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You can run—or you can hide: optimal
strategies for cryptic prey against pursuit
predators
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We consider the optimal behavior of a cryptic prey individual as it is approached by a predator searching for prey. Although the
predator has not yet discovered the prey, it has an increasing likelihood of doing so as it gets closer to the prey. Further, the closer
the predator is to the prey when it discovers it, the more likely the predator will be to capture the prey. These arguments suggest
that the prey should flee before the predator discovers it. However, the act of fleeing will alert the predator to the presence of the
prey and trigger an attack that might not have occurred otherwise. We capture these conflicting outcomes in a mathematical
model, which we then use to predict the optimal behavior of the prey and predator. We argue that the optimal strategy for the
prey is either to run as soon as they detect a predator approaching or to only flee in response to having been detected by the
predator. Running as soon as the predator is detected is associated with low predator search speeds, a low nonpredation cost to
running, a large advantage to the prey in initiating chases rather than reacting, limited ability to spot the predator at distance,
a high ability to spot prey by the predator, and a high probability that chases will be successful. The optimal strategy for the
predator depends on whether its current trajectory is taking it closer to or further from the prey. In the latter case, the predator
should attack immediately on discovering the prey; in the former case, it should delay its attack until it reaches the point on its
current trajectory where distance to the prey is minimized. Key words: antipredator strategies, coursing predators, crypsis, fleeing,

flight, predation, predator-prey interactions, prey detection. [Behav Ecol 16:534-540 (2005)]

Predation is an important selection pressure on many
species. Encounters between predators and prey are
ubiquitous in the natural world and can take a variety of
forms. Here, we are interested in interactions where prey can
escape the predator by fleeing. Further, we assume that
provided it has a sufficient head start, the prey can evade
predation, either by being able to outrun the predator or by
safely reaching a refuge. The only previous theoretical work
on this subject is the graphical model of Ydenberg and Dill
(1986). The key prediction of their model was that prey may
not immediately flee from an approaching predator, even if
the probability of escaping from the predator is reduced by
this delay. The mechanism behind delaying is that the prey
must often trade off the cost of being predated against other
potential benefits, such as food gathering. If delaying flight
allows animals to feed for a little longer, then under some
conditions it may be optimal for the prey to pay an increased
risk of predation for this extra food. As they acknowledge,
with this model Ydenberg and Dill (1986) were making
explicit an assumption which several previous authors had
considered implicitly: for example, Dill, 1974; Greig-Smith,
1981; Lazarus, 1979; Margurran et al., 1985; Passano, 1957;
Seghers, 1981. Here, we introduce a mathematical model that
allows us to explore issues surrounding fleeing from predators
that simpler graphical arguments cannot adequately describe.

We have in mind prey that are initially stationary and to
some extent cryptic in their environment such that predators
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cannot detect them at a distance. Examples include ungulate
calves hiding in long grass, many cryptically colored ground-
nesting birds, and flatfish lying on the sea bottom. We
consider a predator-prey encounter to begin when the prey
detects an approaching predator. Implicit in this is that prey
can detect a predator at a greater distance than the predator
can detect the prey. This will be reasonable for many systems
where predators are bigger than their prey. Also, the fact that
we consider cases where the predator is moving and the prey
is still argues that the prey is likely to detect the predator first.
Since the predator has yet to detect the prey when the
interaction begins, there is no reason to expect that its
trajectory will be taking it directly toward the prey. However,
even if not heading directly for the prey, the distance between
the two individuals can close if the predator is moving broadly
in the direction of the prey. The closer the predator gets to
the prey, the more likely it is to detect it. Worse still for the
prey, the closer the predator is when it detects it, the more
likely it is that the ensuing attack by the predator will be
successful. Hence, fleeing immediately on detecting the
predator appears an attractive strategy to the prey. However,
there is a potential cost to fleeing over and above the lost
opportunity for other activities considered by Ydenberg and
Dill (1986). Fleeing from the predator will in most cases alert
the predator to the presence of the prey individual. The
predator may respond to this discovery with an attack, which
might be successful. Hence, there may be a countervailing
pressure for the prey to sit tight, rely on its crypsis, and only
flee if it perceives that the predator has detected it and is
attacking. This strategy may allow the prey to survive simply
because the predator passes by without detecting the prey’s
presence. In the next section, we will introduce a model that
explores how animals might trade off these selection
pressures. In this paper, we model fitness in a very simple
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Table 1
Definitions of variables used in the models

