
Behavioral Ecology Vol. 14 No. 1: 23–33

Evolutionarily stable kleptoparasitism:
consequences of different prey types

M. Brooma and G. D. Ruxtonb

aCentre for Statistics and Stochastic Modelling, School of Mathematical Sciences, University of Sussex,
Brighton, UK, and bDivision of Environmental and Evolutionary Biology, Institute of Biomedical and
Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

We present two elaborations of the model of Broom and Ruxton that found evolutionarily stable kleptoparasitic strategies for
foragers. These elaborations relax the assumption that the distribution of times required to handle discovered food items is
exponential. These changes increase the complexity of the model but represent a significant improvement in biological realism.
In one elaboration, handling takes a fixed interval, th, at the end of which the whole value of the food item is obtained. We
liken this to peeling then consuming a small orange. The other elaboration also assumes that handling takes a fixed interval,
th, but this time the reward from the food item is extracted continuously throughout the handling period. We liken this to
eating an apple. Both models predict that increasing food density, the ease with which food items can be discovered, or the
length of aggressive contests all act to make kleptoparasitism less common. The difference between the evolutionarily stable
strategy solutions of the apple and orange models provides a clear prediction of our theory. When prey items require handling
before yielding a lump sum at the end, then kleptoparasitic attacks will be focused on prey items near the end of their handling
period. However, if prey items yield reward continuously during handling, then attacks should be biased toward newly discovered
food items. Another key difference between the model predictions is that kleptoparasitism increases with forager density in the
apple model, but decreases in the orange model. Key words: aggression, evolutionarily stable strategy, food stealing, game theory,
intraspecific interference. [Behav Ecol 14:23–33 (2003)]

Animals often forage in close proximity to conspecifics
(Giraldeau and Caraco, 2000). This may simply be be-

cause the food source is patchily distributed, or it may be
because grouping brings some benefit to foragers (Pitcher
and Parrish, 1993). This benefit need not necessarily be
shown in enhanced rates of food consumption but may relate
to antipredatory or other benefits (e.g., Bednekoff and Lima,
1998; Proctor and Broom, 2000; Roberts, 1996). Indeed, in-
dividuals in a group may experience reduced feeding rates
due to their proximity to others. There are many mechanisms
by which such interference effects can be shown, such as in-
creased prey depletion (Driessen and Visser, 1997; Free et al.,
1997) or enhanced avoidance behavior by prey (Selman and
Goss-Custard, 1988).

Another circumstance under which average prey consump-
tion rates can decline is if foragers sometimes invest time in
trying to steal already-discovered food items from others, rath-
er than searching for a food item themselves. Such klepto-
parasitic behavior is particularly common in birds (see Brock-
man and Barnard, 1979; Furness, 1987, for reviews), but it
also occurs in mammals (e.g., Carbone et al., 1997; Gorman
et al., 1998) and invertebrates (e.g., Iyengar, 2000; Tso and
Severinghaus, 1998). In situations where food items are hid-
den in the environment and thus require some time invest-
ment to acquire, it may pay an individual to attempt to obtain
food items by aggression, even if this also requires a time in-
vestment (Sirot, 2000). Although such parasitic behavior ben-
efits the individual, it necessarily leads to a reduction in the
time that individuals invest in searching for new prey items
and so leads to an overall decrease in food uptake rates. There
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is empirical evidence that animals use aggression flexibly in a
way that reflects a changing trade-off between costs and ben-
efits (Goss-Custard et al., 1998; Vines, 1980). Further, the at-
tractiveness of kleptoparasitism to an individual will depend
on the frequency with which other group members use this
tactic. Thus behavior is potentially complicated, and any mod-
el selected to represent it must be game theoretic in character.
In a recent article (Broom and Ruxton, 1998), we introduced
an individual-based model of a group of foraging animals,
where individuals could obtain food either by searching them-
selves or by stealing the discoveries of others. This model was
used to explore how evolutionarily stable stealing strategies
were affected by ecological conditions.

A key assumption of the model of Broom and Ruxton
(1998) is that prey items require a certain amount of handling
before the individual can extract energetic reward from them.
This handling time affords kleptoparasites the opportunity to
strike. The original model assumed that handling a prey item
took a time that was randomly drawn from an exponential
distribution with mean th. At the end of this time, all the food
reward was obtained. This assumption was made for analytic
convenience. Simplification occurs because an exponential
distribution of handling times implies that a given handling
event has a constant probability per unit time of coming to
an end. Hence the amount of previous handling that a food
item has received has no bearing on its instantaneous likeli-
hood of yielding its reward. Although this assumption gives
considerable simplification, its biological applicability is lim-
ited. Here we present two elaborations of the original model
that relax this assumption. In one elaboration, handling takes
a fixed interval, th, at the end of which the whole value of the
food item is obtained. Consuming such a food item is similar
to peeling then eating a small orange, and we label this the
‘‘orange model.’’ The other elaboration also assumes that
handling takes a fixed interval, th, but this time the reward
from the food item is extracted continuously throughout the
handling period. For simplicity we assume that this reward
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extraction rate is constant. An example of this type of con-
sumption is eating an apple, and we call this the ‘‘apple mod-
el.’’

As in the original model, we assume that aggressive inter-
actions over a contested food item involve an investment of
time by both contestants. Now, in contrast to the previous
model, an individual’s decision to enter into a contest should
be based on how much handling the food item has already
received. In the original model, all food items had an equal
worth; whereas under the orange model, the more an item
has already been handled (the more peel that has been re-
moved), the more valuable it is. In contrast, under the apple
model, the longer a prey item has been handled (the more
of its flesh that has been consumed), the less valuable it is.

Here we explore the consequences of these alternatives on
evolutionarily stable stealing behavior. For comparative pur-
poses, we have kept other model assumptions and nomencla-
ture as close to that of Broom and Ruxton (1998) as possible.

