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Mark Broom* and Graeme D. Ruxtonb

•Centre for Statistics and Stochastic Modelling, School of Mathematical Sciences, University of Sussex,
Falmer, Brighton BN1 9QH, UK, and bDivision of Environmental and Evolutionary Biology, Graham
Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK

We present an individual-based model of a group of foraging animals. Individuals can obtain food either by discovering it
themselves or by stealing it from others (kleptoparasitism). Given that challenging another individual for a discovered food
item costs time (which could otherwise be spent searching for an undiscovered item), attempting to steal from another may
not always be efficient We show that there is generally a unique strategy that maximizes uptake rate—always or never challenging
others. For any combination of parameter values, we can identify which strategy is appropraite. As a corollary to this, we predict
that small changes in ecolgical conditions can, under some circumstances, cause a dramatic change in the aggressive behavior
of individuals. Further, we investigate situations where searching for undiscovered food and searching for potential opportunities
for stealing are mutually exclusive activities (Le., success at one can only be improved at the expense of the odier). Using game
theory, we are able to find the evolutionarily stable strategy for investment in these two activities in terms of the ecological
parameters of the model. Key words: evolutionarily stable strategy, food contests, foraging behavior, functional response, inter-
ference, game theory. [Bthav Ecoi 9:397-403 (1998)]

Eleptoparasitism occurs when one individual steals food
. from another. Interspecific and intraspedfic kleptopar-

asitism are widespread among vertebrates and are particularly
well documented for birds (see Brockman and Barnard, 1979,
Furness, 1987, for reviews). Here we focus on intraspedfic
kleptoparasitism and how it affects food uptake rates of indi-
viduals.

The food uptake rate of an individual (which is generally a
function of food availability and competition from other for-
agers) is often termed the "functional response." Recently,
Ruxton and Moody (1997) developed a functional response
based on a mechanistic description of food stealing (first de-
scribed by Holmgren, 1995). Their model assumed that in-
dividuals search for food items, and on discovery of a food
item, a finite amount of time was required to process that item
before ingestion (e.g., for some wading birds this could be
the time taken to open a shell of a mollusk). During this han-
dling time, if another individual happens upon the handler
then a contest for the prey item ensues. This contest always
produces a clear winner, but both contestants must invest a
finite amount of time in the challenge. This time "wasted" in
contests leads to an interference effect, where average uptake
rates decline with forager density (Holmgren, 1995; Ruxton
and Moody, 1997). However, a key, implicit assumption in
Ruxton and Moody's model was that a searching individual
that detects a handler always challenges it for its food item.
This may not always be the most time-effident strategy. Under
some circumstances it may pay individuals to pass up such an
opportunity and invest the time that would have been spent
in that contest in other activities, such as searching for an
undiscovered food item of its own. The first aim of this artide
is to extend the model of Ruxton and Moody (1997) and to
ask, If individuals can pass up opportunities to kleptoparasi-
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tize, then under what circumstances should they do so? In
other words, what is the optimal strategy for the use of klep-
toparasitism?

A second assumption of Ruxton and Moody (and many oth-
er studies that have derived functional responses from mech-
anistic models; e.g., Beddington, 1975; Holmgren, 1995; Rux-
ton et al., 1992), is that searching for food items and search-
ing for conspecifics handling food (and thus for opportunities
for kleptoparasitism) are separate activities that can be varied
independently. In fact, it seems likely that the effectiveness of
these related activities could be linked, so that individuals will
often only be able to enhance their effectiveness at one at the
expense of the other. As an example, we return to wading
birds feeding in an aggregation. If prey detection occurs by
sight, then, to optimize prey detection, the bird should focus
downward within the strike zone of its bill. However, it can
only observe conspecifics by looking sideways. There is a
trade-off between effectiveness in these two activities. For our
purposes, it does not matter if the bird resolves this by divid-
ing its time between scans for a prey and other birds, or
whether it can observe both simultaneously and divides its
concentration. Our suggestion is that individuals have a finite
capadty for searching, which they must split between search-
ing for undiscovered and discovered prey items. Our second
aim is to answer the question of how individuals should op-
timize this split, and how this optimal split is affected by eco-
logical parameters.