r the maximum distance at which prey can detect
predators

v this identifies a point on the trajectory of the predator
scaled such that v € [—1,1]

0 angle between the predator’s trajectory and a radial

line from the prey to the point where the predator
enters the circle of radius, r

s speed of movement of the predator while searching for
prey
d(v) distance from predator to prey when predator is at

point v on its trajectory
e probability of the predator successfully catching the
the probability of the predat fully catching th
rey if it initiates an attack at point v on its trajecto
prey if it t ttack at point ts trajectory
A the advantage (measured as distance covered) the prey
gets from initiating a chase itself

gld(v)] the probability (per unit time) that the predator (when
at point v) detects the prey

A(v) the probability that the prey has been detected by point
v (starting at v = —1)

t time taken by the predator to reach point v

c the cost of surviving through outrunning a predator,
compared to surviving by avoiding running

o increasing o increases the capture success of the
predator (at all distances) for the example functional
form for the function f

B increasing B increases the effect of distance in reducing
capture success for the example function form for the
function f

a increasing a increases probability of detection in the

example functional form for the function g

way; the payoff to the prey is solely about its probability of
surviving a given encounter with a predator. The key
difference between our model and that of Ydenberg and
Dill (1986) is in the cost to the prey associated with fleeing
early. In the model of Ydenberg and Dill (1986) this cost is the
opportunity costs associated with reduced time spent feeding,
for example; in our model, the cost to the prey is in alerting
the predator to its presence and position. These costs are not
mutually exclusive, so our model can be seen as complemen-
tary to the previous theory of Ydenberg and Dill (1986).

It is likely that prey can perceive the difference between
a predator that has not detected it and is searching its
environment and a predator that has detected the prey and is
launching an attack directly toward it. This will often be
revealed in a change in direction of motion of the predator
accompanied by an increase in speed of movement (e.g.,
Woodbury, 1986). However, if during its search, a predator
detects a cryptic prey item and its current trajectory takes it
nearer the prey (albeit not directly toward it), then the
predator may benefit from delaying its attack, carrying on its
current trajectory, and only launching an attack when it has
reduced the distance between itself and the prey. The
predator gains if the prey requires the actual launch of an
attack to reveal to it that the predator has discovered its
presence and position. Hence, another aim of our paper will
be to simultaneously explore optimal strategies of the
predator as well as the prey. In contrast, Ydenberg and Dill
(1986) focussed purely on prey behavior and did not consider
any flexibility in predator strategy.

GENERAL MODEL DESCRIPTION

We assume that the predator moves in an undeviating straight
line, unless it detects the prey individual. The interaction
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Figure 1

The trajectory taken by the predator can be represented as a chord of
a circle of radius r centered on the prey (see vertical line on left panel
with arrows giving direction of travel). We denote the point when the
prey enters this circle as v = —1, the point when predator and prey are
closest as point v = 0, and the point when the predator leaves the
circle as point v = 1. Hence, any point on the trajectory can be
described by a unique vvalue in the range [—1,1]. The position of the
trajectory is described by the angle between the trajectory and a radial
line from the prey to point v = —1, denoted 6 in the left panel. The
length of the trajectory is given by 2r cos 6 and the minimum distance
between predator and prey (occurring when v = 0) is rsin 6. At any
point v on the trajectory, the distance between predator and prey can
be found by simple triangular geometry (see right panel).

between prey and predator starts when the predator is
a distance r from the prey (see Table 1 for definitions of all
variables used in the model). This can be thought of as the
maximum distance at which the prey can perceive the
predator. The consequence of this assumption is that we
begin our consideration when the predator is at a distance r
from the prey, at which point it is assumed to not have
detected the prey yet.