The general model framework

We consider a population of foragers with a constant popu-
lation density, P. The population is divided into three subpop-
ulations according to activity: the density searching for food
items, S, the density handling a food item, H, and the density
involved in an aggressive interaction, A. These activities are
mutually exclusive, so that

S 1 H 1 A 5 P. (1)

We use these labels interchangeably for the density of individ-
uals involved in a particular activity and to identify the activity
itself. The rate at which searchers encounter prey items and
handling conspecifics are, respectively, vff and vHH, where f
is the population density of food items. Upon encountering
a food item, a searcher immediately switches to being a han-
dler. We define h(x) as the population density of handlers that
are handling a food item that still requires a further handling
time, x. Strictly, this is the density function of the density of
handlers; i.e., the density of handlers with further handling
time between x and x 1 dx is dxh(x), where 0 , x # th, and

th

H 5 h(x) dx. (2)E
x50

Thus, on encountering a food item, a searcher becomes a
handler [entering h(th)]. It remains a handler for a time, th,
or until it is encountered by another searcher that decides to
contest for the food item. We assume that the probability in
each encounter that the searcher decides to be aggressive is
p(x), where x is again the remaining handling time of the
handler’s food item. If the searcher decides not be to aggres-
sive, then it carries on searching; otherwise both the searcher
and the handler switch to the aggressive subpopulation.

We define a(x), in the same way as h(x), as the population
density of those involved in an aggressive interaction over a
food item that still requires a further handling time x, and

th

A 5 a(x) dx. (3)E
x50

We assume that all handlers are equally likely to be encoun-
tered, independently of the value of x. When a searcher en-
counters a handler in state h(x) and decides to contest the
food item, then they both switch to state a(x). They remain
in this state for a time drawn from an exponential distribution
with mean ta/2 (the factor of two is used to make subsequent
expressions tidier). After this, one individual (the loser) re-
turns to searching, and the other (the winner) returns to han-
dling in state h(x). For simplicity, we assume that each indi-

vidual has a 50% chance of winning. Finally, on reaching h(0),
a handler switches back to being a searcher.

The aim of this article is to consider the evolutionary stable
strategy (or strategies) for kleptoparasitism under both the
apple and orange models. The derivation of these strategies
requires considerable, but straightforward, mathematical ma-
nipulation. We give this derivation in full in the Appendix,
and simply quote the important results from this in the fol-
lowing sections.

The apple model

In the original model of Broom and Ruxton (1998), the evo-
lutionarily stable strategy (ESS) was to always challenge a dis-
covered handler if the parameter combination tavff were less
than unity, and never challenge if it were greater than unity.
In the dividing case (when tavff was identically equal to one),
then all strategies for deciding whether to challenge yielded
the same reward.

In the apple model, it is easy to see that always challenging
will never be an ESS. Because challenging involves an invest-
ment of time, challenging for an almost exhausted apple
would not be efficient. If we denote p(x) as the probability of
competing for a prey item that still requires handling for a
time x, then p(x) should always tend to zero as x tends to
zero.

Let us now consider the other extreme case, of discovering
a handler with a prey item that has received no previous han-
dling. Although the investment in a contest is the same for all
prey items, the reward from winning a contest is highest for
a prey item that has received no previous handling. Thus, if
challenging for previously unhandled prey items is not opti-
mal, nor is challenging for any prey items. That is, if p(th) 5
0 is part of the ESS, then no prey items should be contested,
and the ESS is p(x) 5 0 for all x ∈ [0,th].

Manipulation of Equation A10b of the Appendix shows that
if tavff . 1, then the strategy p(x) 5 0 for all x ∈ [0,th], so
that no kleptoparasitism occurs, is an ESS. This is exactly the
condition for no parasitism to occur in the original model.
This is logical becuase the apple model makes challenging for
already partially handled food items less attractive than in the
original model. A partially handled prey item now yields less
reward for the same investment in an aggressive encounter.
Hence, under circumstances when challenging was unreward-
ing in the original model, it will remain so under the apple
model.

We now turn our attention to the situations where klepto-
parasitism can be selected for. By analogy with the original
model, we can see that, if challenging is ever a good strategy,
then challenging for a prey item that has only just been dis-
covered should be selected for; in other words, we expect p(th)
5 1. In the opposite extreme, contesting for an almost ex-
hausted food item does not make sense; hence, p(0) 5 0. By
analogy with the original model again, we would expect that
there is a critical amount of handling remaining in a food
item (Xa). On discovering a handler in state h(x), a searcher
should always be aggressive if x . Xa, and never aggressive if
x , Xa. In the dividing case, where x 5 Xa, all strategies of
choosing whether to be aggressive are equally successful.
Thus, the ESS can be described fully by finding the evolution-
arily stable value of Xa.

Equation A10a of the Appendix gives a cubic equation, the
three roots of which are the candidate values of Xa:

3 2 2DX 2 X [t (D 1 1)] 1 X [t t (C 2 1)] 1 t t C 5 0, (4)a a h a h a a h

where C 5 thvffC and D 5 tavHP.
When tavff , 1, it is easy to show (see Appendix) that there

is always and only one root of Equation 4 between 0 and th.
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Figure 1
Numerical solution of Equation 4 to find the critical handling time
remaining on a food item in the apple model (Xa) as a function of
food density f. At the ESS, if a searcher encounters a handler with a
food item with remaining handling time above Xa, then it
challenges for that food item, otherwise it does not challenge. For f
,, 20, there is only a single value of Xa ∈ (0,th), and so only a
single ESS where kleptoparasitism occurs. For f ., 20, then Xa 5 th

is always an ESS. There can also be two other equilibrium values of
Xa ∈ (0,th) for intermediate values of f: The upper kleptoparasitic
equilibrium is always unstable and the lower always stable (i.e., an
ESS). Other parameter values: P 5 20, ta 5 5, th 5 10, vf 5 0.01, vH

5 0.05.

