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Abstract. Kleptoparasitism, the stealing of food items, is a common biological phenomenon
which has been modelled mathematically in a series of recent papers. A common assump-
tion, following early work, was that mixed strategy solutions were not possible. In this paper
we consider the evolution of mixed strategies under adaptive dynamics and show that such
mixed strategies can be stable solutions under certain assumptions. In particular we revisit
the recent paper of Broom et al. (Bull math Biol 66, 1645–1658, 2004) which assumed pure
solutions only, and reanalyze the model under this new formulation.

1. Introduction

When searching for items of food, foragers can find themselves in contact with a
conspecific who has discovered such an item. If this item cannot be immediately
consumed, then the individual may have the opportunity to steal it. It may or may
not be advantageous to make such a stealing attempt, depending on a variety of
factors such as the value of the food item, the chance of success and possible costs in
entering a contest (e.g. possibility of injury, time or energy used). Hence, food-steal-
ing (kleptoparasitism) falls within the cost-benefit economic framework central to
much of behavioural ecology (e.g. [11]). Kleptoparasitism has been observed in
many contexts, but is especially common amongst seabirds (e.g. [2,7,22]).

The value of different choices in a kleptoparasitic encounter depend in turn on
the choices of others. This obviously occurs in the direct interaction with another
individual in any attempted theft, where optimal play can depend upon that of the
opponent. However, this is also influenced by the strategies of others not directly
involved in the encounter. The relative values of not fighting (either by not chal-
lenging or not resisting) and the rewards for success or failure within the contest
depend upon the overall food consumption rate of the population, which is heavily
dependent upon the strategic choices of individuals. Similarly others may attempt
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to steal the food item from our focal individual, should it successfully take owner-
ship. Thus, the optimal strategy for one individual depends on the optimal strategy
for others which provides an ideal situation for game theoretic modelling ([15,14]).

There have been various models of kleptoparasitic behaviour using game theory,
examples of which include [1,3,4,21,23]. The most recent game theoretic model of
such kleptoparasitic behaviour is [5], which developed the original model of Broom
and Ruxton [3] in two ways. Firstly, the probability of success of the challenger was
allowed to vary from the original chosen value of one half. Secondly they allowed
individuals being challenged to decide not to resist the challenges of others and so
forgo a potentially lengthy contest (an important option if the challenger has a high
probability of success). This situation allowed different strategic choices and gave
rise to three different possible evolutionarily stable strategies (ESSs). These were
one where individuals both challenged for food items and resisted challenges from
others (Hawk), one where individuals challenged but did not resist (Marauder), and
one where individuals did not challenge, but would resist if themselves challenged
(Retaliator). It was also possible for two of these to be ESSs under the same eco-
logical conditions. The Marauder ESS is of particular ecological interest, since it
involved individuals surrendering valuable items of food in complete absence of
dominance hierarchies or intrinsic asymmetries in competitive abilities between
individuals. In the following section, we introduce a model which follows on from
that of Broom et al. [5], using the same parameters where possible, but where
individuals play mixed rather than pure strategies. This model is then analyzed in
subsequent sections.

2. The Model

2.1. The model of Broom et al. (2004)

Broom et al. [5] considered a homogeneous population of animals, in which each
animal had the option of attempting to steal food from others. Additionally, when
attacked whilst handling food, each individual had the option of resisting such
an attempted theft. Each individual had to choose a pure option for each of the
attacking and defending situations, yielding four types of individual in all.

Hawk – challenge and resist the challenges of others;
Marauder – challenge but do not resist the challenges of others;
Retaliator – do not challenge but resist the challenges of others;
Dove – neither challenge nor resist the challenges of others.

They considered a population where the density of individuals is P . This popula-
tion is divided into three different activities, the symbols for which will be used to
represent both the activity and the density of individuals involved in that particular
activity. The density of individuals handling a food item is labelled H , the density
of individuals searching for food items and handlers is S and the density involved
in an aggressive contest is A. Each of these quantities are determined by the other
parameters.

The number of available food items per unit area is given by f . It was assumed
that food items take a time to handle drawn from an exponential distribution with
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mean th (i.e. th is the expected time for each item of food to be consumed). At
the end of handling, the handler resumed searching. When a searcher encountered
a handler, it could choose to challenge for the food item, or not. If it did chal-
lenge, then the handler could choose to resist, or not. If it did resist, then a fight
ensued (with times drawn from an exponential distribution with mean time ta/2 ).
At the end of a contest, the winner started handling the food, and the loser resumed
searching. The probability of the challenger winning the contest was given by α.

Individuals were able to search an area νf for food in unit time, so that the rate
at which individual searchers found food was νf f . Individuals also searched for
handlers, being able to search an area of size νh per unit time. The rate at which a
searcher found handlers was thus νh H .

2.2. Strategies and evolution

We develop the model of Broom et al. [5] by allowing the possibility of mixed strat-
egies. We consider a monomorphic population of individuals, each one adopting
a strategy � = (p, r), where p is the probability to attack a handler and r is the
probability to retaliate when attacked by a searcher. The parameters that we use
in this paper are the same as in [5] where possible. The goal is to find the general
conditions for stable strategies, and to identify specific stable strategies in particular
situations.