The foraging model

We consider a population of foragers with constant popula-
tion density, P. This population is divided into three subpop-
ulations according to activity: the density searching for food
items (S), the density handling a food item (H), and that in-
volved in an aggressive interaction, fighting over a discovered
food item (A). These activities are mutually exclusive so

5 + H+ A = P. (1)

We use these labels interchangeably for the density of individ-
uals involved in a particular activity and to identify the activity
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itself. Let us consider the rules of transition between these
states. The rates at which searchers encounter prey items and
handling conspecincs are, respectively, vf and t^H, where /
is the population density of food items. The rates i+ and Vf,
can be thought of as the rates at which space is searched mul-
tiplied by the probability of detecting an individual within that
searched space, to give the encounter rate. (Initially we will
consider these to be independent constants; later we will allow
searchers to differentially allocate search effort to either prey
or handlers.) Upon finding a food item, a searcher switches
to being a handler. It now requires an uninterrupted period
in which to handle this food item before being able to ingest
it We assume that this time is drawn from an exponential
distribution with mean ^ (see Lendrem, 198S, 1986b for a
biological justification for this distribution). If during the han-
dling time a searching individual challenges the handler for
its food item, then both individuals move to the aggressive
interaction subpopulation (A) for the duration of their con-
test This lasts for a time drawn randomly from an exponential
distribution with mean tJ2 (the factor is halved to keep sub-
sequent calculations as tidy as possible). After this, one indi-
vidual (the loser) returns to searching, while the other (the
winner) returns to handling. We assume that each participant
in a fight is equally likely to emerge the winner or loser. So
far, these rules mirror those of Ruxton et aL (1992) and sub-
sequent works. The key difference is now introduced: on
meeting a handling individual, a searcher is not forced to take
up an opportunity to fight (as previous works assume), but
rather it chooses whether to fight or continue searching. The
probability that it will enter into a potential fight is denned
as a constant, p. (Later we will explore how individuals should
set p so as to maximize their food intake rate.) Armed with
these rules, we can construct a set of equations describing the
rates of movement between the three subpopulations (see
Ruxton et al., 1992, for a similar procedure).

f-(!-*)-(*-«• 3 (2)

(3)

(4)

If the population is allowed to reach a dynamic equilibrium,
then we can solve Equations 1-3 (Equation 4 can be derived
from Equations 1-3 and so provides no further information)
to obtain a quadratic equation for the fraction of individuals
which are handling at any one time

. i

PlpD + l-Hc+i)-c 0, (5)

where, for convenience, we have defined the following
C = tjv, (6)

D = tJPvH. (7)

The roots of Equation 5 are given by
H - ( C + 1) ± V(C + I)1 + 4pCD

(8)

(Because pCD a 0 and C > 0, only the root where we add
the square root term will be positive.) An individual's uptake
rate is the rate at which it makes the transition from handler
back to searcher (which is the rate at which it gains food
items). Because all individuals are intrinsically identical, each
individual's uptake rate is the same as the population per cap-
ita rate of food items consumed (•y), which is given by

H

i where kleptoparasitism is a good or bad

(9)

strategy

We can ask how individuals should set p (their propensity to
take up opportunities to steal food) so as to marJTniry their
uptake rate. Consider a searcher that has just come upon a
handler and so has the option to attempt to steal die han-
dler's food item. If the searcher takes this option, then before
having a chance of capturing the food item, it must invest an
average time of tji, at the end of which it will only have a
50% chance of success. Hence, for this option (taken with
probability p), the rate at which searchers become handlers is
half of 2 /^ (Le., I / O • Now, if die option to attack is rejected
(with probability 1 — p), then the searcher must find a food
item for itself, this occurs at rate t̂ f. Hence for any value of
p, die mean time (T) taken for a searcher that has just en-
countered a handler to begin handling a food item itself is
given by

1 - t
T = —T-^

/« /
This can be rearranged to give

(10)

The optimal value of p is the one that minimizes T. There is
a simple straight-line relation between T and p. If f̂vf > 1,
then this straight line has a positive gradient (Le., T increases
with p). Hence under these conditions the optimal value of p
to play is zero. That is, under these conditions searchers
should always turn down opportunities to contest for a food
item. By similar arguments, when f̂vr < 1, men searchers
should always take opportunities to fight for food. In the
boundary case, where f̂vf • 1, dien accepting or turning
down the chance to contest both produce a food item in ex-
actly the same average time, and so it does not matter which
value of p an individual adopts; all will be equally effective.