This value must be found numerically. Following Broom and
Ruxton (1998) and Holmgren (1995), a baseline set of param-
eter values f 5 30, P 5 20, ta 5 5, th 5 10, vf 5 0.01, and vH

5 0.05 are used in our numerical calculations. These refer-
ences can be consulted for biological justifications for these
values. However, further simulations (not shown) suggest that
our results remain qualitatively unchanged for a wide variety
of plausible parameter combinations. In each figure, the pa-
rameters other than the one of the x-axis are held at their
default values, except where specified.

The ESS value of Xa can be seen in Figure 1 for a range of
food densities (f values). As one would expect, Xa increases,
and so kleptoparasitism becomes less frequent, as food density
increases. The condition tavff . 1 translates into f , 20 for
the default parameter values. In this situation, as expected, we
find only one ESS value of Xa.

The situation is more complex when tavff . 1 (e.g., when f
is . 20 in Figure 1). First, we have discussed above that in
this situation never challenging is always an ESS. However, for
some combinations of parameter values satisfying tavff . 1,
there can be two roots of Equation 4 between 0 and th. The
higher of these turns out be unstable, but the lower is stable
(see the Appendix) and is thus an alternative ESS to the one
where no kleptoparasitism occurs. This can be understood as
follows. When tavff . 1, if the dominant strategy in the pop-
ulation is one of not challenging handlers, then a mutant that
does kleptoparasitize performs less well than the others. Thus,
the population should stay at the ESS of never attempting
kleptoparasitism. However, now consider a situation where
tavff is still . 1, but for some reason, kleptoparasitism is com-
mon in the population. This might occur, for example, if eco-
logical conditions have recently changed such that tavff moved
from just less than 1 to just greater than 1. Under these cir-
cumstances, the expected reward obtained from discovery of
a previously undiscovered food item is less than under con-

ditions where no parasitism occurs. This may make the alter-
native strategy of kleptoparasitism more attractive. In this way,
the population can move toward the alternative ESS, where
some kleptoparasitism continues to occur.

As we can see from Figure 1, the alternative ESS that allows
kleptoparasitism when tavff . 1 is a smooth extension of the
ESS when tavff , 1. Hence, it is no surprise that Xa increases
and kleptoparasitism becomes less common as food density
increases. The upper (unstable) equilibrium appears at Xa 5
th, when we cross the boundary at tavff 5 1. It then decreases
with increasing food density. At a critical food density (i.e.,
when tavff is sufficiently bigger than unity), the upper and
lower kleptoparasitic equilibria coincide. For food densities
greater than this, the sole ESS is one where all opportunities
for kleptoparasitism are spurned.

Figure 2a explores the effect of varying the parameter de-
termining the lengths of conflicts over food items (ta). The
condition tavff , 1 translates into ta , 5 for the parameter
values used. Below this, there is a single ESS with individuals
attempting kleptoparasitism only if the food item (if won) can
subsequently be handled for an amount of time exceeding a
critical value, Xa. Not surprisingly, Xa increases when ta in-
creases, and so contests require more time. For ta values a just
. 5, there can be an ESS allowing kleptoparasitism. This can
be understood in exactly the same way as discussed above for
Figure 1. Similarly, Figure 2b can be understood in an entirely
analogous fashion because the condition tavff , 1 translates
into vf , 0.01. Figure 2c demonstrates the effect of varying
the density of foragers. Generally, increasing predator density
makes kleptoparasitism more attractive. The same is true
when vh is increased, making finding handlers easier (Figure
2d). This can be understood most easily by considering that
increasing either forager density or the rate at which handlers
can be discovered makes finding unhandled prey items less
attractive because subsequent parasitism is more likely. Ob-
taining food by kleptoparasitism is affected similarly, but this
effect is less because after food has been handled for a certain
amount of time it stops being attractive to potential klepto-
parasites because its intrinsic value decreases with handling.
Notice also that when values of P or vh are sufficiently low that
kleptoparasitism is not strongly favored, then when tavff . 1,
the alternative kleptoparasitic ESS never exists, and so the ESS
where all kleptoparasitic opportunities are rejected is the only
ESS. Figure 2e demonstrates that increasing the time taken to
handle a food item (th) increases kleptoparasitism. This is not
surprising because increasing the handling time increases the
value of food items, but yet the cost of competing for a food
item (controlled by ta) remains unchanged.

The orange model

In the orange model, we can see that challenging for a prey
item that has only just been discovered should not be selected
for (unless challenging is always optimal). In the opposite ex-
treme, if an ESS contains any kleptoparasitism, then contest-
ing for an almost completely handled food item should be
attractive. We would thus again expect that there is a critical
amount of handling remaining in a food item (Xo). On dis-
covering a handler in state h(x), a searcher should always be
aggressive if x , Xo, and never aggressive if x . Xo. In the
dividing case, where x 5 Xo, all strategies of choosing whether
to be aggressive are equally successful. We now seek an ex-
pression for Xo. The Appendix demonstrates that this can be
found by simultaneous solution of the equations below for r
and Xo:
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Figure 2
The apple model. (a) As for Figure 1, except that the time required for a contest (ta) is varied. (b) As for Figure 1, except that the rate of
food discovery (vf) is varied. (c) Figure 1 reproduced for three values of the density of foragers (P). (d) Figure 1 reproduced for three
values of the rate of finding handlers (vh). (e) Figure 1 reproduced for three values of the time required to handler a food item (th). Note
that comparison under the changing values of th requires that we plot Xa/th rather than simply Xa. Unstated parameter values: f 5 30, P 5
20, ta 5 5, th 5 10, vf 5 0.01, vH 5 0.05.
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Figure 3
Numerical solution of Equations 5a and 5b of the orange model to
find the critical handling time remaining on a food item (Xo) as a
function of food density f and time taken in an aggressive contest
(ta). At the ESS, if a searcher encounters a handler with a food
item with remaining handling time below Xo, then it challenges for
that food item, otherwise it does not challenge. Other parameter
values: values P 5 20, th 5 10, vf 5 0.01, vH 5 0.05.