We shall investigate these mixed strategies using adaptive dynamics, first devel-
oped by Metz and co-workers (e.g. [16,17]). The rationale of adaptive dynamics in
our scenario is as follows. All individuals in the population play the same strategy
� = �p. Strategies may change when a mutation occurs in the population and a
small fraction of the population changes its strategy to one close to the existing
strategy. We shall consider the neighbouring mutant strategy �, which is in the
direction of maximising the feeding rate of the mutant, equivalent to minimizing
T (�,�p) – the time needed from the beginning of searching to the end of handling
for the individual adopting the strategy � in the population where everybody else
adopts the strategy �p (hence the derivative by the first coordinate only and the
negative sign in the following equations). Such a mutant has an advantage over
the original strategy, and so eventually the mutant replaces the original strategy as
the population strategy, i.e. the overall strategy of the population changes in the
above manner. For more on adaptive dynamics see [8,18–20]. There are thus three
different processes involved in this model, each operating on a different time scale.
Individuals have a given strategy for attacking and defending against attackers, and
move between the various states (e.g. handling). This occurs on a very short time
scale, and we assume that the population reaches a dynamic equilibrium between
the states. For a justification of this, see [12]. When a mutation occurs, the popu-
lation consists of the mutant group, and the (initially much larger) group playing
the original strategy. The relative numbers of each type change in successive gen-
erations, according to the fitness of each type, until one of the two eliminates the
other. This is the intermediate size time scale. New mutations are assumed to occur
rarely, on the slowest time scale, so that the result of contests between the previous
population strategy and mutant are always resolved before any new mutation.
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Table 1. The model parameters and their definitions

Symbol Meaning

P Total density of individuals in the population
S Density of individuals which are searching for food
H Density of individuals which are handling a food item
A Density of individuals involved in a contest over food
f Density of food items per unit area
νf Area that individuals can search for food per unit time
νh Area that individuals can search for handlers per unit time
th Expected handling time (if unchallenged)
ta/2 Expected duration of a contest over food
α Probability that the challenger wins the contest
TS Expected time for a searcher to acquire a food item
TH Expected handling time (allowing for challenges)
T Expected time to acquire and consume a food item
p Probability that a (specific) searcher will attack a handler
r Probability that a (specific) handler will resist an attack
� Strategy of a specific individual � = (p, r)
pp Probability that an average searcher will attack a handler
rp Probability that an average handler will resist an attack
�p Strategy of an average individual �p = (pp, rp)
HH Handler density for all Hawk population,

H2
Htavh + HH(1 + vf f th) = vf f th P

The adaptive dynamics on the trait �p are given by

d�p

dt
= −∇�T (�,�p)

∣
∣
�=�p , (1)

or in components

dpp

dt
= − ∂

∂p
T (p, r, pp, rp)

∣
∣
∣

p=pp,r=rp
, (2)

drp

dt
= − ∂

∂r
T (p, r, pp, rp)

∣
∣
∣

p=pp,r=rp
. (3)

We will calculate T (�,�p) in two steps. First we will calculate TS = TS(�,�p)

the time needed to find a food item and begin handling. Second, we will calculate
TH = TH(�,�p) the time needed to finish handling by eating the food item (when
possibly disturbed by other searchers). A summary of the parameters used in our
model and their meaning is given in Table 1.

3. General model analysis

3.1. Calculation of TS

After starting to search, an individual can find food or a handler. We assume that
both processes – looking for food and looking for a handler – have exponential
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distribution with means (vf f )−1 and (vh H)−1, respectively. An individual will
find something in average time

(vf f + vh H)−1.

It will find a handler sooner than food with probability

vh H

vf f + vh H
.

Once a handler is found, the searcher decides whether it will attack or not. If it
does not attack, it returns to the searching state (and nothing happens). The proba-
bility that a searcher will attack is given by �, i.e. p. If the searcher attacks, then
the handler has the option whether to resist or not. If the handler does not resist,
it gives up food and returns to searching, while the searcher begins to handle. If
the handler resists, then there is a fight (that lasts for an average time ta/2) and at
the end of the fight, the searcher wins with probability α. The probability that the
handler will resist is given by �p, i.e. rp.

From the above, we have

TS = 1

vf f + vh H
+ vh H

vf f + vh H

[

(1 − p)TS + prp
ta
2

+ prp(1 − α)TS

]

.

It follows that

TS = 1 + vh H prp (ta/2)

vf f + vh H p(1 − rp(1 − α))
. (4)

From (4) we can calculate the derivatives of TS by p and r , respectively.

∂TS

∂p
= vh H

{

rp [(ta/2) vf f + (1 − α)] − 1
}

(

vf f + vh H p
(

1 − rp(1 − α)
))2 , (5)

∂TS

∂r
= 0. (6)

The Eq. (6) is natural since an individual’s searching time is unaffected by altering
its resistance strategy.

3.2. Calculation of TH

While handling, there are two processes happening, both having the exponential
distribution. One is eating (with rate 1/th), the second one is being looked for by
searchers (with finding rate vh S). Something will happen in (an average time)

1
1
th

+ vh S
= th

1 + thvh S
.

The handler is found by a searcher before it finishes handling with probability

vh S

(1/th) + vh S
= thvh S

1 + thvh S
.
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When found by a searcher, it may or may not be attacked, an attack happening with
probability pp. If it is not attacked, nothing happens and handling continues. If it
is attacked, it can resist or not, resisting with probability r . If it does not resist, the
food is lost and it returns to searching (i.e. spends time TS +TH from now to the end
of handling). If it resists, there is a fight that takes time ta/2. After that, the handler
wins with probability (1 − α) and returns to handling (it takes time TH from now
to the end of handling). If it loses (with probability α), it loses the food and returns
to searching. From the above, we get

TH = th
1 + thvh S

+ thvh S

1 + thvh S

[

(1 − pp)TH + pp(1 − r)(TS + TH)

+ppr

(
ta
2

+ TH + αTS

)]

.

After simplification we get

TH = th + thvh Spp

[

TS(1 − r(1 − α)) + r
ta
2

]

. (7)

From (7) we can calculate the derivatives.

∂TH

∂p
= thvh Spp (1 − r(1 − α))

∂TS

∂p
, (8)

∂TH

∂r
= thvh Spp

[
ta
2

− TS(1 − α)

]

. (9)

Note that the handling time is affected by the searching strategy since there is the
possibility of being challenged and losing and so returning to searching before
handling is complete.

3.3. Dependence of S and H on pp and rp

In any given time, there is a certain distribution of individuals between states S,
H and A. Let us describe how this distribution changes in time. An individual can
become a searcher if

(S1) It was a handler and finished eating food (with the rate 1/th), or
(S2) It was a handler, was found by a searcher, attacked and did not resist (with

rate vh Spp(1 − rp)), or
(S3) It was involved in a fight and lost (with the rate 0.5 · 1/(ta/2), since each

individual is equally likely to be challenger or challengee and so will lose half
its fights).