We consider the path of the predator until such time as it is
beyond the visual range of the prey again, that is, more than
a distance r away from the prey. This path is shown as the line
from v = —1 to v = 1 within the circle of radius rin Figure 1.
All points on this line can be uniquely defined by a value v €
[—1,1]. The trajectory of the predator makes an angle 6 with
a radial line from the point when the predator first enters the
circle (defined by v = —1). By simple triangular geometry, the
predator travels a distance 2r cos 0 before leaving the circle
again. Its point of nearest approach to the prey occurs halfway
along this line (i.e., when v = 0). At this point, the geometry
of right-angled triangles means it is at a distance 7 sin 0 from
the prey. We assume that the predator moves at a constant
searching speed s. At a given point v (see Figure 1), the
distance from predator to prey is d(v) given (using Pytha-
goras’ theorem; see Figure 1) by

[d(v)]* = (rsin0)* + (vr cos 0)*, (1)
which (using the identity sin® 0 + cos® 0 = 1) simplifies to
d(v) = r/[1 — (1 — v2) cos2 0]. (2)

If at this point the predator starts to chase down the prey
(hereafter “attacks”), then the prey will flee in response and
the predator will be successful in catching the prey with
probability f[d(v)]. We assume that attacks are less likely to be
successful if launched from a greater distance and that the
probability of success falls to zero if predator and prey are
sufficiently far from each other.

If alternatively the prey runs without being triggered by the
predator (hereafter “flees”), then the predator will respond
by chasing it. This chase will have a probability of capture
fld(v) + A] for some positive constant A. This constant can
be interpreted as the advantage that the prey gets from
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initiating a chase itself (fleeing) rather than responding to
a predator’s attack. It can be seen as the distance covered by
the prey in the time it takes the predator to detect and
respond to the fleeing prey.

While on its initial trajectory, the probability per unit time
that the predator will detect the prey is g[d(v)], where d(v) is
the distance from predator to prey at that time. We assume
that the prey is less likely to be discovered from a greater
distance away and that the probability of discovery falls to zero
if predator and prey are sufficiently far apart. If we define A(v)
as the probability that the prey has been detected by point v
(starting at v = —1), then the probability of the prey not being
detected by point v, [1 — A(v)], is the accumulation of it not
being detected at any point on the predator’s trajectory;
mathematically this is given by the integral

1= a0 —exp{ - [ elatalar}, (3)

where ¢ is the time taken by the predator to reach point v.
Taking the logs of both sides gives this equation in a more
convenient form:

t

~tnft = A()] = [ gld(ua. (4)

It would be easier to evaluate this as an integral over scaled
distance v than over time #, so we need a relation between
these two variables. Since we know that the predator travels at
speed s and it travels a distance 2r cos 0 as v changes from —1
to 1, it is easy to derive the relation

(v+1)rcosb

N

(5)

Differentiating this with respect to v and using this to
change the variable of the integral in Equation 4 gives

—wlt - a@] = (“20) [ glalae. )

S 1

Let us assume that surviving by not running is preferable to
the prey to surviving by successfully evading the predator in
a chase. Hence, if a chase occurs and the prey survives, we will
decrement the prey’s payoff by a small fixed factor ¢. This
could be seen as the time, energy, or injury costs associated
with running. There are three possibilities for an interaction
between a predator and a prey: no chase can occur, a chase
can be initiated by the predator attacking, or a chase can be
initiated by the prey fleeing; the payoffs to the predator and
prey from these three situations are given in Table 2. We now
explore the model’s predictions in a number of different
cases.

Case 1

The predator must attack as soon as it detects the prey, and it
can see behind it (and so may still attack after it has passed the
point of closest approach [v = 0]).