C 1 1
t 2 t 1 Xa h a1 2C

2 rXo5 (1 1 rt ) X 1 1 2 exp (5a)a o5 1 2 1 2 6[ ]r 2

2 2X Ct r 1 t t r(C 1 1) 2 Dt 5 0. (5b)o a a h h

The Appendix also demonstrates that there is an ESS where
all kleptoparasitic opportunities are spurned providing

(ta 2 th)yff . 1. (6)

For the original model and the apple model, the equivalent
condition was

tayff . 1. (7)

It can be seen that Equation 6 is a more restrictive condition
than Equation 7. Thus, if kleptoparasitism is predicted never
to occur in the orange model for a given combination of pa-
rameter values, then never attempting kleptopararsitism
would also be the optimum strategy in the other two models
with the same parameter values. The attraction of kleptopar-
asitism in the orange model, in comparison to the other two,
is to be expected from consideration of the biology. In the
orange model, the effective value of a prey item increases with
the handling it has already received, in the original model its
value stayed constant, and in the apple model it declined.

Notice that if ta , th, then, from Equation 6, the strategy of
rejecting all parasitic opportunities is never an ESS. Thus, in
this case, unlike both the original and apple models, some
kleptoparasitism will always be seen regardless of how easy it
is to find unhandled food items. Such a situation is illustrated
for the situation where ta 5 5 (and default value th 5 10) in
Figure 3. However, in general, increasing food density (f)
makes kleptoparasitism less attractive, as we would expect, and
providing ta . th, never kleptoparasitizing will eventually be-
come an ESS providing f is increased such that Equation 6 is
satisfied. In our exploration below of the effect of varying
parameter values, we generally consider ta 5 20, rather than
the previous default value of 5, because this allows us to satisfy

Equation 6 for some parameter combinations and allows us
to display the fullest extent of the behavior of the model.

The Appendix also demonstrates that if tafvf is sufficiently
, 1, then the critical handling time, Xo, will tend to th, and
the ESS will be to always accept opportunities to kleptopar-
asitize. Notice that in the original model the condition for
always challenging to be the best strategy was simply that tafvf

was , 1. The condition for the orange model is more strict.
Thus, if always challenging is the best strategy (for a given set
of parameter values) in the orange model, then it would also
be the best strategy in the analogous original model. However,
under some circumstances, the original model will predict al-
ways challenging as the best strategy, but the analogous or-
ange model will predict on optimal strategy where recently
discovered prey items are not competed for. We can see in
Figure 3 that for the default set of parameter values, Xo only
tends to th as the food density f becomes very low.

Figure 4a shows that increasing the duration of contests
makes kleptoparasitism less attractive, as would be expected.
Eventually, for ta . 15, no kleptoparasitism occurs. The situ-
ation is simpler than the equivalent graph for the apple model
(Figure 2a) because there is only ever one ESS for a given
combination of parameters. Similarly, increasing the rate of
food discovery (vf) decreases the attractiveness of kleptopar-
asitism, and indeed beyond a critical value of discovery rate,
no aggression occurs (see Figure 4b). At the opposite ex-
treme, we see that the at low values of vf, the response is very
nonlinear. As vf increases from very low values, Xo drops very
quickly, then the rate of this decrease is significantly reduced.
Unlike the apple model, Figure 4c shows that the rates of
kleptoparasitism observed should decline with increasing
predator density (P). Specifically, increasing P decreases Xo.
When forager numbers are high, then capturing items that
still require a lot of handling becomes unattractive because
the chance of still having possession of this item when han-
dling has been completed is reduced. Of course, this effect
also makes finding entirely unhandled food items less attrac-
tive, although (as Figure 4c shows) this effect is less strong
due to no time being wasted in contesting the item in this
case, and so kleptoparasitism becomes disfavored. The line for
P 5 5 in Figure 4c shows a situation where the ESS is to accept
all opportunities to kleptoparasitize (for f values less than
around 3.0). The decreasing value of Xo with increasing ease
of finding handlers (increasing vh) shown in Figure 4d can be
understood similarly to the effect of varying P.

The effect of changes in the value of th is more complicated.
If th is low, then kleptoparasitism can be very attractive. For th

5 2.5 in Figure 4e, the ESS is to accept all kleptoparasitic
opportunities when the food density is less than approximate-
ly 12. Parasitism is promoted because, if a food item is won
in a contest, then because of the short handling time, another
forager in unlikely to challenge before the reward for that
item is obtained. However, if food density is high, then para-
sitism becomes less favored simply because spending time
searching for food is more profitable than spending time in
aggressive encounters. In contrast, if the handling time of a
food item is increased, then Xo declines because of the in-
creasing danger that a food item won in one aggressive inter-
action will then be lost in another interaction before handling
is complete. Generally, the lower the food density, the more
attractive parasitism is, but this is not universally true, as can
be seen from the line with th 5 40 in Figure 4e.

DISCUSSION

For the apple model, we found that increasing either the food
density in the environment, the ease with which food items
could be found, or the investment required in trying to steal
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Figure 4
For the orange model. (a) As Figure 3, except that the time required for a contest (ta) is varied. (b) As for Figure 3, except that the rate of
food discovery (vf) is varied. (c) Figure 3 reproduced for three values of the density of foragers (P). (d) Figure 3 reproduced for three
values of the rate of finding handlers (vh). (e) Figure 3 reproduced for three values of the time required to handler a food item (th). Note
that comparison under the changing values of th requires that we plot Xa/th rather than simply Xa. Unstated parameter values: f 5 30, P 5
20, th 5 10, vf 5 0.01, vH 5 0.05, ta 5, 20 except ta 5 5 in panel e.
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from another all served to decrease the frequency with which
kleptoparasitism occurs. Indeed, if any one of these is in-
creased sufficiently, then no kleptoparasitism at all will occur,
with even opportunities to steal newly discovered prey items
being spurned. These results make intuitive sense, and are in
accord with the previous theory of Broom and Ruxton (1998)
and empirical studies (Dolman, 1995; Cresswell, 1998; Triplet
et al., 1999). However, there is a significant difference be-
tween the predictions of the original and apple models. In
the original model, either all kleptoparasitic opportunities
would be taken or none at all. Varying one of these ecological
variables had no effect unless it moved the system from one
of these regimes to the other. A corollary of this was that a
small change in the environment could lead to a dramatic
change in the predicted behavior of individuals. In the new
model, this is generally not true, and an incremental change
in one of the variables leads to an incremental change in the
range of handlers that are at risk from kleptoparasitism, and
so to a change in the frequency of parasitism observed (see
Figures 1 and 2). Notice, however, that the change in range
of handler types with change in parameter values is generally
nonlinear. For example, increasing food density from 10 to
11 in Figure 1 has a much smaller effect than changing from
23 to 24 (assuming the system is at the kleptoparasitic equi-
librium). Abrupt changes can still occur: at f 5 24, discovered
food items are targets for kleptoparasitism for the first 25%
of their handling time; whereas at f 5 25, no kleptoparasitism
occurs.