An individual can become a handler if

(H1) It was a searcher and found food (with the rate vf f ), or
(H2) It was a searcher and found and attacked a handler that did not resist (with

the rate vh H pp(1 − rp)), or
(H3) It was involved in a fight and won it (with the rate 0.5 · 1/(ta/2), for similar

reasoning to (S3)).
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An individual can become involved in a fight if

(A1) it was a searcher, found and attacked a handler who did resist (with the rate
vh H pprp), or

(A2) it was a handler, was found and attacked by a searcher and did resist (with
the rate vh Spprp).

Altogether, S, H and A solve the following differential equations.

dS

dt
= H ·

(
1

th
+ vh Spp(1 − rp)

)

+ A

2(ta/2)

−S · (

vf f + vh H pp(1 − rp)
) − Svh H pprp,

dH

dt
= −H ·

(
1

th
+ vh Spp(1 − rp)

)

+ A

2 (ta/2)

+S · (

vf f + vh H pp(1 − rp)
) − Hvh Spprp,

dA

dt
= vh SH pprp + vh H Spprp − A

(ta/2)
.

The above equations describe the process on a short timescale (typically a matter
of minutes), whereas the equation (1) describes the process on a timescale of many
years. Thus when considering (1), we may assume that there is an equilibrium
achieved in the above equations (see [12]) i.e.

0 = dS

dt
= dH

dt
= dA

dt
.

Manipulation of these equations gives

H = vf f th S, (10)

A = vh H Spp rpta = H2tavh pprp

(vf f th)
. (11)

Since the total density P of individuals in the population remains constant, we get

S + H + A = P, (12)

and, consequently,

H2tavh pprp + H(1 + vf f th) − vf f th P = 0. (13)

From (13) we can see that H decreases when pprp increases and vice versa. By
(10), the same holds for S. By (12), A then increases as pprp increases.
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3.4. Extreme values of P

We shall briefly look at the two cases P very small, and P very large here, as they
are useful for some of the situations that follow. From the Eq. (13) it follows that
when P is very low

H ≈ vf f th P

1 + vf f th
.

Substituting for H into formula (4), using P is small, we get

TS ≈ 1

vf f
. (14)

Using the above approximation we obtain

∂TS

∂p
≈ vh H

{

rp [(ta/2) vf f + (1 − α)] − 1
}

(vf f )2 (15)

= vhth S

vf f
·
{

rp

[
ta
2

vf f + (1 − α)

]

− 1

}

. (16)

Moreover

∂TH

∂r
= thvh Spp

[
ta
2

− TS(1 − α)

]

(17)

≈ thvh Spp

[
ta
2

− 1

vf f
(1 − α)

]

, (18)

∂TH

∂p
= thvh Spp(1 − r(1 − α))

∂TS

∂p
≈ 0. (19)

since this is of order S2 and thus small compared to ∂TS/∂p and ∂TH/∂r . When
the population density P is very high, then Eq. (13) leads to

H ≈
√

Pvf f th
tavh pprp

.

More precisely, for every fixed ε > 0, there is a P0 such that whenever P > P0,
pp > ε and rp > ε, then H is as above. Thus, in our analysis below, we restrict
ourself to high density and mixtures where both pp and rp are above (small) ε.
(Note that, when P is high, S and H will be large anyway; but if we allow small
pp and rp, this complicates our estimate of TS). For not so small pp and rp we get
(using H is large):

TS ≈ rp(ta/2)

1 − rp(1 − α)
. (20)

Moreover,

∂TS

∂p
≈ 0, (21)
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since it is of order 1/H . Thus

∂TH

∂r
= thvh Spp

[(
ta
2

)

− rp(ta/2)

1 − rp(1 − α)
(1 − α)

]

, (22)

∂TH

∂p
= thvh Spp (1 − r(1 − α))

∂TS

∂p
≈ 0. (23)

It should also be noted that for very large P the assumptions of our model will break
down, especially if there is any challenging for food pp > 0, since the density of
individuals is so high that parasitism (with or without fights) will be how most food
is acquired and food items will be continually contested before eventually being
consumed. Thus the applicability of such results is open to question. On the other
hand, it can be seen by comparing the results for large P in the Marauder-Retaliator
and Hawk–Dove cases with Figs. 3, 4, 5 and 6 that the solutions that we are able to
predict for high densities mathematically, due to simplifications of the equations,
actually occur for lower densities as well.

3.5. A relationship between H, TS and TH

We can establish a direct relationship between the expected total time to find and
handle a food item TS + TH and the density of handlers H for a population in equi-
librium (and in fact this relationship is implicit in several earlier papers including
[3] and [5]. The total uptake rate of the population can be expressed in two ways.
Firstly each individual spends time TS + TH to consume a food item, so the uptake
rate is given by 1/(TS + TH). Secondly the proportion of the population in the
handling state is H/P and every individual in this state consumes food at rate 1/th
(no others can consume food) so that the mean uptake rate per individual is H/Pth .
Thus we have

1

TS + TH
= H

th P
. (24)

This relationship follows directly from Eqs. (4), (7), (10) and (13).

4. Mixtures of two pure strategies

4.1. General analysis

In this section we consider the situation where there are some restrictions on the
strategies. In particular, we are interested in studying “mixtures of two pure strate-
gies”. The strategy state space (described by two variables p and r ) will be param-
eterized by a single variable x . We allow individuals to play a mixture of �1 =
(p1, r1) and �2 = (p2, r2) with the choice x indicating that an individual plays �1
with probability x , and otherwise plays �2, when either a challenging or defending
choice needs to be made. Thus the general set of equations (1) will be simplified to

dx

dt
= − ∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

. (25)

We will be looking for attractors of the above dynamics (25).
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In the general framework of adaptive dynamics there can be two types of attract-
ing points – (a) convergent stable strategies (CSSs), see ([6]), and (b) branching
points. In both cases, the evolution proceeds in the direction of those points, but
they differ by what will happen once the population gets there. The attracting point
x0 is a CSS if it is the best invader of itself (i.e. if the function T (x, x0) attains its
local minimum at x0). The attracting point x0 is a branching point, it the population
can be invaded by many different mutants. A strategy � represented by 0 < x0 < 1
will be an attracting point of the dynamics (25), when

1. ∂/∂x1T (x1, x0)|x1=x0 = 0,
2. ∂/∂x1T (x1, x)|x1=x > 0 for x in a right neighborhood of x0,
3. ∂/∂x1T (x1, x)|x1=x < 0 for x in a left neighborhood of x0.

and it will be a CSS if moreover

4. ∂2/∂x2
1 T (x1, x0)

∣
∣x1=x0 > 0.

