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Abstract Kleptoparasitism, the stealing of food from one animal by another, is a
common natural phenomenon that has been modelled mathematically in a number of
ways. The handling process of food items can take some time and the value of such
items can vary depending upon how much handling an item has received. Furthermore
this information may be known to the handler but not the potential challenger, so there
is an asymmetry between the information possessed by the two competitors. We use
game-theoretic methods to investigate the consequences of this asymmetry for contin-
uously consumed food items, depending upon various natural parameters. A variety
of solutions are found, and there are complex situations where three possible solutions
can occur for the same set of parameters. It is also possible to have situations which
involve members of the population exhibiting different behaviours from each other.
We find that the asymmetry of information often appears to favour the challenger,
despite the fact that it possesses less information than the challenged individual.
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632 M. Broom, J. Rychtéf

1 Introduction

The phenomenon of kleptoparasitism, or food-stealing, is common in animals of
many types, for example mammals (Carbone et al. 1997; Gorman et al. 1998), fish
(Grimm and Klinge 1996), invertebrates (Iyengar 2000; Tso and Severinghaus 1998),
and especially in birds; see Brockmann and Barnard (1979) and Furness (1987) for
review papers. A good recent review over the range of species is in Iyengar (2008).
There is now a significant theoretical literature on the subject (Barnard and Sibly
1981; Broom and Ruxton 1998; Broom et al. 2004; Holmgren 1985; Ruxton and
Moody 1997; Sirot 2000; Vahl 2006).

The theoretical model of Broom and Ruxton (1998) is the basis for much of the
recent work in this area (Luther and Broom 2004; Luther et al. 2007; Broom and
Rychtar 2007). One of the assumptions of this and later models is that both individu-
als have equal knowledge of the handling process of food items so far. If food has been
discovered at sea and is subsequently flown to feed chicks on the shore (Shealer and
Spendelow 2002), then this may be reasonable, since both defender and challenger
will know the distance to land. However, it will often be the case that potential par-
asites will chance upon their victim and not know the length of handling effort that
has gone into the process, for instance with food items with tough shells which need
to be breached. This may still not affect the optimal choice of individuals if there
are a variety of shells of different toughness, so that perhaps a handler cannot tell its
remaining handing time based upon how long it has handled the food. However, there
are some food types where this information is very valuable.

This brings us on to the model of Broom and Ruxton (2003) where two food types
with different properties were considered. One type, the ‘apple’, could be consumed
gradually as soon as it was found. Thus the longer it had been handled, the less valuable
it was. Searching individuals could observe the handling state and choose whether to
attack, with defenders always defending food items. Evolutionarily Stable Strategies
(ESSs) were found where behaviour was described by a single critical value; for the
apple model individuals would challenge if there was sufficient food remaining. Here
we will develop the work from Broom and Ruxton (2003) to consider the apple model
when the defender knows the handling time, but the challenger does not. A key ques-
tion is whether this asymmetry of information is likely to benefit the handler or its
challenger.

In the following section, we describe the model and how in has been developed
from the key earlier models. We go on in later sections to find the ESSs for our model.
We investigate six possible strategies, considering monomorphic populations where
all members of the population play identically, finding when each is an ESS and which
of these can coexist for identical parameters. We show that only three of these strate-
gies can yield monomorphic ESSs, which we shall also refer to as pure ESSs. We also
find that it is possible that there is no monomorphic ESS, and that mixtures of dif-
ferent strategies are possible, with some individuals choosing to challenge and others
not. Such solutions principally occur when the defensive behaviour in a population
would vary greatly depending upon whether challenges were often or rarely made. We
finally discuss the consequences of these different results both from a theoretical and
a practical perspective.
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A model of kleptoparasitism with incomplete information 633

2 The model

Following on from Broom and Ruxton (1998, 2003) and Broom et al. (2004), we
consider a population of foragers with a population density of P. Individuals belong
to one of four subpopulations, depending upon their activity. They are either searching
for food (), handling a food item (H ), fighting for food as a challenger (C) or resist-
ing that challenge (R). We use these labels both for the activity and the population
density involved in that activity. These activities are mutually exclusive and every fight
involves a challenger and a resister, so that R = C and

S+H+R+C=S+H+2C=P.

The rate at which searchers encounter prey items and handlers (which they can poten-
tially challenge) are vy f and vy, H respectively.

We define H (x) as the population density (strictly the density function of the den-
sity) of handlers with a food item which has remaining handling time x, so that #,
represents newly found items. When handling progresses undisturbed, the handing
state changes with time, so that after length of time ¢ has elapsed, a newly found food
item moves from H (t,) to H(t;, — t). When a handler reaches state H (0) handling is
completed, and it resumes being a searcher.