We are interested in the optimal fleeing strategy for the
prey. One strategy (which we call strategy N) would be to only
run if attacked (i.e., the prey never initiates a chase by
fleeing). The payoff for never fleeing is given by

RN = [ 0= st - o[ 5 avs - aml )

The first term in the above equation is the payoff for
escaping an attack initiated by the predator at each point v
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Table 2

Payoffs to both predator and prey from the three different outcomes
of an interaction; see Table 1 for definitions of all variables
Situation

Prey’s payoff Predator’s payoff

No chase 1 0
Attack-initiated chase (1 — /{1 — f[d(v)]1} Sfld(v)]
Fleeing-initiated chase (1 — ¢){1 — f[d(v) + Al} fld(v) + A]

multiplied by the probability density that the attack is initiated
at that point and integrated over the whole trajectory from
v= —1 to 1. The second term is the payoff for never having to
run multiplied by the probability of no attack being launched
by the predator over the whole trajectory.

An alternative strategy (strategy V) could be to flee if the
predator attacks or if the predator reaches point v = Vwithout
attacking, for some point V € [—1,1]. The payoff from this
strategy is

R = [ 1= a5

X {1 = fld(V) + Al}. (8)

}dv+ 1—AV)]1-¢)

Now the first term is the payoff from the predator initiating
an attack at some point v € [—1,V] multiplied by the
probability density that an attack is launched at this point
and integrated over all possible v values. The second term is
the payoff from fleeing at point V multiplied by the
probability that the predator has not attacked by this point.

The case of fleeing as soon as the predator is detected
(strategy —1) is obtained by simply substituting V = —1 in
Equation 8

R(=1) =[1=f(r+A)J(1 - c). (9)

From the form of Equation 8, we can see that for any V #
—1, R(V) is a weighted average of terms of the form (1 — ¢)
[1 — f()] that are never bigger than R(—1) and so R(—1) >
R(V) for any V# —1. This means that the optimal strategy is
either to run immediately on seeing the predator [with payoff
R(—1)] or never to initiate a chase but only to run when the
predator initiates an attack [with payoff R(NV)]. Which of these
two is the optimal strategy depends simply on which of these
payoffs is greater, which in turn depends on the exact
functional forms assumed for f and g and specific values
assigned to parameters.

Case 2

We assume that the predator can still see behind it, but it now
need not attack as soon as it has seen the prey. Rather, it may
choose to close the distance between it and the prey before
launching an attack.

We will assume that the prey can play the same two
strategies as considered above: strategy N (never fleeing
unless attacked) or strategy V (flee if attacked or when
predator reaches point V).

The predator plays a strategy U, which involves delaying an
attack until point Uif the prey is detected before this point or
attacking immediately on detecting the prey if detection
occurs after this point (U € [—1,1]).

If V< U, then the prey will always flee before a predator
attacks and (from Table 2) will receive payoff

RV, U) = (1 = o1 — fld(V) + AJ}. (10)

Again, from Table 2, the predator receives payoff
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P(V,U) = fld(V) + A]. (11)

If V> U, then there are three possible outcomes of an
interaction: the predator may initiate an attack at point U, it
may initiate an attack at some point U < v < V] or the prey
may flee at point V. These three alternatives (respectively)
lead to three terms in the payoffs for prey and predator.

R(V,U) = A(U)(1 = o){1 = fla(U)]}

+ [Fa-on - s[4 a
FI- AW - O —/v) + A (12)

P(V,U) = A(U)/[d(U)]

+ [ rla) {dg—ﬂ dv
{1 = A(V)/[A(V) + AT} (13)

If the prey plays strategy N, then the predator will initiate an
attack at point U, it will initiate an attack at some point
between U and —1, or no attack will occur. These three
possibilities (respectively) lead to three terms in the payoffs to
prey and predator:

1
R(N,U) = A(U)(1 = o){1 = fld(U)]} + /( (1=¢)

(1 = o)) | 4

v

} do+[1 A1), (14)

PN, U) = AU/ a(0)] + [ lato)]