The strategy x0 = 0 is a CSS if condition (2) is met and the strategy x0 = 1 is a
CSS if condition (3) is met.

The analysis of the condition (4) is too complex (see Sect. 4.8), but numerical
results suggest that in our case, this condition is satisfied at every attracting point.
Thus, every attracting point is automatically a CSS. In particular, we are interested
in whether the following statements are true or false

A := ∂

∂x1
T (x1, 0)

∣
∣
∣
x1=0

> 0,

and

B := ∂

∂x1
T (x1, 1)

∣
∣
∣
x1=1

< 0.

We indicate by A (B) that statement A (B) is true, and by AC (BC ) that it is false.
If the condition A holds, then the strategy parameterized by x = 0 is a CSS –
because for x slightly bigger than 0, ∂/∂x1T (x1, x)|x1=x > 0 and thus there is a
pressure to minimize x .

For similar reasons, if B holds, then the strategy parameterized by x = 1 is a
CSS. If AC holds, then the population of (x = 0)-strategists can be invaded; and
for the same reason if BC holds, then the population of (x = 1)-strategists can be
invaded.

If both A and B hold, then there are two CSS (parameterized by x = 0 and
x = 1), at least one unstable equilibrium in between and possibly more equilibria.
When both AC and BC hold, there is at least a mixed CSS in between. This statement
is generally true in similar situations, and is only violated when the payoff function
is badly behaved in the vicinity of the point where ∂/∂x1T (x1, x)|x1=x = 0. In fact
we can see that there is no such problem here. By (24), the payoff function is given
in term of a linear function of H which solves the following quadratic equation.

H2tavh p(x)r(x) + H(1 + vf f th) − vf f th P = 0, (26)
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Table 2. A summary of CSS results for all pairwise combinations of the pure strategies
Hawk, Retaliator, Marauder and Dove. If a strategy is not mentioned, it is never a CSS for
the case in question.

Hawk and Retaliator
CSS conditions

Hawk ta
2 vf f − α < 0

Retaliator ta
2 vf f − α > 0
Dove and Marauder

Marauder always
Dove and Retaliator

No pressure always
Hawk and Marauder

Marauder ta
2 > 1−α

vf f +vh H , where H = vf f th P
1+vf f th

;

Hawk ta
2 <

(1−α)(1+vh HH
ta
2 )

vf f +αvh HH
;

Marauder and Retaliator
Marauder always

Retaliator ta
2 vf f > α

Mixed high P , α < 1/2 and ta
2 vf f < α

Hawk and Dove

Hawk tavf f − 1 + (2α − 1)
ta
2 vh HH < 0;

in particular for α < 1/2 and either high P or tavf f < 1

Mixed tavf f − 1 + (2α − 1)
ta
2 vh HH > 0;

or for high P

The conditions for the pure solutions are necessary and sufficient. There are only two cases
where mixed CSSs can occur, the conditions given in these cases are sufficient but not
necessary.

where p(x) = xp1 + (1 − x)p2 and r(x) = xr1 + (1 − x)r2. The derivative of
H , and thus of the payoff function, is bounded and thus the conditions AC and BC

ensure a mixed CSS. Theoretically, there may be more than one such mixed CSS.
In the next sections, there is a description of the situation for mixtures of spe-

cific pairs of strategy types. We restrict ourselves to combinations of the “corner”
strategies which use either p = 0 or p = 1 and r = 0 or r = 1. These are the
four strategies Hawk, Marauder, Retaliator and Dove from [5]. A summary of the
results from these sections is given in Table 2.

4.2. Hawk and Retaliator

Strategies can only be in the form � = (x, 1), i.e. always resist, attack with prob-
ability x . The strategy (1, 1) corresponds to Hawk (the case x = 1), the strategy
(0, 1) corresponds to Retaliator (the case x = 0). By using (5), (8) and by letting
r = rp = 1 we get
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∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

= ∂

∂x1
(TS + TH)(x1, x)

∣
∣
∣
x1=x

= ∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

· (1 + thvh Sxα)

=
[

ta
2

vf f − α

]

· vh H (1 + thvh Sxα)

(vf f + vh H p (1 − x(1 − α)))2 .

Therefore the sign of ∂/∂x1T (x1, x)|x1=x is given only by the sign of (ta/2) vf f −α.
In particular, it does not depend on x itself.

– A is true if and only if (ta/2)vf f − α > 0. In that case Retaliator is the only
CSS.

– B is true if and only if (ta/2)vf f − α < 0. In that case, Hawk is the only CSS.
– AC ∩ BC is true if and only if (ta/2)vf f − α = 0. In this case, there is no

selection pressure at all. Note that this is a “degenerate” case, which occurs only
with precise coincidence of ecological parameters.

4.3. Dove and Retaliator

The strategy state space is parameterized by (0, x), i.e. individuals never attack,
yet they can resist with probability x . We see from Eq. (6) and (9) that

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

= 0.

There is no selection pressure at all, as no contests occur and individuals simply
forage.

4.4. Dove and Marauder

The strategy state space is parameterized by (x, 0). It means that individuals do
not resist at all. The case x = 0 corresponds to Dove, case x = 1 corresponds to
Marauder. From (5) and (8) we get

∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

= − vh H

(vf f + vh H x)2 < 0

and

∂

∂x1
TH(x1, x)

∣
∣
∣
x1=x

= ∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

· thvh Sx < 0.