We argue above that individuals should either never contest
for food or contest for food at every opportunity. Which tactic
works best depends on food availability and fight duration. If
food is easy to find or aggressive encounters are of long du-
ration, than all encounters should be avoided; if food is hard
to find or encounters are short lived, then all opportunities
for food stealing should be adopted. There is a critical point
at which this switch occurs. Notice that die optimal value of
p is independent of the forager density, P. This will be true
whenever third parties have no influence on the outcome of
a contest between two individuals.

nwi responseImplications for die

If the food density is high, such that tf\( > 1, then the optimal
strategy is p = 0. Substituting this into Equation 5 gives

H C
P° C+V

(12)

Substituting this into Equation 9, and substituting for C gives
the uptake rate (-y) as

+ 1)
(13)

This can be rearranged to give
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Figure 1
The food uptake rate (-y) as a function of food density (/). For/
values < 20, f̂vf < 1, kleptoparasitism occurs at every opportunity,
and uptake rate is calculated using Equations 8 and 9; for /values
> 20, f̂v, > 1, kleptoparasitism never occurs, and uptake rate is
calculated using Equations 9 and 12. Other parameter values are
taken from Holmgren (1995): P - 20; t, - 5, 4, - 10, v, «• 0.01, ifc
- 0.05.

(14)

which is die classical type II saturating function first derived
by Holling (1959). However, if the food density drops such
that f̂Vf < 1, dien the optimal strategy is given by p = 1. In
this case. Equation 8 shows that the uptake rate takes on a
considerably less tidy form:

- ( C + 1) + V(C + I)1 + 4CD_ . (15)

However, Ruxton and Moody (1997) argue dial in the limit
( C + l ) 1 » 4GD (which might occur when predator density, P,
is very low), diis expression is well approximated by

(16)

Vjth tjv, + 1

This is simply Equation 14 with an extra term in die denom-
inator. Hence, we predict a dramatic step change in both be-
havior and uptake rate as food becomes more difficult to find
(or equivalendy fights for food take less time). If food is plen-
tiful, then no kleptoparasitism will take place. As die food
density is gradually decreased, the uptake rate declines in a
smooth fashion according to Equation 14. But as soon as the
food supply drops below a critical value, kleptoparasitism will
occur whenever the opportunity arises. This step change in
behavior is accompanied by a sudden drop in uptake rate (as
illustrated in Figure 1). After this sudden change occurs, fur-
ther gradual reductions in the food supply will result in a
smooth decline in uptake rate. This general prediction of a
step change in behavior and uptake rate is independent of
whether we make the simplifying assumption that (C+l)1 :>
4GD. Further, we can calculate die size of diis step (in the
general case, without making the simplifying assumption) The
step is given by 7p_0 - -Vp.,; substituting using Equation 8 gives

C
C+l

If we form the parameter group

2CD

V ( C + l ) t + 4 C D - (C+l)

(C+ 1)*'

(17)

(18)

then it is easy to show that

The smaller Y, the better diis approximation. Notice from die
above that, although the Ruxton and Moody limit was useful
for illustrative purposes to show diat diere is a step change in
uptake rate, it is actually, die limit where die step size is least
impressive.

How should individuals optimize their searching?

In die last section, we allowed individuals to vary dieir likeli-
hood of attempting kleptoparasitism whenever they encoun-
tered a handling individual. However, die rate at which diey
encountered handlers (i^H) was fixed. We will now allow in-
dividuals to vary both t̂ , and p. It seems biologically plausible
that both 14 and «H should be bounded above, and further
diat VH can only be increased at die expense of decreasing V[
(i.e., if individuals devote more energy to searching for han-
dlers, dien dieir ability to search for food will decrease). Math-
ematically, we express diis by fixing two constants, a and p,
such diat

f)
1. (20)

An individual's strategy is now defined by die pair (1*, p); once
diis is chosen, û  is obtained from Equation 20. After this
choice has been made, we have a system exacdy like that de-
scribed earlier. We know diat for such systems die optimal
value of p to play is either 0 or 1, for any combination of t̂
and VH. Note diat diis is true for any population at equilibri-
um, even if some individuals choose different t̂  values, since
Equation 10 shows diat die optimal p for an individual de-
pends only on die XJ, chosen by that individual (not on that
of odiers). Hence we need only consider two strategies: where
individuals always or never attempt kleptoparasitism when the
opportunity arises.

