicts that increasing
ability of hosts to reject alien eggs (decreasing 	) decreases
the attractiveness of parasitism. What is more interesting is
that changing from a situation where hosts reject no parasitic
eggs to one where they reject 25% of them makes only a very
slight difference to the levels of parasitism that the model
predicts. This is due to the fact that in our model individuals
must find optimal values for the number of eggs laid in their
own nest and laid parasitically and that these values are
linked. The detrimental effect of parasitic eggs can be severe,
so that as parasitism becomes more effective, the optimal strat-
egy is to lay more eggs in your own nest to discourage para-

sites. This effect, combined with the risk of individuals mis-
takenly rejecting their own eggs (Lotem, 1993), suggests that
the evolution of rejection by hosts is also worthy of further
theoretical effort.

Conspecific brood parasitism is not as well known to the
general public as the parasitic behavior of cuckoos, but it con-
tains many fascinating challenges for the evolutionary ecolo-
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gist. Further developments of the theory must explore the
consequences of intrinsic differences between individuals and
host selection by parasites. However, there is still much need
for empirical work if we are to fully explain the diversity of
this mechanism shown by natural populations. We hope that
others will challenge the predictions made here with empiri-
cal testing, either by experimental manipulation or (perhaps
more amenably) by cross-species or cross-population compar-
isons. Some of the simplest of these to test are the following.
Increasing the intrinsic costs of egg production should lead
to an increased propensity for intraspecific brood parasitism.
Decreasing the effect of position within a brood on the worth
of an egg should lead to reduced parasitism. Variation in
hosts’ ability to reject parasitic eggs has little effect on para-
sitism until this ability is well developed.

Further, theoretical development may also be fruitful. To
retain some analytic tractability, we were required to remove
any temporal component to birds’ strategies. Thus we im-
posed strict laying synchrony on all the birds. This does not
happen in the real world. Allowing birds to control the timing
of when to begin laying would be a very interesting develop-
ment to this model. Particularly, this would allow the host
availability to parasites and parasite pressure on hosts to vary
over time and would naturally introduce variability in host
nest attractiveness (through differential clutch size) to para-
sites at any given time. However, this added realism will nec-
essarily incur costs in increased model complexity. However,
an added advantage is that it will also allow relaxation of an-
other assumption in our model, that an individual lays para-
sitically after laying in its own nest. Generally the reverse is
true in nature. This assumption was forced on us, once we
adopted the simplifying assumption of complete synchrony of
breeding, because the key biological feature that we needed
to capture is that parasitic eggs are not the first to be laid in
a nest. Females reject alien eggs placed in their nest before
they have started their own laying (Davies, 2000). Accepting
the complexity produced by having a temporal component to
individual’s strategies would allow more realistic ordering of
parasitism and laying in an individual’s own nest. We are con-
fident that the work presented here will be a useful tool in
aiding understanding of such more complex models.

Another useful extension would be to explore the coevo-

lution of antiparasitism traits such as egg rejection along with
parasitic traits. Yamauchi (1993) described how quantitative
genetic modeling can be applied to such coevolution. Further
work (Yamauchi, 1995) described how this framework can be
extended to consider both interspecific and conspecific brood
parasitism simultaneous. Such a framework is vital if we are to
understand how the type of conspecific brood parasitism de-
scribed here may have provided an evolutionary stepping
stone to the obligate interspecific brood parasitism famously
practiced by cuckoos and cowbirds.

We thank three referees for perceptive comments.
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