The time is the inner characteristic of the individual food item and it can be regarded
as the actual size of the item (visible to the handler only). The size (and the time)
decreases from 7, for a whole item to O when the item is already eaten. Arriving at
time ¢ means that the item is of such a size that it would take time ¢ to eat it (if undis-
turbed by any fights). Also the time for the item “stops” when two individuals fight
over the item (as during that time, the size of the item remains constant).

When a forager finds a handler it may decide to challenge for the food item (or not)
and the challenged handler may decide to resist the challenge (or not). When a contest
occurs, it takes place for an exponential time of mean duration #, /2. The forager moves
to state C(x) and the handler to R(x). The challenger wins and becomes a handler in
state H (z) (the defender becoming a searcher) with probability «, and otherwise the
defender wins, becoming the handler in state H (x), and the challenger resumes being
a searcher. If there is no challenge there is no change in the states, and if a challenge
is not resisted the challenger and handler swap states with no time lost. A summary
of the key transition rates of the model is given in Fig. 1.

It was shown in Broom and Ruxton (2003) that if the population is in equilib-
rium, then the handlers would be uniformly spread between the range of handling
states from ¢, to 0, since each item has to pass through each of the stages before
being consumed, and this is also true for the different stages of the contesting states
R and C. Thus, challengers are equally likely to find food items in all states of
being handled. In our model, like previous ones such as Broom and Ruxton (1998,
2003) and Broom et al. (2004), there is a balance between transitions from fighting
states (C and R) to non-fighting states (S and H) and between non-fighting states so
that

H =v;fu,S. 2.1)
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Fig. 1 Transition diagram for
the model in the more complex
case when challenges occur.
Solid lines represent direct
movements between states e.g.
individuals move from S to the
initial handling position at rate
vy f. Dotted lines represent a
deterministic transition through
the handling states; if
uninterrupted by challenges an
individual covers a distance [1]
down the handling line per unit
time, until it reaches 0 when it
instantaneously moves to S. In
this case handlers resist if and .
only if the value of the food item il
is at least xy

Loy ) 1+ Ty 1y

Handlers are aware of how much of their food item remains, and they are able to
surrender it if challenged. Searchers can challenge for a food item, but do not know its
value prior to making a challenge; thus there is asymmetric information. Challengers
make a decision to challenge based upon no knowledge of the value of the food item
challenged for, whereas defenders will have a precise knowledge of the handling time
elapsed.

An individual’s strategy can be summarised as a pair. Firstly, since as a searcher, it
cannot observe the current handling state of its potential victim, it must simply decide
whether to challenge (Y) or not (N). Secondly as a handler, it must decide which food
items are worth defending; it will decide food items are worth defending if and only if
they are worth above a certain value. Thus individuals’ strategies are labelled (N, x) or
(Y, x). We look for evolutionarily stable strategies; in particular we will find the opti-
mal value of z, zy, when the population challenges, and then check for stability against
a non-challenging mutant individual. We do the same for the optimal value of z, xy,
for a non-challenging population, and then check for stability against a challenging
mutant. The value of xy (or xy) may be equal to either #;, or 0, and we will write in
terms of finding solutions (N, t,), (N, 0) or (N, xy), where the third of these implies
a value such that 0 < xn < #; (and similarly for challenging populations and xy).

When there are no challenges the uptake rate of the population, which is equal to
H/P, is the maximum possible and it is given by the Holling ratio (Holling 1959)

1,
hH:M. (2.2)
1+ l)ffth

If every searcher-handler encounter results in a fight, the uptake rate is 4, the positive
root of

R2taon P+ he (141305 f) — vy fty = 0. (2.3)
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A model of kleptoparasitism with incomplete information 635

We assign a value of 7, to a food item; thus since the item takes precisely this time to
handle, the mean consumption rate during handling is 1 (in fact this is the actual rate,
since food is consumed continuously at constant rate). Thus in each case the handling
ratio h = H/P is also the mean consumption rate of the population. We shall also use
the following notation to summarise the important collections of parameters b and y
which feature in our solutions;

p= P (2.4)
vy ftp
_ tavff
y = —2(1 mpet 2.5)

y is the ratio of the rate of finding food as a searcher and the rate of moving back
to the handling position as a defender in a contest, and is thus key to the deci-
sion on whether to defend an item or not. It has featured as a key parameter in
a number of earlier papers, including Broom and Ruxton (1998) and Broom et al.
(2004). The parameter b can also be expressed as the ratio v, S/(H/P) the ratio of
the rate that a given handler is found by potential challengers and the overall rate
of reward in the population, which is again important for decisions of attack and
defence.