It is also possible for f values of 23 or 24 in Figure 1 to
produce no kleptoparasitism at all. This is because the system
exhibits alternative ESSs. Ecologically this can be interpreted
as follows. When food density, for example, is low (, 20 in
Figure 1), then we would expect kleptoparasitism to be com-
mon. Conversely, when food is plentiful (f . 25 in Figure 1),
then we would expect no kleptoparasitism at all. However, for
intermediate food densities, a given population may or may
not exhibit kleptoparasitism. If the food density has been
poorer in the past, then we might expect that parasitism will
persist in this intermediate zone. However, if the system has
no previous history of parasitism (perhaps because it has his-
torically been richer in food), then we would not expect klep-
toparasitism to develop in this intermediate zone, although it
would if food density fell low enough. We can then have the
apparently paradoxical situation where the model predicts
ecologically important differences in kleptoparasitism rates
between currently identical systems because these systems
were different historically. Note that in this case the history
in question is very recent, and we would expect to see both
behaviors within a relatively short time interval. Although this
argument has been framed in terms of food density, it will
hold for other characteristics of the system as well.

The previous model of Broom and Ruxton predicted that
the density of foragers in the environment, the ease with
which handlers could be discovered, and the handling time
required by a food item would all have no effect on the rates
of kleptoparasitism. This is not so in the apple model. The
key reason for this difference is that, in the original model, a
handler could be challenged at any time during the handling
process, whereas in the apple model, a food item is no longer
subject to stealing after it has less than Xa handling time re-
maining. In the apple model, Xa decreases (and so stealing
becomes more common) as forager density increases. Increas-
ing predator numbers means that handlers are more likely to
encounter searchers, and so the likelihood of a food item
being stolen increases. This is true both for items that the
handler found itself and for items that it stole. However, in
the first case, items are vulnerable for a time th 2 Xa, before
being safe for a time Xa; in the second case the vulnerable

time will be shorter but the safe time remains the same.
Hence, increasing forager numbers means that handlers will
lose food items more often during the vulnerable time. If
stealing is prevalent, then all food items requiring further
handling (x) substantially greater than Xa have similar net
worth to the current handler, since that individual is unlikely
to still be the handler when x 5 Xa. The effective value of a
partly consumed item thus becomes closer to that of a newly
discovered item. This makes challenging for food items that
are just approaching the invulnerable phase more attractive
and so makes kleptoparasitism a more attractive and common
strategy in the population. In the original model, there was
no invulnerable period, so this effect did not apply, and for-
ager density had no effect on kleptoparasitic behavior. Why
increased detectability of handlers (increasing vh) leads to a
change in behavior (with more kleptoparasitic opportunities
being accepted) in the apple model but not in the original
model can be understood by similar reasoning. There is con-
siderable empirical support for the prediction that aggression
rates increase with forager density (Burger et al., 1979; Goss-
Custard, 1980; Smith and Metcalfe, 1997).

Increasing the time required to handle a prey item (th)
caused an increase in the frequency with which kleptoparasitic
opportunities lead to an aggressive interaction in the apple
model, but had no effect in the original model of Broom and
Ruxton (1998). As reasoned above, the effective value of a
part consumed item is close to that of a new item when th is
large because, again, the current handler is unlikely still to be
in position during the invulnerable final phase of handling.
Thus stealing such an item is relatively more attractive than
for lower th.

As in the apple model (and the original model of Broom
and Ruxton, 1998), increasing food density, the ease with
which food items can be discovered, or the length of aggres-
sive contests all act to make kleptoparasitism less attractive in
the orange model. However, unlike these previous models,
increasing these does not necessarily always involve the even-
tual extinction of kleptoparasitism from the population. If ta

, th, then kleptoparasitism will always be attractive, no matter
how bountiful the food supply. This occurs because food items
only provide a reward at the end of their handling period.
Hence, even if unhandled food items can be found instanta-
neously, kleptoparasitism may be a better option (as long as
the contest is not too long), providing this yields a food item
that is near to yielding its reward. The difference between the
ESS solutions of the apple and orange models provides a clear
prediction of our theory. When prey items require handling
before yielding a lump sum at the end, then kleptoparasitic
attacks will be focused on prey items near the end of their
handling period; if prey items yield reward continuously dur-
ing handling, then attacks should be biased toward newly dis-
covered food items.

In contrast to the apple model, the orange model predicts
that rates of kleptoparasitism should decline with increasing
predator density. When forager numbers are high, then cap-
turing items that still require a lot of handling becomes un-
attractive, as the chance of still having possession of this item
when handling has been completed is reduced. Of course, this
effect also makes finding entirely unhandled food items less
attractive. However, the first effect is stronger because obtain-
ing a food item by aggression requires a time investment in a
contest that food finding does not. For example, in Figure 4c,
any challenge costs an average of 20 time units to obtain a
food item (the mean contest length is 10 time units, and a
challenger wins with probability 0.5), whereas the total han-
dling time is only 10 time units. The cost of this initial in-
vestment in the challenge is especially severe when the chance
of successfully handling the food item is small. Thus it is better
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to wait for a new item without this cost (while simultaneously
looking for a better challenging opportunity; i.e., for an item
which requires less handling).