We distinguish between two types of individual. Those diat
maximize dieir prey-finding ability by setting i\ = a (the high-
est possible value), we refer to as "insular" because using this
strategy is equivalent to ignoring all other foragers. In diis
case, UH = 0, handlers can never be detected, and hence die
value of p chosen is irrelevant Individuals diat set ty < a in
order to give diemserves some potential to detect opportuni-
ties for food stealing are termed "aggressive." We know that
it is only sensible to play diis strategy in conjunction with set-
ting p = 1. Hence we assume diat all aggressive individuals
play p = 1, and so potentially optimal strategies reduce to a
single value, diat of 14 diat maximizes uptake rate.

If we consider a fixed population of density P and allow
individuals to adopt eidier strategy, dien we can ask die fol-
lowing questions: Under what circumstances should all indi-
viduals play {a}? Under what circumstances should aD individ-
uals play [v, < a); and what i* should they play? We confine
die bulk of our mathematics to die appendixes and present
die main results here. Essentially, we search for evohitionariry
stable strategies (ESSs). A strategy is an ESS if, when every
individual plays it, dien no individual can increase its pay-off
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by switching to any other strategy (see Appendix A for a more
formal definition).

We already know that if tjv, > 1, then individuals do best
by declining any chances they have to kleptoparasitize. Thus,
when

U'

tja> 1, (21)

"insular" (a) is an ESS, and an individual will always do worse
by playing any other {v, < a). We show in Appendix C that it
is the only ESS.

We now turn our attention to the case where Equation 21
does not hold. How should handlers divide their energies be-
tween searching for food and other handlers? Clearly this de-
pends on the relative ease with which the two can be found
(and, once found, captured). In the extreme case where han-
dlers are scarce or hard to find, it is still optimal for foragers
to devote all their energies to food finding and play (a) even
though Equation 21 does not hold. Appendix B demonstrates
that (a) is an ESS when Equation 21 does not hold, providing

P<
2(1 + tja)

(22)

Let us examine diis inequality more carefully. Clearly, this
equality is satisfied if predator density (P) is very small This
makes intuitive sense; if diere are few odier predators about,
then there is litde point in investing energy in searching for
them, and hence the optimal strategy will be {a}. Similarly, the
inequality can also always be satisfied by making p low
enough: p is the maximal value that xy, can take, and so it is
a measure of how likelihood of encountering handler (for
given search effort). There is less point in investing energy
searching for conspedfics, if diese are hard to find. It-is dear
that increasing aggressive interaction time ( 0 makes it more
likely that Equation 22 will be satisfied. This occurs because
increasing ^ increases the fraction of individuals in the ag-
gressive interaction subpopulation and hence reduces the
number of handlers an individual would be able to interact
with (as we do not allow individuals to be involved in more
than one contest simultaneously).

Increasing either f o r a makes satisfying Equation 22 more
likely because they both make finding food easier. If the han-
dling time is very short (4 -* 0) then Equation 22 will be
satisfied. In this limit, die fraction of individuals handling at
any one time is vanishingly small. Hence, there is no point in
looking for handlers. There are two situations to consider as
we allow tf, to increase. First,

2 / x & p P ( l - tja). (23)

in this case Equation 22 is satisfied for all values of 4. In this
case, die total population of predators is so small (or they are
so hard to detect), that no matter how many of diem are
handling, it is not worth investing effort in looking for han-
dlers. Second,

(24)2 / x < p P ( l - tja).

Now, if t,, is bigger than a critical value; i.e..

- tja) -
(25)

then Equation 22 is not satisfied. When this occurs, the pop-
ulation size is suffidendy big that if a large 4 causes a large
fraction of individuals to be hanHiipg then it is optimal for
searchers to make tome investment in looking for them.