Thus

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

< 0,

for all x . It means that under all circumstances it is better to attack more and more,
i.e. Marauder is the only CSS.
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4.5. Hawk and Marauder

The strategy space is parameterized by (1, x), i.e. individuals always attack and
they resist with probability x . The case x = 0 corresponds to Marauder, the case
x = 1 corresponds to Hawk. By (6) and (9) we get

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

= ∂

∂x1
(TS + TH)(x1, x)

∣
∣
∣
x1=x

= 0 + thvh S

[(
ta
2

)

− TS(x, x) · (1 − α)

]

.

The sign of ∂/∂x1T (x1, x)|x1=x depends only on the sign of
(

ta
2

)

− TS(x, x)(1 − α).

It corresponds to comparing (ta/2) + αTS(x, x) (the average time to become a
handler from the point of attack if it decides to resist) to TS(x, x) (average time to
become a handler from the point of attack if it decides not to resist). Since

TS(x, x) = 1 + vh H x (ta/2)

vf f + vh H(1 − x(1 − α))
, (27)

we can conclude that

– A holds if and only if (ta/2) −
(

1
vf f +vh H

)

(1 − α) > 0. In this case, Marauder

is a CSS.
– B holds if and only if (ta/2) − 1+vh H(ta/2)

vf f +αvh H (1 − α) < 0. In this case, Hawk is a
CSS.

Let us denote HM and HH, as the density of handlers in the population of Marauders
(x = 0), and Hawks (x = 1), respectively. The exact values of HM and HH can
be found from (13), so that we have the exact conditions on Hawk and Marauder
respectively to be a CSS. Values of HM and HH were developed in [3] and HM
essentially follows as well from [9]. We now show that at least one of A and B has
to be true. If both are false, then

(
ta
2

)

− 1 + vh HH (ta/2)

vf f + αvh HH
(1 − α) > 0

and
(

ta
2

)

− 1

vf f + vh HM
(1 − α) < 0

which implies

1

vf f + vh HM
(1 − α) >

1 + vh HH (ta/2)

vf f + αvh HH
(1 − α).

The latter, however, can not be true because, by (13),

∂ H

∂x
< 0, (28)
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and, in particular, HM > HH. We can conclude always at least one of Hawk or
Marauder is a CSS. We show below that it is not possible to have a mixed CSS. If
x0 is such a mixed CSS, then

(
ta
2

)

− TS(x0, x0)(1 − α) = 0,

(which can, theoretically, happen) and (ta/2) − TS(x, x)(1 − α) is an increasing
function. The latter, however, can not happen because TS(x, x) is an increasing
function for x in the neighborhood of x0. This follows from (27), (28) and the fact
that H x is increasing, by (26).

For very low P , using an estimate TS ≈ 1/vf f , we get that

– A holds and Marauder is a CSS if and only if (ta/2)vf f ≥ 1 − α,
– B holds and Hawk is a CSS if and only if (ta/2)vf f < 1 − α.

In particular, there is only one CSS.
When the density P is high, we obtain the following:

– A holds always, because H is high and thus (ta/2) − (1 − α)/(vf f + vh H)

(ta/2) > 0. Hence, Marauder is always a CSS for large P .
– B holds (for high P) if and only if α < 1/2. In this case Hawk is a CSS.

From (20), we get (for not so small x)
(

ta
2

)

− TS(x, x)(1 − α) ≈
(

ta
2

)

− x (ta/2)

1 − x(1 − α)
(1 − α)

=
(

ta
2

)

· 1 − 2x(1 − α)

1 − x(1 − α)
.

Thus, for α < 1/2,
(

ta
2

)

− TS(1, 1)(1 − α) ≈
(

ta
2

)

· 2α − 1

α
< 0.

Let us conclude this section with an interesting result which illustrates one differ-
ence between low- and high-density populations. It was shown above that we can
have two CSSs (Marauder and Hawk) in large populations when α < 1/2, yet only
one CSS in small populations. The reason for this is as follows. Marauder always
emerges as a CSS in large populations. Indeed, encounters are very common and
it is beneficial not to try to defend food items, because it means spending (ta/2)

fighting, while it takes virtually no time to acquire another food item by searching
(very likely, an individual will find one of the many handlers, who will give up the
food).

Hawk can be a CSS in large populations as well: once everybody in the popula-
tion resists, it does not make much sense to resist less (in particular when α < 1/2,
i.e. handlers have good chances to win) because it would mean giving up food that
is very difficult to obtain - in a large population it is more likely to find a handler
than food, thus a searcher has to attack a lot of handlers and lose significant time
by fighting before acquiring the food.
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Fig. 1. Dependence of the dynamics on P in Hawk–Marauder population, ta = 1,
vf f = 0.1, th = 5, vh = 9, α = 0.65

However, in a small population, encounters between handlers and searchers are
very rare (of the order SH i.e. of the order of P2). Thus the time for acquiring
food is (approximately) the same for Hawk and for Marauder and the choice of
the strategy depends only on minimizing the handling time. It is very likely that a
handler is not found at all or is found at most once during its handling. It may or
may not be beneficial to resist this single attempt of a searcher to steal the food. If
there is plenty of food (i.e. 1/vf f is small), then it is better for a handler to give up
the food and find a new item (Marauder is a CSS). If there is less food, it is more
beneficial to resist (Hawk is a CSS).

Notice from Fig.1 that keeping all parameters the same and changing only the
density, one gets a change in the dynamics - from low densities and Hawk the only
CSS to high densities with Marauder the only CSS, through the transition period
where both Hawk and Marauder are CSSs. Figure 2 shows that the coexistence of
two CSSs Hawk and Marauder is possible for high densities as well.