3 Results
3.1 Summary

There are six potential solutions which are (N, t,), (N, xy), (N, 0), (Y, 1), (Y, zy)
and (Y, 0). As it becomes less valuable to be holding an item nearer to the end of
the handling period, xx and xy represent the critical remaining handling time, when
defence occurs if and only if the remaining time is longer than this. Note that for popu-
lations which contain only non-challenging individuals, we still consider the strategy
of when to defend against occasional challenging mutants, imagining a continuous
supply of such individuals at very low frequency.

The strategies (N, t,), (N, 0) and (Y, 0) are never stable. If every individual in the
population adopted the strategy (N, t5,), there would never be fights, and so a mutant
challenger would always invade. If every individual adopted (N, 0) or (Y, 0), the indi-
viduals would be willing to fight for items of zero value, and so individuals playing
higher values of z or xy would invade.

3.1.1 Strategy (N, xnN)

(N,zn),0 < zy < tp, is in equilibrium with respect to a change in critical defensive
time if

y <1, 3.1
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where the equilibrium value of zy is given by

TN = Y. (3.2

This is stable against invasion by a mutant challenger if

2 a
3y =2y + —— <0. (3.3)
l -«

If (3.3) holds then clearly (3.1) must also hold, and thus (3.3) is the sole condition
for (N, zy) to be an ESS. Note that if there are never any challenges, the defensive
strategy would of course be irrelevant. We assume that there will be a low level of
challenges even in a nominally non-challenging population, either as a result of occa-
sional mutant challengers or behavioral aberrations by some individuals. This seems
reasonable for any real populations with the potential to challenge, and any such very
low level is enough to maintain a unique defensive strategy.

3.1.2 Strategy (Y, ty,)

(Y, ty) is stable against a change in critical defensive time if

I —exp(—tyvp P/(1 +1v5 f)) 1 —exp(—tpbhp)

, 3.4
thop P /(1 +thvyr f) thbhy

Yy >

and is always stable against a mutant non-challenger, since handlers never resist.

3.1.3 Strategy (Y, xy)

(Y, xy),0 < xy < tp, is in equilibrium with respect to a change in critical defensive
time if

1 14+t f)hyg —h bh(2 —h
b+ ) exp bty ¢ LW DB =R ybhG=h) o)
t,h? tahvy f (1 —hvyef
where & is a solution of
141t hy —h h*b
1—exp (—hbth 4+ QA vy Sk )) __Y —0, (3.6
tahvy f (I=hyvs f
and the equilibrium value zy is given by
1+1¢ hy —h
oy =ty — I+ 1ty f)hy ). 3.7)

btuhz\Jff
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This is stable against a mutant non-challenger if

1 —exp(—a(ty — xy)bh)
y (1 + a(exp(xybh) - 1) ) < 1. 3.8)

3.1.4 A mixture of challengers and non-challengers

If (3.1) holds but (3.3) does not (so that the potential non-challenging solution is unsta-
ble against individuals which challenge), (3.5) holds but (3.8) does not (so that the
potential challenging solution is unstable against individuals which do not challenge)
and (3.4) does not hold, then there is no pure ESS. Here challengers invade non-chal-
lengers and non-challengers invade challengers so that we will have a mixture of such
individuals in the population. Whenever these conditions occur, there is an equilibrium
mixture where both groups employ the same defensive strategy.

3.2 Combinations of solutions and the influence of the parameters

Figure 2 shows the possible patterns that can occur in a challenging population. We
can see that there can be at most one value xy < f; so that the strategy (Y, xy) is
stable; and the strategy (Y, ;) can be stable as well. There is a total of three possible
pure strategy solutions (N, xy), (Y, xy) and (Y, ;). We can see in Fig. 3 that all eight
combinations of these solutions are possible. For parameters such that « < 1/4, P

is large and ’7" is slightly bigger than (% - % - ﬁ) });—;’ﬁ all three ESSs occur,

and for parameters such that @ < 1/4, P is relatively small and % only slightly bigger

than (% + é - ﬁ) ‘1};—;‘ none of them occur.