X {%(Uv)} duv. (15)

The payoff to the prey for running immediately on
detecting the predator is obtained by simply substituting
V= —1 in Equation 12

R(-1,U)=(1=¢)[1 = f(r+ A)]. (16)

By a similar argument to that used before for Equation 8,
R(—1,0) is greater than the weighted average of similar terms
that constitutes R(V, U) for all V# —1. This is true for any U,
so whatever the predator’s strategy, the prey’s best strategy will
be to either never flee unless attacked (strategy N) or flee
immediately on detecting the predator (strategy —1). If
strategy —1 is adopted, then the payoffs to both parties are
independent of the predator’s strategy. Let us then consider
the case where the prey picks strategy N and consider what
value of U maximizes the predator’s payoff P(N, U) given by
Equation 15.

We would expect that if the predator is more successful the
nearer it is to the prey when it attacks, then f[d(v)] reaches its
maximum when v = 0 and f[d(v)] > f[d(y)] for all v € [0,y).
That is, P(0,N) > P(y, N) for any y > 0. Hence, the predator’s
best value of U lies in [—1,0] and not in (0,1]. This makes
intuitive sense, as it never pays the predator to delay attacking
until a point when it is further away from the prey than when
it originally spotted it. It is also clear that f[d(0)] > f[d(x)] for
all x € [U0), and since the prey will not flee unless the
predator attacks, P(U, N) is less than P(0,N) for any U < 0.
Thus, the predator maximizes its payoff by playing strategy
U= 0. Since the predator’s strategy does not matter when the
prey plays strategy —1, then under all circumstances the
predator should play strategy 0. That is, the predator should
delay attacking until the point of closest approach if it detects

537

the prey while the distance between prey and predator is still
declining. However, if the prey is detected after the point of
minimum separation, then an attack should be launched as
soon as the prey is detected. The payoff to the prey when the
predator plays this strategy is simply obtained by substituting
the appropriate strategy into the general expression of
Equation 14, giving either

R(N,0) = A0)(1 = o)f1 = /[d(0)]} + /0 (1—0)

x (1= a2 a0 - a7

if it plays strategy N or
R(—1,0) = (1 = ¢)[1 — f(r + A)] (18)

if it plays strategy —1. Hence, the prey should flee immediately
on detecting the predator if R(—1,0) > R(N,0) or only flee if
attacked otherwise. Which of these situations occurs depends
on the specific functional forms and parameter values chosen.

Case 3

Similar to Case 2, but the predator cannot detect prey after
it passes the point of closest approach (i.e., it cannot see
behind it).

From consideration of the way we developed our arguments
in Case 2, it is clear that these arguments apply in almost
unchanged form to Case 3. Specifically, the argument for why
the predator should adopt strategy 0 remains unchanged, as
does the argument for why the prey should adopt either
strategy N or —1. As before, in order to evaluate which of these
is optimal, the payoffs must be compared.

R(—1,0) is unchanged from Case 2, but consideration of the
structure of Equation 17 shows that R(N,0) simplifies to

R(N,0) = A0)(1 = o){1 = f[d(0)]} + [1 = A(0)].  (19)

The prey should adopt strategy —1 when R(—1,0) > R(N,0).
Using Expressions 18 and 19 and rearranging the resultant
inequality gives this condition as

1 A(0) < f—[d](f[);}((;){ J(:;A) . (20)

An example situation with specific functional forms
for fand g

We will now introduce specific functional forms into the
general Case 3. Specifically, we will assume that the probability
of an attack being successful declines exponentially with
distance between predator and prey at the point when the
predator begins its attack: that is,

J(d) = aexp(—pd), (21)

for positive constants o and B. We also need to specify the
probability per unit time of detecting the prey a distance
d away. This too should decline with distance, and we adopt
the form

a

gl ==, (22)

for positive constant a. With these two functional forms, the
encounter is exactly specified by the values given to 1 0, A, ¢, s,
a, o, and P.