4.6. Marauder and Retaliator

The strategy space is parameterized by (x, 1 − x). The case x = 0 corresponds to
Retaliator, the case x = 1 corresponds to Marauder. By (6) and (9) we get

∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

= {(1 − x) [(ta/2)vf f + (1 − α)] − 1} · vh H

(vf f + vh H x(1 − (1 − x)(1 − α)))2



166 M. Broom, J. Rychtář
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Fig. 2. Dependence of the dynamics on P in Hawk–Marauder population, ta = 2, vf f = 1,
th = 5, vh = 9, α = 0.3

∂

∂x1
TH(x1, x)

∣
∣
∣
x1=x

= ∂TH

∂p
− ∂TH

∂r

= thvh Sx

[
∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

· (1 − (1 − x)(1 − α))

+TS(x, x) · (1 − α) − ta
2

]

From the above formulas, the following follows.

– A holds and Retaliator is a CSS if and only if (ta/2)vf f − α > 0,
– B holds and Marauder is a CSS always.

Indeed, for x = 0, we have ∂/∂x1TH(x1, 0)|x1=0 = 0 and thus the sign of
∂/∂x1T (x1, 0)|x1=0 depends only on the sign of (ta/2)vf f − α. For x = 1, we get

∂

∂x1
TS(x1, 1)

∣
∣
∣
x1=1

= − vh H

(vf f + vh H)2 ,

and thus

∂

∂x1
TH(x1, 1)

∣
∣
∣
x1=1

=thvh S ·
(

− vh H

(vf f + vh H)2 + 1

vf f + vh H
· (1 − α)− ta

2

)

.
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Thus,

∂

∂x1
T (x1, 1)

∣
∣
∣
x1=1

= −vh H + thvh S [−vh H + (vf f + vh H)(1 − α)]

(vf f + vh H)2

−thvh S

(
ta
2

)

<
−vh H − thvh Svh H + (vf f + vh H)thvh S

(vf f + vh H)2

= −vh H + vf f thvh S

(vf f + vh H)2 = 0.

The last equality holds by (10).
For small P , using (18) and (10),

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

≈ thvh S

vf f
·
{

(1 − x)

[(
ta
2

)

vf f + (1 − α)

]

− 1

+x(1 − α) − xvf f

(
ta
2

)}

= thvh S

vf f
·
[(

ta
2

)

vf f (1 − 2x) − α

]

.

Thus, if (ta/2)vf f (1 − 2x) − α < 0, increasing x is optimal; if (ta/2)vf f (1 −
2x) − α > 0, decreasing x is optimal. This means that the only candidate for a
mixed CSS,

x0 = 1

2

(

1 − α

(ta/2) vf f

)

is not stable and thus there is no mixed CSS.
For large P , by (21), (23) and (22), recalling that these results are only valid

for x > ε, we get

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

≈ thvh Sx

(

TS(x, x)(1 − α) − ta
2

)

≈ thvh Sx

(
(1 − x) (ta/2)

1 − (1 − x)(1 − α)
(1 − α) − ta

2

)

= thvh Sx

1 − (1 − x)(1 − α)
·
(

ta
2

)

· (2(1 − x)(1 − α) − 1) .

Recall that due to our estimate (20) of TS , this approximation does not work too
close to Marauder (rp would be too small) nor Retaliator (pp would be too small).

Since ∂/∂x1T (x1, x)|x1=x < 0, for α ≥ 1/2, there are no mixed CSS in the
region (ε, 1 − ε). In fact, the population tends to Marauder (although we have not
proved that it will reach it).

If α < 1/2, then ∂/∂x1T (x1, x)|x1=x > 0 for x relatively small (yet greater than
ε.) This means, that if ∂/∂x1T (x1, 0)|x1=0 < 0, there is a mixed CSS somewhere
close to Retaliator (x has to be smaller than ε). This occurs when (ta/2)vf f −α < 0,



168 M. Broom, J. Rychtář
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Fig. 3. Dependence of the dynamics on P in Marauder–Retaliator population, ta = 1,
vf f = 0.1, th = 5, vh = 9, α = 0.06

i.e. precisely when Retaliator is not a CSS. Note that this does not rule out the pos-
sibility of multiple mixed CSSs, but it is clear that there is at least one. We can see
the effect of changing the density P on the CSS solutions of this case in Fig. 3.
Figure 4 illustrates that both Marauder and Retaliator can be CSSs at the same time.

4.7. Hawk–Dove

The strategy state is parameterized by (x, x). The case x = 0 corresponds to Dove,
the case x = 1 corresponds to Hawk. By (6) and (9) we get

∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

= {x [(ta/2) vf f + (1 − α)] − 1} · vh H

(vf f + vh H x(1 − x(1 − α)))2

∂

∂x1
TH(x1, x)

∣
∣
∣
x1=x

= ∂TH

∂p
+ ∂TH

∂r

= thvh Sx

[
∂

∂x1
TS(x1, x)

∣
∣
∣
x1=x

· (1 − x(1 − α))

−TS(x, x) · (1 − α) +
(

ta
2

)]

Hence,

∂

∂x1
T (x1, 0)

∣
∣
∣
x1=0

< 0
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Fig. 4. Dependence of the dynamics on P in Marauder–Retaliator population, ta = 1,
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because ∂/∂x1TS(x1, 0)|x1=0 < 0 and ∂/∂x1TH(x1, 0)|x1=0 = 0. Hence Dove is
never a CSS (it can be invaded by more aggressive individuals, condition AC ). Let
us check the sign of ∂/∂x1T (x1, 1)|x1=1. Substituting x = 1 and S = H/vf f th
into the above equations we get

∂

∂x1
T (x1, 1)

∣
∣
∣
x1=1

= ∂

∂x1
TS(x1, 1)

∣
∣
∣
x1=1

+ ∂

∂x1
TH (x1, 1)

∣
∣
∣
x1=1

=
(

1 + αvh H

vf f

){(
ta
2

)

vf f − α

}

· vh H

(vf f + vh Hα)2 +
(

ta
2

)
vh H

vf f
− (1 − α)vh H

vf f
· 1 + vh H (ta/2)

vf f + vh Hα

= vh H

vf f (vf f + αvh H)

(

tavf f − 1 + (2α − 1)

(
ta
2

)

vh H

)

So that B is satisfied and Hawk is a CSS if

tavf f − 1 + (2α − 1)
ta
2

vh HH < 0

and conversely (since AC holds) there is at least one mixed Hawk-Dove CSS if BC

holds.
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For small P we get

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

= vhth S

vf f
·
{

x

[(
ta
2

)

vf f + (1 − α)

]

− 1

+x

[

−(1 − α) +
(

ta
2

)

vf f

]}

= thvh S

vf f

[

2x

(
ta
2

)

vf f − 1

]

.