Note that for N strategies to be stable there is quite a small region, so the asymmetry
of knowledge with the defender knowing more seems to lead to an advantage to the
challenger, with solutions of types (Y, zy) and (Y, #;,) occurring for a wider range of

parameters than (N, zy).

small ¢, medium ¢, large t,
0 hs hy h 0 hs  h.o\_hg h 0 hag h
(a) (b) (c)

Fig.2 The schematic graph of the function on the left-hand side of (3.6) and its relationship to the stability
of the value zy (the values xy is increasing with / by (3.7)) where h g is the Holling handling ratio and
thus the maximum possible value of 2. When a function is positive, defending longer is optimal and vice
versa. As the parameter % grows, one gets (a) one stable root xy < 15, (hs < hpg), (b) one stable root
zy < t, and another stable state #;,, (¢) only one stable state #;,
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(Y, zy), (Yitn) (Yozy), (YVotn), (N.an)

A \
P

(N,zn), (Y. tn)

12.2 1

(Y, zy)

(Y, zy)

0.13 04 052 0.8

Sy

Fig. 3 The regions of ESSs. The grey triangular region is a region with no pure ESS. The regions are for
parameter values 7, = 1, v = Lvy f = 1,0 = 0.2

The parameter range of the different solutions is not always straightforward. The
non-challenging solution (N, xy) can only occur for sufficiently small challenger
winning probability « (e.g. as in Fig. 3). It also requires intermediate values of fight
time #,/2 and foraging rate vy f; if fights are short or the foraging rate low then it
is worth challenging even if the probability of success is low, and if they are high
it is also worth challenging because a challenged individual is unlikely to defend
its item. Interestingly, the population density P has no effect on the existence of
this solution, as in any such population the only fights will be caused by mutant
individuals. Population density does, however, affect the existence of the other solu-
tions; the denser the population, the more challenges an individual can expect to
face. The challenging and no resisting solution (Y, #,) occurs for sufficiently dense
populations, sufficiently large fighting time and sufficiently low foraging time. It is
also more likely to occur when the probability of the challenger winning is larger.
The challenging strategy where individuals will defend sufficiently good food items
(Y, xy) occurs for sufficiently low fight times, but also for high ’7" and low pop-
ulation density. Most of these results are individually intuitive, although the pos-
sible combinations of solutions and the complex shape of Fig. 3 are not. Previous
models, such as those from Luther et al. (2007) had several possible combinations
of solutions, but the behaviour in this model is surprisingly rich, with only small
changes in parameter values being able to lead to a range of different combinations of
solutions.
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A model of kleptoparasitism with incomplete information 639

4 Analysis
4.1 General method

Let h(X, x; L, xp), denote the long term foraging rate (i.e. expected food consump-
tion divided by the total time used) of an individual using a strategy (X, x) in the
population where everybody else uses a strategy (X,, zp). Here ¥ € {Y, N} is the
challenging strategy and z € [0, #;,] is the defending strategy. We are looking for
evolutionarily stable strategies which are pairs (X, ) such that if every individual
in the population adopts such a strategy, it is then the optimal strategy, i.e.

h(Z,2;Zp,2p) < h(Zp, xp; Bp, Tp)

for any (X, x) # (Xp, x) (in fact when X, = N all defensive strategies do equally
well in the absence of challenges, and so we allow a very small background level of
mutant challenges).

Thus, given (X, 2,) we need to consider the optimal invading strategy (X, x,)
such that

h(Zo, o3 Xp, xp) = max{h(X, x; Xy, xp), Z € {Y, N}, x € [0, 1]}

We will see in the subsequent sections that formulae for 2(X2, x; X, ) can be com-
plicated and finding the maxima of these functions can be commensurably difficult.
Thus, we introduce an additional measure and show how to use it to find the optimal
strategy. Let R.(X, z; ¥, x ) denote the average feeding rate of an individual during
and after the challenge that arrived at time ¢ just slightly larger than x, up until the
end of its interaction with that particular food item. Clearly, R.(%, z; X, x,) does
not depend on an individual’s challenging strategy and thus whenever the strategy of
the population will be clear from the context, we will use R.(x) only. In more detail,
R.(x) is the amount of food eaten divided by the total amount of time during the event
that starts by a challenge at time t > x,t = x, continues by a fight (for an average
time 7, /2) and, in the event of the handler winning the fight, continues with the handler
eating the food item until the item is eaten in full or the handler is challenged again
(when it immediately concedes without a fight).

Universal principle Let the population consist of individuals using strategy (X, zp)
and let one individual use a challenging strategy X. If x, is the optimal defensive
strategy the individual can use, then

%o > wifand only if h(Z, 23 Xp, 7p) = Re(x). “.1)

To understand the principle, note that R.(z) does not count the consumption before
the encounter. What matters is that right now at time ¢ & x the individual is challenged
and it should decide whether it is worth defending (yielding feeding rate R.(x)) or
giving up (yielding feeding rate h(X, z; Xp, zp)).
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If h(2, 25 Z)p, xp) < Re(x), then the individual is better off entering the contest
than conceding it at x, and indeed also after some small further depletion of the
resource. Consequently, z, < x. If (X, x; ¥, ) > R.(z), the individual is better
off conceding than entering the contest at =, and indeed should concede if challenged
a little sooner than at x. Thus, z, > x.