Using Equations 2 and 6 together with the standard integral

dx 1 (X
/ 2+a a tan (;) (23)

and the identity
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-1 T
Y P
tan (ta 6) =0 5 (24)

we can obtain a simple expression for the left-hand side
(LHS) of Equation 20

1 - A(0) = exp [— (W s‘i‘n e) (g - e)} . (25)

The right-hand side (RHS) can also be simplified. First, we
note that d(0) = rsin 0, then using Equation 21 we obtain

flaO)] - f(r+4A) 1 —exp[=B(r+ A —rsin6)]
Sf1d0)] + % 1+ [ﬁ] exp(Brsin 0)

so the condition for prey to adopt strategy —1 is

a T 1 —exp[-B(r + A — rsin 0)]
P {_ (m) (§ - 6)} - 1+ |:a(1‘—():| exp(Prsin 0) .

(27)

If Equation 27 is not satisfied, then strategy N should be
adopted. If 6 = 0, then the predator is heading directly for the
prey, and in this case, the best strategy is to flee immediately
(strategy —1) since the predator will ultimately discover the
prey. In the opposite extreme case where 0 = n/2 Nis the best
strategy as the predator immediately leaves the interaction
circle of radius rand disappears out of the prey’s visual range.
Notice also that the LHS of Equation 27 increases with
increasing 0, and the RHS decreases with increasing 0. Hence,
for all combinations of parameter values there exists a range
of initial angles [0,¢) for which —1 is the best prey strategy
and a range of angles [$,n/2] for which Nis the best strategy.
This critical angle ¢ is given by

oo 5 o)] - e

(28)

Consider the effect of increasing the value of ¢ in Equation
28. On the LHS, increasing ¢ decreases the magnitude of the
argument of the negative exponential and so increases the
magnitude of the term on the LHS of the equality. In contrast,
increasing ¢ can be seen to decrease the magnitude of the
RHS of the equality. Thus, if we increased ¢ alone, then the
equality would break down unless we alter the value of
another parameter to increase the magnitude of the RHS,
decrease the magnitude of the LHS, or both. Decreasing s can
be seen to act to increase the magnitude of the LHS, and so
we can deduce that (quite generally, regardless of the values
attached to other parameters) decreasing the predator’s
speed of movement while searching (s) acts to increase the
attractiveness of running as soon as the predator becomes
visible (increasing ¢). By similar reasoning, increasing ¢ and
so increasing attractiveness of the strategy of running as soon
as the predator becomes visible is associated with a low
nonpredation cost to running (small ¢), a large advantage to
the prey in initiating chases rather than reacting (large A),
limited ability to spot the predator at distance (low 7), a high
ability to spot prey by the predator (high ), and a high
probability that chases will be successful (large o). All these
relationships make intuitive sense except perhaps the nature
of the association between ¢ and o. It might initially appear
that if chases are very likely to end in success for the predator,
then the prey might be better to sit tight and hope that it is
not detected. However, this does not occur because o is
a multiplicative constant and increasing o increases the
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Figure 2

The critical value of trajectory angle (¢)—calculated from Equation
28—as a function of the sensitivity of attack success to distance
between predator and prey (B). For angles below this critical angle,
the prey should play strategy —1 and run immediately on detecting
the predator; for angles above this, it should play strategy Nand only
flee if attacked. (Other parameters, as defined in Table 1, are given
the following values ¢ =2, s=1, r=30, A=5, ¢=0.01, and 0. = 0.8.)

probability of being caught at all distances by an equal
multiple. In fact, the strategy would be independent of o were
it not for the small cost of running (¢). When o is low, the
strategy of not running unless attacked becomes more
attractive because this gives the prey the chance to save the
cost ¢ (if it is not detected) for very little increase in its risk of
being captured. In fact, it is B which governs the relative risk
in running early or late. The relationship between ¢ and B is
nonmonotonic (see Figure 2). When B is very low, running as
soon as the predator is sighted becomes less attractive because
there is little advantage to be gained from initiating a chase
compared to responding only to an attack (i.e., the effect of A
is small) and the risk of an attack is relatively insensitive to
changing dif the predator is allowed to approach. At very high
B values, the predator must get very close to the prey before
initiating an attack to have a substantial change of success and
so fleeing when the predator is first spotted becomes less
attractive unless the trajectory of the predator will bring it very
close. Hence, there is an intermediate value of P that
maximizes ¢ (see Figure 2).