There was no effect of predator density in the original mod-
el of Broom and Ruxton (1998) because handling was equally
likely to end at any moment, and so newly discovered items
were just as valuable as those that had previously been han-
dled for some time.

In Figure 4a, the model predicts that when the time re-
quired for an aggressive contest tends to zero, then parasites
should challenge for food items that have completed at least
23% of their handling. This seems rather strange; one would
expect that if aggression costs nothing, then all opportunities
to challenge for a food item should be taken. This behavior
highlights an implicit assumption in our model, that search-
ing foragers should always begin handling any unhandled
food items that they find. In the case where aggressive en-
counters have no cost, this behavior is not optimal because
handling takes away opportunities to challenge for other food
items (that have already been partially handled). To avoid the
odd behavior of the model in this limiting case, we need to
allow more flexible forager strategies where searchers can be
selective about handling discovered unattended food items.
However, we have not presented this elaboration because it
would only be of importance in rather ecologically unrealistic
conditions, such as when aggressive encounters have no cost
to the participants.

It is possible that the length of a contest depends on the
value of the contested item and that the individuals involved
make a strategic choice about the length of time they are
prepared to fight (see Ruxton and Broom, 1999); this pre-
cludes the no-cost scenario. Another such case occurs when
handling times are very long, as illustrated by the case of th 5
40 in Figure 4e. Again, from the discussion above, in this case
the optimal strategy would allow animals to be selective about
handling discovered prey items. Adding such a complication
to the strategy would remove the surprising behavior shown
for this limiting case in the present model where increasing
food density leads to greater kleptoparasitism.

The theoretical work of Sirot (2000) makes similar predic-
tions to the apple model presented here: Kleptoparasitism
should increase with increased forager density, decreased food
abundance, and increasing food item value (and handling
time simultaneously). However, in Sirot’s model, populations
are always expected to show at least some aggression, whereas
in the apple model no aggression is predicted under some
circumstances. This is because Sirot’s model is based on the
hawk–dove methodology, and an aggressive hawk can always
exploit a population of doves because it wins food items at no
cost. In contrast, in our model, there is always an explicit cost
to attempting to steal a food item. Another key difference
between the models is that Sirot’s theory assumes that an in-
dividual’s decision to challenge for a prey item is independent
of the state of that prey item, whereas the handling that an
item has already received is an integral component of the
kleptoparasitic strategy in our model. Neither approach is in-
trinsically biologically more realistic than the other: Sirot’s ap-
plies to situations where information on the previous han-
dling of a prey item is unavailable to potential contestants,
whereas ours applies when perfect information is available.
These two informational extremes probably bound the real
situation where some imperfect knowledge will be available.
The simulation model of Stillman et al. (1997) is more similar
to the orange model, but again makes the same assumption
as Sirot (2000) that no information about the current state of
a handled item is used in deciding whether to challenge for
it.

The key assumption of the theory developed here is that

individuals are able to assess the amount of previous handling
that a prey item has experienced and modify their behavior
in the light of this knowledge. It is this assumption that pro-
vides the main difference between the theory presented here
and that of previous works by Broom and Ruxton (1998) and
Sirot (2000), where all prey items had equal worth and so no
discrimination was required. It is easy to accept that the cur-
rent handler (especially if that individual was the original dis-
coverer of the food item) has good knowledge of how long it
has been handled, but what of potential kleptoparasites who
might challenge the present handler? The handling state may
be apparent to such an individual from previous observation
of the present handler, or it may get cues as to the current
state of the food item through changes in the food item itself
(consider the visual changes in an apple or orange as we han-
dle them). Alternatively or additionally, such information may
be obtained indirectly from the vigor with which the current
handler is prepared to defend the prey item. Although we
consider such discrimination to be likely, the most important
development of the work presented here is the empirical test-
ing of this idea to demonstrate its validity and explore the
ecological circumstances where discrimination by potential
kleptoparasites does and does not occur.

Other assumptions of the model are also open to challenge.
We implicitly assume that searching for prey items and for
opportunities to kleptoparasitize are completely compatible
activities. That is, that the performance of one activity does
not in any way impair the performance of the other. Recent
empirical evidence suggest that this will not hold universally
(Coolen et al., 2001). In such a situation, we would expect
that individuals expand their kleptoparasitic strategy to in-
clude flexible investment between the two types of searching.
A framework for this development of the theory is provided
by Broom and Ruxton (1998). We also assume that contests
over food items last a fixed time, ta, after which an unambig-
uous winner emerges. This may be realistic for some species,
but in some cases, the contest may have no defined endpoint
and simply continue until one or other party decided to give
up and invest time in other activities. Such situations can be
modeled as a war of attrition. In these circumstances, we
would expect a kleptoparasite’s strategy to expand to include
how long they would be prepared to fight for a prey item.
Such a situation was modeled by Ruxton and Broom (1999).
We would expect a complex strategy to emerge, with the
amount of time that an individual is prepared to invest in a
prey item depending on the reward for winning, which in
turn will depend on the amount of previous handling that the
prey item has experience.