A direct consequence of the universal principle is that, for the optimal value,

h(Zo, o3 Xp,Tp) = Re(xy). 4.2)

In order to check that a given strategy (X, x ) is an ESS, we need to consider optimal
defending for an individual using challenging strategy X, and also for an individual
using challenging strategy ¥ # X,. The first means that the defending strategy is
optimal, i.e. the value z is stable against its change. Using the universal principle and
(4.2), the necessary condition for it is

h(Zp. xp; Tp,ap) = Re (zp) . 4.3)

This condition is necessary, but not always sufficient. For the case ¥, = N we will
see that it is sufficient, as it is not possible to have more than one root of the Eq. (4.3).
However, when X, =Y, there can be two, but no more than two, roots of (4.3) (see
Fig. 2). When there are two roots, the lower one is stable and the higher unstable, so
that finding the smallest 2, > 0 which satisfies (4.3) always gives the unique optimal
value.

In the population of non-challengers using strategy (N, x,), a single challenger
will not be challenged itself and thus its defensive strategy is irrelevant. In the popu-
lation of challengers using strategy (Y, x,) where x, is stable against its change, the
individual (N, x,) invades if and only if A(N, z,; Y, xp) > h(Y, zp; Y, x,) which,
by (4.2) and (4.3), happens if and only if R.(z,) > R¢(x)). Clearly, R. is mono-
tone in = (the expected uptake rate over the duration of an item which will never
subsequently be defended after the first attack is clearly increasing with the size of
the item at the moment the attack occurs; see also (4.6) below), and thus (N, x,)
invades if and only if x, > x, which is by the universal principle (4.1) equivalent to
h(N,zp;Y,xp) > Re(x)p). It means that we need to consider invasion by (N, x )
individuals only.

4.2 Feeding rate during the contest at the critical time

Assume that the density of challenging searchers in the population is S¢ and con-
sider an individual using strategy (Y, x) or (N, x) that defends the item until time z.
Assume it is currently handling a food item and that it has been challenged at time
t ~ z,t > x. We will calculate its feeding rate during this contest which is the total
amount of food eaten divided by the total amount spent by eating and fighting for it.

The individual engages in a fight for an average time % It wins the fight with
probability (1 — «) and resumes eating. From that moment, challenges arrive to the
handler as a Poisson process of rate v, Sc.
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When S¢ > 0, the expected amount of food consumed (and time taken to consume
it) until the handler is finished or found by a searcher is given by

t
Er(t) =t - Pr(not found at all) + / 7 Pr(found at time r — 7)drt
0

oo t

= t/exp(—vhScr)vhSCdr+/exp(—vhSCr)vhSCrdr
1 0
1
texp(—vpSct) + | —t¢ exp(—vhSct)+/exp(—vhSCt)d1:
0

(1 — exp(—vpSct)), “4.4)

vSc

where the second use of Pr() above is a probability density function (of the time at
discovery). Note that when S¢ = 0,

Er(t) ~t. 4.5)

Since ¢ &~ x, then when our individual is found again, it will not resist but give up
the food. Consequently, from the event of being challenged at time ¢t &~ z, the han-
dler spends time #, /2 fighting and possibly (with probability (1 — «)) additional time
Er(z) eating (terminated by the next challenge, which is not resisted, or complete
consumption of the food item); and at the same time, it eats E r (x) amount of the item.
Thus its feeding rate is

(I -a)EF(x)

R.(z) = .
O = b+ %

(4.6)

4.3 The long term foraging rate
4.3.1 Homogenous populations

If there are no challengers in the population (or S¢ & 0), the foraging rate will be
the Holling handling ratio from (2.2). In the population where everybody adopts a
strategy (Y, ), the handlers defend their food with the probability 1 — i and thus, by
e.g. Broom and Rychtaf (2007), the long term handling ratio is the positive root of

hztath(l —2)+(1 i b — vy f =0 4.7)

if z < #;, (and is otherwise the Holling ratio), which gives Eq. (3.7). It follows that
—hxv, P Iy L+tmvpf hth
thl)ff tah tuvff Uff'
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642 M. Broom, J. Rychtéf

4.3.2 A single non-challenger amongst challengers

Let us consider an individual using a strategy (N, x) in the population where the
density of searching challengers is Sc (the defensive strategy of challengers, =, is
irrelevant for this calculation and can be arbitrary). The individual finds food at rate
vy f, and this food is completely unhandled, and so worth #;,. Challenges then occur
at rate v, Sc. If the individual still has the food at time x, then from that moment, by
(4.4),

1 —exp(—vpScx)

Ep(z) = o Se

is eaten, on average, and no time is lost by fighting (if a challenge occurs, the individual
surrenders the food).