Thus

– Hawk is the only CSS if tavf f < 1,
– There is a mixed CSS if tavf f > 1; the mixture is at x0 = 1/(tavf f ),
– There is always only one CSS [since ∂/∂x1T (x1, x)|x1=x is increasing in x].

It may seem strange that this does not depend on α. However, individuals must
choose either to attack and defend, or to do neither. When population density is
low, an individual is unlikely to face any contests, with a small probability of a
single contest, equally likely to occur as a defender or attacker (and with essen-
tially 0 chance of being challenged again at the end of the contest). Therefore its
probability of emerging a winner of an average contest is 0.5 whatever the value
of α.

For large P , similarly to the case Marauder-Retaliator (and again recalling that
the results are only valid for x > ε), we get

∂

∂x1
T (x1, x)

∣
∣
∣
x1=x

≈ thvh Sx

(
ta
2

− TS(x, x)(1 − α)

)

= thvh Sx (ta/2)

1 − x(1 − α)
·
(

1 − 2x(1 − α)
)

.

Hence, ∂/∂x1T (x1, x)|x1=x > 0, for x close to 0. Since ∂/∂x1T (x1, 0)|x1=0 <

0 by general calculations, there must be a mixed CSS somewhere close to Dove
(independently of any other parameter). Note, again, that we cannot rule out multiple
mixed CSSs here.

When α > 1/2, then ∂/∂x1T (x1, x)|x1=x > 0 for all x close to 1, in particular,
Hawk is not a CSS. If α < 1/2, then ∂/∂x1T (x1, x)|x1=x < 0 around x = 1, thus
Hawk is a CSS.

The mixed solution here is what we would expect, analogous to the classical
Hawk Dove game ([14,15]). The pure Hawk solution for large populations is ini-
tially surprising, however, since there will be many fights and the uptake rate is low.
The explanation lies in the fact that when the defender usually wins (α < 1/2), it
is optimal to defend your food rather than give it up–there are many potential chal-
lengers, so an individual will probably face many such contests. However, giving
up the food would be worse, because there are a lot of handlers that will defend
(relatively successfully, α < 1/2) their food and thus it is very time consuming to
actually acquire a food item. (This is a similar argument to that for Hawk to be a CSS
in the Hawk–Marauder case with large P). This kind of parameter combination is
ideal for the strategy Retaliator, which we have disallowed here.
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Fig. 5. Dependence of the dynamics on P in Hawk–Dove population, ta = 1.3, vf f = 1,
th = 5, vh = 9, α = 0.355

Together:

– There is always a mixed CSS (close to Dove),
– If α < 1/2, then Hawk is a CSS.

The effect of varying the density P on the CSSs of the system can be seen in
Fig. 5 and Fig. 6. In both figures for low values of P there is just a mixed CSS,
and for high values there is a mixed CSS and a pure Hawk CSS, but intermediate
behaviour is different. A small change in the parameter α can create a significant
change in the dynamics, particularly for low values of P . In fact the condition for
Hawk to be a CSS is fairly straightforward, with Hawk being a CSS if and only if
P is above a certain value for some parameter combinations, or if and only if P is
below a certain value for others. Mixed CSSs always occur for high P , and occur
for low P if and only if Hawk is not a CSS, as in Fig. 5 and Fig. 6. However the
mixed CSS can disappear for intermediate values, and the interplay between the
boundaries for a mixed CSS and for a Hawk varies, giving a variety of possible
intermediate behaviours.

Figure 7 shows the situation where Hawk is the CSS for small populations only.

4.8. Second derivatives

This section contains formulas needed for establishing the fact that, in our situation,
every inner attracting point is actually a CSS.
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The only cases where inner attracting points may occur are mixtures of Hawk–
Doves and Marauder–Retaliators, i.e. cases where p and r are parametrized by
linear functions f (x) = x and g(x) = x (or f (x) = x and g(x) = 1− x). In either
case, f ′′(x) = g′′(x) = 0, and thus we have

d2

dx2 T ( f (x), g(x), f (x0), g(x0))

= ∂2(TS + TH)

∂p2 f ′(x)2 + 2
∂2(TS + TH)

∂r∂p
f ′(x)g′(x)

+∂2(TS + TH)

∂r2 g′(x)2

where the corresponding formulas for second derivatives of TS and TH can be
derived from formulas (5), (6), (8) and (9) as follows:

∂2TS

∂r2 = ∂2TS

∂r∂p
= ∂2TS

∂p∂r
= 0

∂2TS

∂p2 = −2 · vh H(1 − rp(1 − α))

vf f + vh H p(1 − rp(1 − α))
· ∂TS

∂p

∂2TH

∂p2 = thvh Spp(1 − r(1 − α)) · ∂2TS

∂p2

∂2TH

∂r∂p
= ∂2TH

∂p∂r
= −thvh Spp(1 − α)

∂TS

∂p

∂2TH

∂r2 = 0

These formulas were used for numerical calculations using Maple 10. The numer-
ical results suggest that

d2

dx2 T ( f (x), g(x), f (x0), g(x0))
∣
∣x=x0 > 0

for all attracting points x0.

4.9. ESS versus CSS

A strategy � is an ESS when it cannot be invaded by a small number of mutant strat-
egists, see [14]. In our notation, T (x, x0) means the time the x-strategists needs to
consume a food item in a population where everybody else uses strategy x0. Hence,
a strategy x0 is an ESS if and only if T (·, x0) attains its absolute minimum in x0,
in other words,

T (x0, x0) < T (x, x0), for all x �= x0.