However, when neither Equations 21 nor 22 hold, then {a}
is no longer the best strategy. Now the optimal strategy (i.e.
the unique ESS) for an individual does involve kleptoparasi-
tism. Appendix C shows that this strategy is t+ = U, given by

1 +F

1 - tja
2(1 + tja)

[fiPth(l - tja) - 2(1 + tja)]. (26)

It is easy from this expression to see how varying each of
the parameters affects the ESS value of U. Increasing any of
P, P, or ta causes an increase in F and hence a decrease in U.
This makes biological sense, because increasing any of these
parameters makes handlers easier to find and so will increase
the chance that effort devoted to searching for them will be
successful. Increasing/causes an increase in U because now
effort devoted to searching for undiscovered prey has an in-
creased likelihood of success. Increasing ^ also increases U,
this makes sense too, since increasing t, means that attacking
handlers u a less profitable option in terms of gain rate, so
switching effort from looking for handlers to looking for food
is an effective strategy. Increasing a increases F such that U
increases faster than a, and so U/a increases. Again, this can
be interpreted in terms of the underlying biology; as a in-
creases, food finding becomes easier, and individuals should
concentrate more oh finding food at the expense of looking
for handlers (which has not become any easier).

We just described how the ESS value of x^ changes with
changes in parameter values. We can find die effect of these
changes in the ESS value of ty, by using

(27)

Decreasing/ P, or 4 (or increasing 4) all affect this equation
only by increasing U, hence they all result in the optimal value
of Vy, decreasing. Increasing a increases U/a and so also de-
creases the ESS value of T .̂ Finally, increasing p decreases U
and so also leads to an increase in the ESS value of t^.

DISCUSSION

At first glance, it may seem that kleptoparasitism should never
be an optimal strategy in our model. Kleptoparasitism costs
time which could otherwise be devoted to searching for and
handling food items. Because (in our simplified model) all

• individuals are identical, this inevitably leads to a reduction
in individual uptake rates. How can kleptoparasitism ever be
a sensible strategy in our model? We claim that under some
circumstances kleptoparasitism will be evolutionarily stable.
Although a group of individuals that all avoid kleptoparasitism
can maximize their uptake rates, this may not always be evo-
lutionarily stable. Under some circumstances, if one individual
switched to kleptoparasitism, then this individual would do
better than the rest. Although others will suffer, this individual
will do better. Selection works strongest at an individual level,
and hence we would expect kleptoparasitism to flourish as a
strategy and become more common in the group. It is for this
reason that kleptoparasitism may occur in nature even in the
absence of strong differences between individuals.

We predict in our model that under almost all conditions
individuals should either take every opportunity to kleptopar-
asitize or take none at alL The consequences of this is that as
a given ecological variable is changed, there will be a step
change both in behavior and in uptake rate. For example, if
food density is high, then it is optimal not to kleptoparasitize,
so we predict DO aggTBJive imereartions between individuals.
As food density is reduced, uptake rate will be reduced, but
still we will see no aggressive interactions. However, as we re-
duce food density further, at some critical vahie there is a
sudden change in the system. Now kleptoparasitism oppor-
tunites are always taken, aggressive intereactions become com-
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monplace, and food uptake rates drop sharply. Further re-
ductions in food availability will cause a further decline in
uptake rate, but no further sudden changes in uptake or be-
havior are predicted. A similar abrupt change in behavior was
predicted by classical prey-choice models (see Lendrem,
1986a, for a discussion), where a small increase in the prof-
itability of a given prey species could cause the predator to
switch from always rejecting discovered individuals of this spe-
cies to always consuming them. Would we expect to see this
sudden extreme change in behavior in real systems? This is
quite possible, but we should add some caveats. We would not
expect the change in behavior to be absolutely complete and
sudden. Individuals will not know the exact ecological con-
ditions affecting their foraging at any exact moment in time.
Rather they must estimate these based on their recent expe-
rience; these estimates will not be perfectly accurate. Hence
we would predict that the sharp change predicted in our mod-
el would neccesarily be a little blurred in reality. Our second
caveat is that in our model all potential opportunities to klep-
toparasitize are intrinsically identical because all individuals
are the same. If this were not true, then selective kleptopar-
asitism would become a more attractive strategy. Hence, we
might find that individuals do not switch from turning down
all opportunities to taking all of them. Rather they would
gradually increase the range of opportunies they accept, first
accepting those that have lowest costs and/or greatest poten-
tial gains, and gradually accepting less and less attractive op-
portunities, until finally they take all options. Thus, again, this
would suggest a rounding off of our predicted sharp step-
change. This last hypothesis is open to experimental testing
because we would predict that when food becomes less avail-
able and kleptoparasitism begins to occur, it should start with
food stealing in situations were the food item is particularly
valuable (e.g., because its of large size) or is particularly easy
to get (e.g., because it is being handled by a competitively
inferior individual).