Before time x, the handler fights and wins the fight with probability (1 — «), thus
successful challenges occur at rate o Sc vy, and so the individual still has food at time
x with probability

h—x
pe(x) =1— / aScvy exp(—aScvpt)dt = exp(—aScvy(ty — 2)).
0

The expected gain in food from the beginning of handling up to time z is

th—x

Ej(x) = (th —x)pc(z) + / tPr(lostat ¢, — t)dr

0
th—x

(th — ) exp(—ozchh(th — x)) + / taScv, exp(—aScv,t)dt

(=}

1 —exp(—aScvp(ty, — x))

aScvy, ’
where as before, the expression using Pr() is a probability density function. Finally
given an individual has spent an average time E (x) handling when subject to potential
challenges that it will resist, and such challenges occur at rate v, Sc, it has spent, on
average, the time

t
t1(x) = vhscgme)

resisting. The feeding rate for this individual is thus

E1(x) 4+ pe(x)EF (2)

h(N, x; = '
(N, 2 Y, 2p) W)V Er(@) + t1(z) + pe(x)Ep(x)
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4.4 A non-challenging population

The strategy (N, 0) is never optimal. If it were, by (4.3), the feeding rate at that
population would be

h(N,0; N,0) = R.(0) =0,

which is a contradiction of the fact that the feeding rate is the (nonzero) Holling ratio.
Now consider the strategy (N, x),0 < = < t;,. By (4.3), it is stable against a change
in the defensive time if

h(N,x; N,z) = R.(x),

where, by (4.6) and (4.5)

(1—a)z
R.(x) = ——mMmm.
11—z +1,/2
Since A(N,x; N,x) = hy = %,it is best to fight if > min{l, y}#;. If y > 1

the feeding rate from defending is always worse than the average foraging rate, and
food should be discarded at any challenge, no matter its value i.e. choose xy = .

In order to find out whether challenging among non-challengers using strategy
(N, x) is beneficial, we do not need to know the long term feeding rate of the chal-
lenger. All we need is an expected feeding rate from the beginning of a random
challenge. First realize that (N, #;) is never stable. Indeed, if food is always surren-
dered, an individual who always challenges will invade, since any challenge presents
them with free food, and an uptake rate of 1 for the interaction. We may thus consider
0 <z <ty only.

With probability (¢, — x)/1;, there will be a fight costing time #, /2, and the reward
will be won, and subsequently kept, with probability «. With probability x/#;, the han-
dler will give the food up immediately, and there will be no time lost. The expected
food gained through such a contest is

th—o)\th+x xx 1 5 2
T (a4 (1 —a)d).
Ol( o ) 5 +th2 2th(ah+( a)x”)

The expected time taken is this plus the expected extra contest time, giving

th —xt,
2

1 2 2
—(aty + (1 —a)z”) +
2ty

Challenging is not beneficial if the challenger feeding rate is greater than the Holling
ratio (2.2), the rate that would result from non-challenging, i.e. if
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2 2
ati+(1—a)zy
Vf fth < 21y,

14+vrfty ta a2+ (1—a)a?,’
rf 4 (1 — M) 4+ LT TN

ty 2ty

which rearranges to
3)/2 -2y + _* <0,
l—«o

which is condition (3.3). Thus condition (3.3) together with y < 1 is required for
stability. Note that the above inequality is equivalent to

1—4
Gy =1 < - )

We thus need o to be small and y to take intermediate values (the largest range of «
when this condition is satisfied occurs when y = 1/3). In particular if either o« > 1/4
or y > 2/3 stability cannot occur.

4.5 A challenging population

Similarly to the case of the strategy (N, 0), the strategy (Y, 0) is never optimal. If it
were, by (4.3), the feeding rate at that population would be

which is contradicted by the fact that the feeding rate is, by (2.3), h(Y,0;Y,0) =
h, > 0.

4.5.1 The strategy (Y, ty)

Since handlers are giving up the food whenever challenged, there are no fights in this
population, and we have a situation similar to that of the Marauder strategy in e.g.
Broom et al. (2004) and Broom and Rychtér (2007). Since P = S + H, from (2.1)
and (2.2) it follows that § = ﬁ, and thus, by the universal principle, for stability

against lower zy values we require
hg = Re(tp).