DISCUSSION
Model predictions

We have demonstrated that the optimal strategy for the prey is
either to run immediately on seeing the predator or never to
initiate a chase but only to run when the predator initiates an
attack. This occurs because, unlike the case in the model of
Ydenberg and Dill (1986), there is no advantage to delaying
fleeing so as to gain a little more time for some activity such as
feeding; hence, if the prey is going to flee of its own volition, it
should do so as soon as possible. We further demonstrate that
this holds true whether the predator attacks immediately on
discovering the prey or whether the predator hides the fact
that it has discovered the prey and delays its attack until it has
closed the distance to the prey. The optimal strategy for the
predator depends on whether its current trajectory is taking it
closer to or further from the prey. In the latter case, the
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predator should attack immediately on discovering the prey;
in the former case, it should delay its attack until it reaches
the point on its current trajectory where distance to the prey is
minimized. Interestingly, this is the best strategy even though
delay appears to give the prey the opportunity of gaining
advantage by fleeing of its own volition before the attack
occurs. In fact, it is never optimal for the prey to do this; as
discussed above, it is never optimal for the prey to flee of its
own volition except when it initially detects the predator
(which is always before the predator has detected the prey in
our model). Running as soon as the predator becomes visible
is associated with low predator search speeds, a low non-
predation cost to running, a large advantage to the prey in
initiating chases rather than reacting, limited ability by the
prey to spot the predator at distance, a high ability to spot
prey by the predator, and a high probability that chases will be
successful.

Testing theoretical predictions

Detection of fleeing and of change in the behavior of the
predator (specifically, initiating an attack) should be relatively
easy from a videotape of predator-prey interactions, but we
note that obtaining such data on naturally occurring predation
events is logistically challenging, although not impossible
(e.g., Caro, 1995; Fitzgibbon and Fanshawe, 1988). Much more
challenging methodologically will be to detect when a prey
individual has become aware of the presence of a nearby
predator, but this may be revealed by an alert posture, changes
to vigilance patterns, measurable neurophysiological re-
sponses such as heart rate, or even by calls to conspecifics
(e.g., Brown et al., 1999; Caro et al., 1995; Gabrielsen et al.,
1977; Holley, 1993; Leal and Rodriguez-Robles, 1997).

Our model makes testable predictions about predator
behavior. When a predator can disguise from a prey individual
that it has detected the position of that prey individual, then
we predict that predators moving on a trajectory that will
bring them closer to the prey should delay attacking until they
reach the point of closest approach to the prey. If anything, it
will be more methodologically challenging for a scientist to
detect when a predator has detected a prey item than vice
versa if the predator seeks to avoid altering its behavior in
a way that would reveal its state of awareness to the prey.
However, our prediction can be explored indirectly, as we
predict that attacks are more likely to occur when the
predator is moving away from the prey (v values near 1 in
the model) than when the predator is the same distance away
but moving toward the prey (v values around —1).

The model makes a further set of predictions about prey
behavior. Specifically, it predicts that two strategies may be
observed: either fleeing immediately when the predator is
detected (and before the predator has detected the prey) or
only fleeing in response to a direct attack by the predator (i.e.,
on receiving confirmation that the predator has detected it).
The frequency with which one strategy or the other should be
used depends on a range of different environmental circum-
stances. The strategy of fleeing as soon as the predator becomes
visible is associated with slow predator search speed, a low
nonpredation cost to running, a large advantage to the prey
in initiating chases rather than reacting, limited ability to spot
the predator at distance, a high ability to spot prey by the
predator, and a high probability that chases will be successful.
These predictions should be amenable to empirical testing
either by comparative analysis or by manipulation of the
environment.