Another prediction of our model is that kleptoparasitism
may not be observed under circumstances where it may ini-
tially appear to be an effective strategy because of a trade-off
with other activities such as independent foraging. As one
would expect, our model predicts that individuals will turn
down opportunities to kleptoparasitize when the time cost of
the interaction could better be used elsewhere. Perhaps less
expectedly, it also predicts that under some circumstances
kleptoparasitism will not be seen even when individual inter-
actions would be a good time investment. These circumstanc-
es occur when kleptoparasitism opportunities are rare and
when detection of these opportunities can only be obtained
at a cost (in our model this cost is reduced food detection
rate). Under these conditions, while individual acts of klep-
toparasitism would be efficient over a short time scale, over a
longer time scale the costs of being able to detect these (rare)
kleptoparasitic opportunities are too high. Individuals do bet-
ter by forgoing these occasional kleptoparasitic opportunities
in order to devote all their resources to food searching. This
general observation should be robust to changes in model
formulation and should be open to experimental testing in a
species where detecting food and kleptoparasitic opportuni-
ties require quite separate and distinct behaviors.

Notice that our model does not predict that individuals
should ever give up searching for food completely and devote
their attentions fully to stealing. A situation where all individ-
uals gave up food searching would dearly be disastrous; no
food would ever be found and so uptake rates would be zero.
However, this prediction might change if there were differ-
ences between some individuals. Under these circumstances
it might pay some individuals to devote themselves purely to
kleptoparasitism. However, in nature, although kleptoparasi-

tism is a major source of diet for some species (e.g., frigate
birds, skuas), these species do not provision solely by klepto-
parasitism. It may be that even when kleptoparasitism oppor-
tunities are superabundant, other food sources are still de-
tected because the cost of this detection is very low. For ex-
ample, although the skuas are focused on other birds as a
source of food stealing opportunity, they also watch the land-
scape (to find their nests or to avoid crashing), and in this
way they also discover other food sources (e.g., carrion or
unprotected nestlings or eggs) as a by-product

Although our model is a simple first attempt at capturing
the costs and benefits of kleptoparasitic strategies, it has pro-
duced a number of interesting (and testable) predictions, as
discussed above. Further extensions to the model would be
interesting and biologically realistic Our assumption that all
individuals are intrinsically identical will often be inappropri-
ate in many natural situations. Individuals could differ in their
ability to find food, in their energetic requirements, and in
their ability to steal food from others. In this case the strategy
a bird should adopt will depend on its own abilities and re-
quirements, but also on those of others within the population.
Another intrinsic assumption of our model is that the popu-
lation is well mixed and that all different pairs of individuals
are equally likely to meet Again, this may be a poor repre-
sentation of some natural situations. To consider the group
of wading birds one last time, this aggregation will not gen-
erally be well mixed, with birds often spending prolonged pe-
riods of time in a generally fixed position within the group.
Clearly, the distance between two birds will affect the proba-
bility that kleptoparasitic opportunities will be observed. Also,
the costs of attempting kleptoparasitism increase with the dis-
tance that must be traveled to reach the potential victim.
Hence, a bird's strategy may now include its position within
the group so as to maximize its ability to kleptoparasitize oth-
ers and/or minimize its own chance of losing food. Such ex-
tensions to the model, allied to carefully controlled experi-
mentation, would greatly increase our understanding of the
evolution and operation of this ecologically interesting and
important behavior.

APPENDIX A

What is an ESS?

Define the pay-off to a player playing strategy 5 in a popula-
tion of players playing strategies T", TB in proportions a,,
. . . .o,,, respectively (X ot, «= 1) as

Then 5 is evohitionarily stable (ES) against T if and only if

5(1 - e), 7Xe)] > E[T, S(l - «), 7T(«)]

for all sufficiently small e.
5 is an evolutionarily stable strategy (ESS) if 5 is ES against

all T r* S. (See Maynard Smith, 1982, for further details.)

APPENDKB

Mathematics: when is a an ESS?