By (4.4) and (4.6) it yields

veftn sl expuSm) (1 —a)
Lvsfin = S (1 —exp(—wSt)) (1 — ) + %
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which can be rearranged to

ta 1 —exp(—vpSty)
-—> (1 —w),
vt 2 - v, Sty ( @)

which is condition (3.4). It is clear that (Y, #;) is always stable against a mutant

non-challenger, since handlers always give up their food, so that challenging is
optimal.

4.5.2 The strategy (Y, x), x < ty,

By (4.3), the value z is stable against its change if
h(Y,xz; Y, ) = R.(x).

By (4.4) and (4.6) again

%Ls(l — exp(—v82)) (1 — @)

u;_s(l —exp(—vpS2))(1 —a) + %

Re(z) =

and combining the above two equations with (3.7) and (2.1) yields

7 141¢ P ap(z)?v, P
1—exp( h oS o ) Fh@) v, 4.8)

tah(z) tavy f h(x)\fff (I = @) =)y fo,’
which can be rearranged to give (3.6). In fact this solution is stable against changes
in defensive strategy if the derivative of the left-hand side of (3.6) is positive at the
specified root (see Fig. 2), which yields (3.5).
Next, we must consider when (Y, xy), xy < f3 is stable against an invasion of a
mutant (N, x). The feeding rate, h(N, x; Y, xy), is given by

E(x) + pe(@)EF(x)

h(N, = '
(N,z; Y, zy) 1/vef+ Ef(@) +t1(z) + pe(z)Ep(x)

Using the universal principle, the mutant does not invade if and only if
h(Nv :L.Y; Ys :EY) < RC(xY)‘
This implies that

a 1 4
— E E 1— — 16y E
20 —a) (wpSEr +wiSpEF) < (1 —exp (—(vpS)zy)) (Uff + 5 Svp, 1) ,
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which rearranges to

tavyp f o (1 — exp(—xybh)) + exp(—xybh)(1 — exp(—a(ty, — xy)bh)
2(1 —a) o ( 1 — exp(—xybh) )
(1 n exp(—xzybh)(1 — exp(—a(ty, — a:y)bh))
a(l — exp(—xybh)) ’

which is condition (3.8).

Let us now investigate the number of possible solutions of (3.6) and the conse-
quences to the existence of stable ESSs. The right-hand side of (4.8) is convex, starting
at 0 for » = 0 and ending at oo for 2 = 1. The left-hand side is concave, starting at
—oo for 7 = 0 and ending at 1 for 7 = 1. This means that there are either two roots
or there are none (except on a specific coincidence of parameters). Also, from (4.7) it
follows that if we consider xy as a function of £, then it is an increasing function.

Itis possible there is no solution of (4.8), which corresponds to (Y, t,) being the ESS
(see Fig. 2c). If there are two solutions /1, hy of (4.8), we have one of the following
three cases

(i) hg <hy <hy,
@i1)) hy <hyg < ho,
(iii) h1 < h2 < hH.

Substituting & g for 4 in (3.6) yields equality in (3.4). Consequently, if (3.4) holds, we
have either case (i) or (iii); and we can get case (ii) only if (3.4) does not hold. Since the
Holling ratio, & g, is the maximal handling ratio, the solutions larger than this ratio are
of no interest to us. Moreover, positive values of the left-hand side of (3.6) correspond
to lower values of xy being favourable and, vice versa, negative values correspond to
higher values of zy being favourable. Hence, the root % is either unrealistic (in case
(ii)) or unstable (in case iii)). Consequently, we can have only one stable (Y, xy) with
xy < tp which will be A in either (ii) (see Fig. 2a) or (iii) (see Fig. 2b); however, we
can have both (Y, zy), xy < t, and (Y, t,) being stable (Fig. 2b).

4.6 A mixture of challengers and nonchallengers

As seen at Fig. 3, there are cases with no ESS. Specifically, if (3.1) holds but (3.3)
does not (so that challengers can invade any non-challengers adopting a stable defen-
sive strategy), (3.5) holds but (3.8) does not (so that non-challengers can invade any
challengers adopting a stable defensive strategy) and (3.4) does not hold, then there
is no pure ESS. In such a situation we will have a mixture of individuals in the popu-
lation. For any such mixture to be in equilibrium, both groups would have to perform
equally well. This in turn means, by the universal principle, that the value of xy must
be equal to xy at equilibrium; in other words, all individuals would have to use the
same defensive strategy. Whenever (3.3) is not satisfied challengers do better in a
population wholly consisting of non-challengers and whenever (3.8) is not satisfied
non-challengers do better in a population consisting wholly of challengers. Consider-
ing any population combined of challengers and non-challengers, if we slightly alter the
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proportion of challenging individuals, this will correspondingly alter the equilibrium
defensive strategies ) and xy, and hence the uptake rate of challengers and non-
challengers by a small amount. Thus these uptake rates are continuous as a function
of the proportion of challengers, and so there will be a mixture where the two perform
equally well. It is clear that there is an equilibrium within this region (and indeed in a
larger region). Note that we have not been able to prove that this solution is unique,
or that it is stable.