ESS and CSS do not coincide in general as shown, for example, in [6]. In our
model, ESS and CSS are different as well. For example, it was shown above that
for high density populations, Hawk is a CSS in the mixture of Hawks-Doves if
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α < 1/2 and P is large. However it follows from our formulas that a population
of pure Hawks can be invaded by Doves i.e. Hawk is not an ESS for α < 1/2 and
large P for some parameter combinations.

For high P and α < 1/2 we have

TS(1, 1) ≈ (ta/2)

α
,

TH (1, 1) = th + thvh S

[

TS(1, 1)α + ta
2

]

,

≈ th + thvh Sta

and

TS(0, 1) = 1

vf f
,

TH(0, 1) = th + thvh S
1

vf f
.

Thus, Hawk is not an ESS if

ta >
1

vf f
.

Note that this result is different to that of Broom et al. [5] where the possible invad-
ing strategies included Retaliator and Marauder as well as Dove, but is the original
condition for not challenging from [3].

5. Discussion

In this paper we have explicitly considered for the first time kleptoparastic popula-
tions where individuals play mixed strategies, and the population strategy changes
following the adaptive dynamic procedure of small increments in the direction of
maximizing fitness.

The extension of adaptive dynamics to kleptoparasitism allows us to consider
more flexible behaviour amongst our population than in previous works. We have
provided the general framework for how to solve such problems, which involves the
direct calculation of searching and handling times, as opposed to the simpler han-
dling ratio, which was equivalent for the purposes of earlier models. We developed
this with the application to individuals who can vary their behaviour only between
two distinct types of strategy (which nevertheless can be mixed strategies). We
have given the conditions for either of the “pure” solutions (i.e. always play one of
the two distinct types) and sufficient but not necessary conditions for there to be a
mixture of these two types. We have not ruled out multiple mixed CSSs or a mixed
CSS when these sufficient conditions are not met in the general case, although we
do not consider such an occurrence likely for our system.

This in turn leads us to a full analysis of all pairs of possibilities from the strat-
egy class of pure behaviours introduced in [5]. Four of the six possibilities lead to
results not qualitatively different from those of [5] in the sense that the same pure
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solutions can occur here as well (although significant analysis was required for the
Hawk–Marauder case). There are distinct results in the other two cases, where the
two types differ in both of their parameters (which would generally be the case
for a combination of two randomly selected mixed strategies). For the Marauder–
Retaliator case, Marauder is always a CSS and there can be either no other CSS,
pure Retaliator as a CSS or a mixed CSS. For the Hawk–Dove case there is either
a pure Hawk CSS or a mixed CSS, or both solutions simultaneously. The different
types of solutions possible can clearly be seen by varying the population density
P for various values of the other parameters. The Hawk–Dove case in particular
yields quite complex and interesting behaviour. We considered both high and low
density cases analytically, as well as looking at a range of densities in Figs. 1–7.
The major difference to earlier work is the existence of mixed stable solutions.

It should be noted that in the above discussion we are assuming that the attract-
ing points of our dynamics are indeed CSSs. We believe this to be true; this was
certainly the case for all of our numerical calculations, where we were unable to
find any branching points of the dynamics. If this was not true, and branching points
were possible, the behaviour of our system would be even richer, with all of the
above possibilities plus others as yet undiscovered.

One pertinent question, is how plausible is it to restrict the population to only a
combination of two strategies. It was shown in [5], which considered a polymorphic
population of individuals playing pure strategies, for example, that no mixture of
individuals playing Hawk and individuals playing Dove was possible, due to inva-
sion by one of Marauder and Retaliator. If we allowed a mixture of all strategies at
once the analysis would get very complex, and one reason we restricted our working
to combinations of two strategies only was to make the calculations feasible. How-
ever, we can conjecture about the likely results in this case. In [5] it was not possible
to have a mixed strategy solution; this was as a result of all individuals being abso-
lutely identical in their abilities. Although the strategies that individuals played
were different (polymorphic mixtures of pure strategies rather than monomorphic
players of mixed strategies) we believe that this result will also carry over to this
case. In more recent work [13] non-challenging individuals were allowed to search
for food at a higher rate than challengers, and this allowed polymorphic mixtures
to occur. In the current case, even if small differences in abilities are allowed, then
mixed CSSs will be possible in the unrestricted case. For instance, if individuals
differ in fighting ability according to how frequently they fight (Hawk as opposed
to Marauder or Retaliator) then our mixtures are possible even if individuals have a
free choice. To illustrate it by an example, consider an extreme situation where any
bird outside the Dove–Hawk diagonal has a zero chance of winning the fight. Such
a bird can never invade a Hawk–Dove mixture because it does worse than Dove
(that does not lose time fighting). In fact the outcome will be the same if birds play-
ing strategies not on the diagonal have smaller fighting abilities (and thus smaller
chances of winning the fight) than birds on the diagonal, even if these differences
are small.

Another interesting question to consider is whether the strategies that we
describe are actually used by real kleptoparasitic populations. The strategy Dove
corresponds to populations where there is no kleptoparasitism, and the strategy
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Hawk where there is widespread kleptoparasitism with visible contests, and so
these two strategies are clearly common. A pure Retaliator population would be
indistinguishable from a Dove one. Real populations that play Marauder would be
characterised by frequent very short contests. Behaviour of this type often occurs
in various wading birds [23], although this could be linked to dominance relation-
ships between the birds. Mixed strategies have been observed in the common kestrel
Falco tinnunculus [10] and its kleptoparasites (of various species). Birds take some
opportunities to challenge but not all, and resist some challenges but not all. It
should be noted that this is complicated by the different propensities of males and
female to resist challenges, with females resisting challenges more often.

The use of adaptive dynamics provides a way to consider more complex interac-
tions between individuals with different possibilities and could be useful for more
complex kleptoparasitic populations with different types of individuals and behav-
iour. In this paper we have thus introduced an alternative method which is potentially
very useful in tackling the important and challenging problem of kleptoparasitic
behaviour.
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