Because of the general unpredictability of naturally
occurring predation events, both in space and in time, there
is an obvious attraction to staging predation events in the
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laboratory. There are clearly ethical issues with such experi-
ments, but our predictions about optimal prey behavior may
be effectively studied using a model predator. Small riverine
fish, such as sticklebacks and minnows, that commonly use
both hiding in available cover and fleeing as ways of evading
predation may be a good system for empirical testing of the
predictions of our model. Perhaps, a model predatory fish
moving along a wire could be used as the “predatory”
stimulus. Our model predicts that fish that are to some extent
cryptic should flee only when they first detect the predator,
otherwise they should maximize their crypsis. The prey fish
could be provided with a clump of weed in the experimental
arena to provide opportunity for crypsis. The point when the
predator can first be detected can be modified by use of
opaque barriers in the arena. We would expect that non-
fleeing fish that have detected the model predator will still
change their behavior, perhaps by moving further into the
weed cover or by freezing. We can also manipulate factors
predicted to influence the attractiveness of fleeing. Particu-
larly easy to manipulate in this putative experimental system
would be the speed of the searching predator (sin the model)
and the maximum distance at which prey can detect the
predator (rin the model).

Other issues

Although the cost of fleeing considered here and that
considered by Ydenberg and Dill (1986) are not mutually
exclusive, we can make the following general predictions
about the relative importance of the two costs in different
ecological circumstances. If the prey is particularly obvious
such that predators can see them from a considerable distance
(e.g., an adult zebra grazing on the Savannah during the day),
then the Ydenberg and Dill (1986) model will be more
appropriate. Whereas, if the prey is cryptic such that predators
can pass reasonably close to it without detecting it (e.g.,
a juvenile gazelle lying motionless in long grass), then our
model should be more appropriate. Further, if attempted
predation is a frequent event, such that costs of flight are
significant to the daily energy or time budget of the prey, then
the Ydenberg and Dill (1986) model will be more appropriate;
whereas, if predation attempts happen relatively infrequently
to a prey individual (such that avoiding predation makes up
a small part of an animal’s time or energy budget), then our
model should be more relevant. If fleeing causes the predator
to lose a food item that it has invested time in acquiring (e.g.,
a cheetah being driven from a kill by approaching lions), then
Ydenberg and Dill’s model is more relevant. Whereas, if the
animal can quickly return to its previous feeding behavior as
soon as the predator has passed (e.g., many grazers), then our
model may be more relevant. These yardsticks should be open
to empirical testing, since the two models make clearly
different predictions. Specifically, our model predicts that
(when searching predators never spontaneously change di-
rection or do so sufficiently rarely that this situation can be
ignored) prey will only flee from a predator (initiating a chase)
at the point when they first detect a predator; if they do not
flee at that point, then they will only break cover and run at
some later point in response to an attack by the predator.
Conversely, the Ydenberg and Dill model suggests that fleeing
may not necessarily occur when the predator is first detected
(in agreement with our model) but may occur at some
subsequent point even if the predator does not initiate an
attack (unlike our model). Hence, predicting which model
appears to fit a particular ecological situation amounts to
determining whether prey delay fleeing after detection of
a predator and then subsequently flee at some later point not
triggered by a change in the behavior of the predator. If such
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a delay is commonplace, then this fits with the predictions of
Ydenberg and Dill; if such delays are not observed, this is more
in accord with our model.

The general model presented here should also provide the
theoretical framework for interpreting the evolution of
fleeing behavior in the wide range of ecological situations
where a searching predator approaches hiding prey. Further,
much of the methodology should be easily applicable to the
reverse situation: where a prey individual unwittingly ap-
proaches a hidden predator waiting in ambush. Exploration
of this situation should yield predictions about when the
predator should break cover and attack the prey.

We thank Andrew Bourke and two referees for helpful comments.
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