5 Discussion

Kleptoparasitic behaviour takes a number of forms amongst its most visible constitu-
ency, that of seabirds. From the interspecific parasitism where individuals are clearly
divided into parasites and potential victims as typified in Spear et al. (1999) to intraspe-
cific parasitism where individuals can move interchangably between the two, which is
the focus of our model. This intraspecific behaviour can take different forms, varying
from mainly ground-based competition with a strong spatial element (Stillman et al.
1997; Smallegange and Van der Meer 2007) to aerial contests involving potentially
many individuals (Steele and Hockey 1995). In each case, there is a variety of key
parameters which determine behaviour, for instance the availability of food (Triplet
et al. 1999), the duration of contests or the population density (Luther et al. 2007,
Steele and Hockey 1995). In this paper, we have looked at kleptoparasitic models
from a new perspective, that of imperfect and asymmetric information amongst the
competitors for food. Thus in this paper, we effectively get mixed defensive strategies
not usually seen in previous work because of the different values of the food items at
the time that a defensive choice is made, since defenders will decide that some items
are worth defending and others are not. The assumption is that the individual handling
the food will have greater information about the item in question than any challenger.
The handlers of food items appear at first sight to have an advantage because of the
extra information that they possess about the value of the food. In fact the model
often predicts the reverse, i.e. the handlers have a disadvantage as a result of the extra
knowledge of the food item size since this knowledge often leads to the small items
being conceded by the handler, providing free food to the challenger.

Considering our model of continuous food consumption, there are four possible
solutions identified, three of which are pure ESSs. There is a solution (N, zy) where
nobody challenges, another solution (Y, #;,) where all challenge and there is no resis-
tance and one solution (Y, zy) where all challenge and there is defence of sufficiently
valuable food items. It is interesting to see that for some parameter values all of these
strategies can be ESSs simultaneously, so that which occurs in practice will depend
upon the history of the system, and that a small change in parameter values can result
in various combinations of solutions in quite a small range. It is worth noting that
all eight possible combinations of these solutions (including none of them as pure
ESSs) can occur for plausible parameter values. When there is no such ESS, even
more complex behaviour with some individuals challenging and others not emerge.

Some of our results are consistent with previous models, for instance the solution
(Y, 1) is essentially the Marauder strategy of Luther and Broom (2004) and again
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occurs for dense enough populations or large fight times. The other two strategies
contain defensive strategies which are analogous to mixed strategies, in the sense that
sometimes the defender resists and sometimes not, and when this occurs is unknown
to the challenger. The general relationship between the critical defensive time and the
parameters resembles the critical attacking time from Broom and Ruxton (2003), in
that in both cases fights are generally less likely the denser the population or the more
costly fights are, but the complex interplay of the different types of solution is distinct.
One implication for real populations is that behaviours that are quite different may
not be the result of different environmental conditions or properties of the species
involved, but rather because different solutions are available, and which is selected
is due to chance and past conditions. Thus the investigation of potentially different
food types and strategic behaviour extends the range of possible natural observa-
tions that our models can predict. An interesting prediction of the model regards the
circumstances when the non-challenging solution (N, xx) occurs. This happens for
intermediate values of foraging rate or contest time, provided that the chance of the
defender successfully keeping the food in a contest is sufficiently high, with challeng-
ing occurring at either extreme (for large contest time or very easy food availability
challenges happen because defenders will simply concede rather than fight). This will
be an interesting prediction to test in real populations.

There are various ways this model can be extended. One natural extension is to con-
sider food items of varying initial size, where the distribution of these sizes could be
expected to play a critical role. More generally, in the contests in this paper, individuals
are able to challenge or not, and resist or not, but then they have no option to change
their strategy based upon information acquired after the start of the contest. Such
information as discovering the value of the food item, or the strategy of its opponent,
could affect the individual’s assessment of its best strategy, and thus make it change its
decision if it was able to do so. Thus there could be a sequence of potential decisions
to consider, which could be a continuum, and the effect of asymmetric information in
such kleptoparasitic contests is potentially complex.
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