APPENDIX

H, S, A, h(x) and a(x) are all functions of time, but for no-
tational clarity we do not write this dependence explicitly. We
can construct a differential equation for the rate of change
in individuals in any aggressive subpopulation a(x):

]a(x) 2a(x)
5 2p(x)h(x)Sv 2 . (A1)H]t ta

As in Broom and Ruxton (1998), we assume that the popu-
lation has achieved a temporal equilibrium, so that

]a(x)
5 0; i.e.,

]t

a(x)
p(x)h(x)Sv) 5 (A2)H ta

for all values of x.
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The rate of change in a given handling population h(x) can
be shown to be

]h(x) ]h(x) a(x)
5 1 2 p(x)h(x)Sv . (A3)H]t ]x ta

Under the assumption of temporal equilibrium condition, we
have

]h(x)
5 0,

]t

then (combined with Equation A2), this implies that

]h(x)
5 0. (A4)

]x

Thus h(x) must be independent of x and given by

H
h(x) 5 . (A5)

th

Substituting the result of Equation A5 into Equations A1 and
A3 and integrating over the range 0 to th, we obtain the same
equations as in Broom and Ruxton (1998), with the sole dif-
ference that p, the fixed probability of entering a contest in
the original model, is replaced by

th1
p(x) dx.Eth 0

Thus, in the same way, these equations can be combined to
give an expression equivalent to the analogous equation of
Broom and Ruxton (1998), with this sole difference, for the
equilibrium fraction of individuals handling a food item:

2thD H H
p(x) dx 1 (C 1 1) 2 C 5 0, (A6)E1 21 2 1 2t P Ph 0

where C 5 thvffC and D 5 tavHP. Because C and D are always
positive, this quadratic has always and only one positive root
for H/P.

This is as far as we can develop the general framework; we
must now consider the apple and orange models separately.

The apple model

The original model of Broom and Ruxton (1998) made the
following predictions based on the value of critical parameter
combination, tavff. If this parameter group is greater than uni-
ty, then the best strategy is p 5 0 and no food items should
be contested for; if the value is less than unity, then the best
strategy is p 5 1, and all food items should be contested; if
the parameter group is equal to unity, then all strategies of
whether or not to challenge handlers are equally as effective.

Following the argument in the section describing the apple
model in the main text, if challenging is ever a good strategy,
then p(th) 5 1. Similarly, it must always be true that p(0) 5
0, and so there is a critical amount of handling remaining in
a food item (Xa). On discovering a handler in state h(x), p(x)
5 1 if x . Xa, and p(x) 5 0 if x , Xa. In the dividing case,
where x 5 Xa, all strategies of choosing whether to be ag-
gressive are equally successful. We now seek an expression for
Xa. If the calculated value of Xa is greater than th, then the
optimal strategy is to never challenge. It is never the case in
this model that to always unconditionally challenge is the op-
timal strategy. Under our argument above, we can simplify
Equation A6 considerably, since

th

p(x) dx 5 t 2 X . (A7)E h a
0

We must now find an expression for H/P in terms of Xa.

Because individuals extract food at a constant rate while han-
dling, and if for convenience we scale this rate to be unity,
then the long-term rate of food uptake is simply the fraction
of time spent handling, H/P.

Let us imagine a situation where an individual is searching
and encounters a handling individual of the critical type
h(Xa). Now, all strategies for deciding whether to challenge
yield identical results, so let us assume that the focal individual
always challenges, investing a time ta/2. On 50% of occasions
it loses the contest and returns to searching immediately. On
the other 50% of times, it wins the food item. On such oc-
casions it will always consume the remains of the food item
for a time Xa, free from contest by other individuals, because
the food item is no longer worth challenging for. Thus we can
work out the long-term average reward rate for challenging
in these circumstances easily. The ratio of the expected reward
to the expected time to obtain this reward is

0.5X 1 0.5(0) Xa a5 . (A8)
0.5t 1 0.5X X 1 ta a a a

We thus obtain:

H Xa5 (A9a)
P X 1 ta a

if 0 , Xa , th. For Xa 5 th, we require

H th. . (A9b)
P t 1 th a

Substituting Equation A7 and Equation A9 into Equation A6
gives

3 2DX 2 X (t (D 1 1))a a h

21 X (t t (C 2 1)) 1 t t C 5 0 (A10a)a h a a h

for 0 , Xa , th and
3 2 22t 1 t t (C 2 1) 1 t t C , 0 (A10b)h h a a h

for Xa 5 th.
Equation A10a is a cubic in Xa and thus has at most three

roots. The left-hand side (LHS) is negative in the limit Xa →
2`, positive when Xa 5 0, and positive in the limit Xa → `.
If tavff , 1, then LHS is negative when Xa 5 th, and so there
are exactly three roots, one of which is negative, one greater
than th, and a unique allowable solution between 0 and th.
Thus there is a unique solution in this case.

When tavff . 1, Equation A10b is satisfied, and so p(x) 5 0
for all values of x is a solution, and no kleptoparasitism will
occur. This is logical because the apple model makes chal-
lenging for already partially handled food items less attractive
than the original model. A partially handled prey item now
yields less reward for the same investment in an aggressive
encounter. Hence, under circumstances when challenging was
unrewarding in the original model, it will remain so under
the apple model. Note, however, that for some parameter val-
ues Equation A10a can have two roots between 0 and th. Be-
cause LHS of Equation A10a is positive when Xa 5 0, the lower
root has a negative derivative, meaning that a slightly larger
value of Xa (i.e., less kleptoparasitism) gives kleptoparasitism
an advantage and vice versa, so that this root is a stable solu-
tion. Similarly, at the second root the derivative is positive so
that such an increase in Xa gives kleptoparasitism a disadvan-
tage and so the root is unstable. The higher of these turns
out be unstable, but the lower is stable and is thus an alter-
native solution. If challenging is already prevalent in the pop-
ulation, then the expected reward of finding a food item is
lower, so that the prospect of obtaining one of lower than
maximum value may still be worthwhile because others will
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not challenge for it when its value becomes sufficiently low.
See the numerical example for a demonstration of this.

Hence, for any combination of values for the ecological var-
iables P, f, vf, vH, th, and ta, we can find Xa and hence describe
the optimal strategy for kleptoparasitism under the apple
model.

The orange model

From the description of the orange model in the main text,
we expect p(th) 5 0, unless challenging is always optimal, and
p(0) 5 1 if challenging is ever a good strategy. There is again
a critical amount of handling remaining in a food item (Xo).
Thus, on discovering a handler in state h(x), a searcher
should always choose p(x) 5 1 if x , Xo, and p(x) 5 0 if x .
Xo. In the dividing case, where x 5 Xo, all strategies of choos-
ing whether be aggressive are equally successful. We now seek
an expression for Xo.