First we set out the general equations for a mixed population
playing two different strategies for v f : a large population (of
density P,) play (v,) and another much smaller population (of
density Pt) play {-nj. We intend to determine when population
1 gains a higher intake rate than population 2 playing any
possible %. Both populations are split into searchers, han-
dlers, and participants in aggressive interactions; i.e..
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Hx + A, = P,

U 4- A H P

p, + p, » P

(Al)

(A2)

(A3)

We can write equations for the rates of change in each sub-
population. Under the condition that Pt » Pt, these are well
approximated by a simplified form.

J-

(A4)

— l —i

(A5)

(A6)

(A8)

(A9)

As before. Equations A4-̂ A6 and A7-A9 only constitute two
independent equations each. Setting Equations A4-A9 equal
to zero for the populations in equilibrium, Equations A4-A6
are equivalent to equations 2-4 in the text with p = 1, and
thus

rr IT

V ( C + 4CD - (C+ 1)
ID

£ » > 0

c+ r
Z) ™ 0

(A10)

If vf = o, dien vH = 0; Le., C « f̂ix, D •= 0, which implies
that

Using Equations A2, A7, and A9 we can show that

(All)

(A12)

The strategy that performs better is the one with die highest
proportion of handlers; i.e., a is better that % if

Combining All, A12, and A13, we obtain

(A13)

(A14)

which is independent of ry. This means that if a cannot be
invaded (outcompeted) by a given ry, then it cannot be in-
vaded by any and is then an ESS (equivalendy, if it can be
invaded by one, then it can be invaded by any such strategy).
If tja > 1, then a is always an ESS (as explained in die main
text). Chherwise, if tfa < 1, dien a is only an ESS if

P<*{\+'fL (A15)

APPENDIX C

When Is (7<amESS?

We again use Equations A1-A9 from Appendix B. Because U
< a, we obtain the solution in Equation A10 for Hx/Px. The
value of Hi/Pl must be found. Using Equations A2, A7, and
A9, we can show that

(AT) ^ Pi
+ 2t.C

(A16)

where C and D are as before and

For U not to be invaded by -n̂ , we again need

Combining Equations A10, A16, and A17, we obtain

(A17)

, - U)htJ( ~ D(tJU+

(A18)

For an ESS, we require the above inequality to hold for all t\f
yi U (unless U u equal to 0 or a), but this can only happen
if

2<«/[a-£/)+A^[(t f c /ht-l)(t t /t /- l- l)+2t«/(t/-a)] " 0.

(A19)

When a small group of T^ players is introduced, on average
die population value of (/changes from U to U(l—t)+ er\f
Playing against this strategy mixture is not the same as playing
against a population all playing C/(l - «)+ er\f More of die
T\J players will be fighting and fewer searching (at ESS die
proportions handling are roughly die same), so die effective
weighting of the "typlayers will be less. It is only in searching
mode that the strategy differences are apparent; but still for
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i\f > U, the mixture value [ U{1 - e) + eq^ is slightly greater
than U, and for t[f < C/it is slightly less. So the conditions for
an ESS reduces to Equation A19 and

'-a)] <0.X [(.tja - 1)(1 + tJU) + 2tJ(U- a)] \ < 0. (A20)

Using Equations A4 and A5, it is clear that

* = § (A2D

and

p • l ~ {T)^)' (A22)

which together with (Equation 5) implies

(A23)

Substituting this into Equation A19 gives

(Note that is ^fa > 1, then Equation A24 has no solutions U
< a, and so (a) is a unique ESS) Simple rearrangement of
this gives

2 / a -

(A25)

Substituting for the handling population steady state gives

2ft* V(l + Q* + 4CD - (1 + Q

(1 - tJa)£P ID

This can be written in a more compact form:

0. (A26)

, (A27)

g(U) - 2a(l + t j a ) - M2(l + f Ja) + (1 - tja)

X [pft4(l - tja) - 2(1 + tjix)))

- 0 (A28)

as the condition for U to be an ESS. Note that because 4fa
< 1 and Equation 22 does not hold, the derivative of this
expression is negative. It is dear that this expression is just a
positive value multiplied by the expression in Equation A19
and thus any U that solves it is an ESS. The conditions for U
to be an ESS are thus g( U) - Oandg'(L') < 0. This is a similar
formulation to that of Broom et aL (manuscript submitted).
Rearranging this expression gives the ESS as the unique so-
lution to

U-
1 +F1

1 - tja
2(1 + tja)

[PP*4(1 ~ - 2(1 + tja)]. (A29)

Substituting in terms of the original parameters gives
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