Let us define F[S] as the expected further time until con-
sumption of a food reward by an individual currently search-
ing, F[a(x)] and F[h(x)] are defined similarly. Hence,

F[S] 5 F[a(X0)]. (A11)

From the rules of our model

F[a(x)] 5 0.5(F[h(x)] 1 0.5t ) 1 0.5(F[S] 1 0.5t )a a

5 0.5(F[h(x)] 1 F(S) 1 t ). (A12)a

Combining Equations A11 and A12 gives

F[S] 5 F[h(X0)] 1 ta. (A13)

We now introduce Q as the probability that a searcher’s next
transition is to being an aggressor rather than a handler, and
T as the expected time to that transition. Using these defini-
tions,

XoQ
F[S] 5 T 1 (1 2 Q)F[h(t )] 1 F[a(x)] dx. (A14)h E1 2X0 x50

A searcher meets handlers at a rate vHH. At equilibrium all
h(x) are equally likely to be encountered, but only a fraction
(Xo/th) of these encounters should lead to aggression. Hence,
the rate of transitions to aggressive states is (vHHXo)/th. The
rate of transition to handling is simply vff. Thus we can write

1 thT 5 5 , (A15)
v HX C 1 v HXH o H ov f 1f th

Similarly,

v HXH o

t v HXh H oQ 5 5 . (A16)
v HX v HX 1 CH o H o1 v ffth

It is clear that

F[h(th)] 5 (th 2 X0) 1 F[h(X0)] (A17)

because a handler will not be challenged until its prey item
requires less than Xo further handling. Substituting Equations
A12, A13, A15, A16, and A17 into Equation A14 and rear-
ranging gives

t C 2 t (C 1 1) 1 CXa h o

Xo

5 0.5v H (F[h(x)] 2 F[h(X )]) dx. (A18)H E o
x50

Define r as the rate of challenges on any handler holding

a food item requiring less than Xo additional handling time.
Then in any small time interval of length dx, the probability
of being challenged is approximately rdx. If a challenge oc-
curs with handling time x remaining, an extra time, ta/2, is
taken if the contest is won, and an extra time, F[S] 2 F[h(x)]
1 ta/2 is taken on average if the contest is lost because the
handler then reverts to being a searcher. It is easy to show
that

d r t r ta aF[h(x)] 5 1 1 1 F[S] 2 F[h(x)] 1 .1 21 2 1 21 2dx 2 2 2 2

(A19)

Substituting for F[S] using Equation A13 gives

d
F[h(x)] 5 1 1 rt 1 0.5r(F[h(X )] 2 F[h(x)]). (A20)a odx

Now r is simply vHS. However, at equilibrium the rate of in-
dividuals returning to searching from handling (H/th) is
equivalent to those leaving searching for handling, vffS. This
allows us to substitute for S and obtain

v H H DHr 5 5 . (A21)1 21 2C P t Ca

Noting that F[h(Xo)] is independent of x, we make the sub-
stitution

y 5 F[h(x)] 2 F[h(X0)]. (A22)

to obtain

dy
5 1 1 rt 2 0.5ry. (A23)adx

This can be solved using the condition that y 5 0 when x 5
Xo to give

2 r(X 2 x)oy 5 (1 1 rt ) 1 2 exp , (A24)a 1 2[ ]r 2

which is negative for all x , Xo.
Substituting this into Equation A18, using Equation A21,

and rearranging gives

C 1 1
t 2 t 1 Xa h o1 2C

2 rXo5 (1 1 rt ) X 1 1 2 exp . (A25)a o 1 21 1 22[ ]r 2

This gives us one equation in r and Xo. We can obtain another
from Equation A6 because p(x) is unity for 0 , x , Xo and
zero for Xo , x , th. This gives us:

2H DX Ho 1 (C 1 1) 2 C 5 0. (A26)1 2 1 2 1 2P t Ph

Combining this with Equation A21 and rearranging gives
2 2X Ct r 1 t t r(C 1 1) 2 Dt 5 0. (A27)o a a h h

The right-hand side of Equation A25 is always negative for Xo

. 0, and equal to zero when Xo 5 0. It follows that there is
no solution to Equation A25 if

C 1 1
t 2 t . 0, (A28)a h1 2C

which can be rearranged as

tavff . 1 1 C. (A29)

If parameter values are such that Equation A29 is satisfied,
then the best strategy is to never enter into aggressive inter-
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actions. The equivalent condition for the original and for the
apple model is

tavff . 1, (A30)

which is a less restrictive condition. Thus, the orange model
predicts aggression under ecological circumstances where the
other two models do not. Conversely, if aggression is predicted
never to occur in the orange model for a given combination
of parameter values, then always avoiding aggression would
also be the optimum strategy in the other two models.

Considering the other extreme, when is it best to always
challenge? If Xo 5 th, then the left-hand side of Equation A25
is equal to ta 2 th/C and the right-hand side is negative (let
us say, equal to 2a). Thus we obtain

(ta 1 a)fvf 5 1. (A31)

Thus, it is always best to challenge if tavff is sufficiently , 1.
In particular, when tavff 5 1, there is a solution 0 , Xo , th.
We cannot obtain the condition when always challenging is
the best strategy algebraically, this must be found numerically.

Simultaneous solution of Equations A25 and A27 can be
used to find Xo. If all solutions are out with (0,th) and tavff is
sufficiently , 1, then the best strategy is to always challenge.
Notice that in the original model the condition for always
challenging to be the best strategy was simply than tavff was ,
1. The condition for the orange model (Equation A29) is
more strict. Thus, if always challenging is the best strategy (for
a given set of parameter values) in the orange model, then it
would also be the best strategy in the analogous original mod-
el. However, under some circumstances, the original model
will predict always challenging as the best strategy, but the
analogous orange model will predict on optimal strategy
where recently discovered prey items are not competed for.
Notice also that always challenging is never an optimal strategy
in the apple model.
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