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Abstract

We examine the evolution and maintenance of defence and conspicuousness in prey species using a game theoretic model. In contrast

to previous works, predators can raise as well as lower their attack probabilities as a consequence of encountering moderately defended

prey. Our model predicts four distinct possibilities for evolutionarily stable strategies (ESSs) featuring maximum crypsis. Namely that

such a solution can exist with (1) zero toxicity, (2) a non-zero but non-aversive level of toxicity, (3) a high, aversive level of toxicity or (4)

that no such maximally cryptic solution exists. Maximally cryptic prey may still invest in toxins, because of the increased chance of

surviving an attack (should they be discovered) that comes from having toxins. The toxin load of maximally cryptic prey may be

sufficiently strong that the predators will find them aversive, and seek to avoid similar looking prey in future. However, this aversiveness

does not always necessarily trigger aposematic signalling, and highly toxic prey can still be maximally cryptic, because the increased

initial rate of attack from becoming more conspicuous is not necessarily always compensated for by increased avoidance of aversive prey

by predators. In other circumstances, the optimal toxin load may be insufficient to generate aversion but still be non-zero (because it

increases survival), and in yet other circumstances, it is optimal to make no investment in toxins at all. The model also predicts ESSs

where the prey are highly defended and aversive and where this defence is advertised at a cost of increased conspicuousness to predators.

In many circumstances there is an infinite array of these aposematic ESSs, where the precise appearance is unimportant as long as it is

highly visible and shared by all members of the population. Yet another class of solutions is possible where there is strong between-

individual variation in appearance between conspicuous, poorly defended prey.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a very well-developed body of theory pertaining
to understanding the prevalences of induced and static
constitutive defences against attackers: (e.g. Irie and Iwasa,
2005; Shudo and Iwasa, 2004; Shudo and Iwasa, 2002;
Adler et al., 2001; Shudo and Iwasa, 2001; Iwasa et al.,
1996; Karban and Adler, 1996; VanDam et al., 1996). In
such models induced defences have the advantage of saving
costs associated with the maintenance of constitutive
e front matter r 2006 Elsevier Ltd. All rights reserved.
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defences but the disadvantage that the attacks can flourish
until such times as the induced defences kick in. Thus,
induced defences may be an attractive option when attacks
occur over a longer time-scale of hours or days (examples
of this might be attacks on plants by browsing herbivores
or on animals by viral deseases). In this paper, we are
interested in attacks that happen on a shorter time-scale
and which are potentially lethal to attacked individuals (the
classic example of this being predation). Defences generally
cannot be induced fast enough to give protection against
such rapid attacks, and so potential prey focus on either
primary defences aimed at reducing the rate of attack (for
example, by camouflaging the potential prey from pre-
dators) or secondary defences that aim to reduce the
likelihood that detection by a predator results in death.

www.elsevier.com/locate/yjtbi
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Secondary defences increase the inclusive fitness of a
prey animal by increasing the likelihood that it escapes
from a predator without serious injury and/or by decreas-
ing the probability that the same predator will attack the
prey and its relatives in the future. Though diverse in form,
components of secondary defences can be broadly classified
into locomotor (rapid escape, protean evasive flight),
morphological (spines, tough integuments, etc.) and
chemical (toxins, venoms, noxious secretions, etc.) classes.
In some cases defences may be visually detectable before an
attack is launched and function as their own reliable signal
to predators; the existence of numerous sharp spines or the
mode of locomotion of an animal may present predators
with reliable and detectable cues as to the unprofitability of
specific prey types.

In many other cases, and especially in examples of
chemical defences, the threat posed by secondary defences
are not easily evaluated by potential predators using
external cues in prey; here defended prey ‘‘require some

signal or danger flag which shall serve as a warning to would-

be enemies not to attack them, and they have usually

obtained this in the form of conspicuous or brilliant

coloration, very distinct from the protective tints of the

defenceless animals allied to them’’ (Wallace, 1889, p. 232).
Thus many, but not all, prey with effective secondary

defences possess danger flags in the form of more or less
conspicuous (‘‘aposematic’’) warning displays that help
predators distinguish edible from unprofitable and danger-
ous species.

Given that defended prey can vary their degree of
conspicuousness, a pertinent question is how conspicuous

(or how cryptic) should a particular prey be? Conspicuous-
ness is, in many prey, directly traded-off against crypsis,
such that the benefits that accrue from conspicuousness
(reduced recognition errors, enhanced wariness, acceler-
ated learning and decelerated forgetting processes in
predators) are gained at the expense of increased rates of
detection by predators. Should we expect optimal con-
spicuousness to increase continuously with the strength of
a prey animal’s defence, as has recently been suggested
(Summers and Clough, 2001), or can we expect a more
complex relationship between defence and conspicuous-
ness? A second, related and important question is; whether
(and when) should defended prey show between-individual
variation in their appearance. Defences themselves may be
costly and therefore be traded-off against other compo-
nents of fitness. There is a growing body of empirical
literature that demonstrates that many chemical defences
incur fitness costs, either through the costs of biosynthesis
or acquisition (via sequestration or symbiosis) and storage.
Such costs are often seen in reductions in growth, in adult
size, in fecundity or have been directly measured in
energetic terms (Cohen, 1985; Zalucki et al., 2001;Bowers
and Collinge, 1992; Camara, 1997; Björkman and Larsson,
1991; Rowell-Rahier and Pasteels, 1986; Dobler and
Rowell-Rahier, 1994; Grill and Moore, 1998), although
we note that in some circumstances costs have not been
detected (Bowers, 1988; Kearsley and Whitham, 1992).
Another pertinent question is therefore ‘‘how much should

any given prey invest in its defences?’’
Aposematic signals are necessarily co-evolved with the

defences that they advertise. These signals make the prey
more visible to predators (reducing their primary defence
of avoiding encounters with predators), but have the
potential to compensate for this by enhancing predators’
learned aversion to defended prey (thereby enhancing
secondary defences). To date the co-evolution and optimi-
zation of constitutive defences in prey animals and signals
of those defences have received surprisingly little theore-
tical attention compared to the economics of induced
defences. The model of Leimar et al. (1986) is, however,
particularly important. This model includes: (1) compo-
nents of an individual predator’s psychology and beha-
viour (varied learning rates and sensory generalization in
order to calculate attack probabilities); (2) the properties of
individual prey (continuous variation in effectiveness of
unprofitability in terms of individual survival and effects
on predators’ learning rates, costs of a defence, and degree
of conspicuousness); and (3) structuring of prey popula-
tions (size and degree of clustering of prey as a proxy for
kin selection). Leimar et al. combine these components into
a model that determined evolutionarily stable strategies
(ESSs) for the continuously varying parameters of con-
spicuousness and unprofitability. Their model predicts that
there can be a single monotypic ESS for some non-trivial
level of defence for a prey of given conspicuousness.
Increases in optimal levels of defence would be caused by:
(i) increases in survival rates of individuals combined with
(ii) a positive relationship between learning rate and prey
unprofitability provided that there was a capacity for
predators to confer the benefit of avoidance learning on the
same individuals (through repeated attacks) or through kin
grouping.
Furthermore, Leimar et al. (1986) found that kin

grouping, perhaps combined with an increase in predation
threat, could destabilize crypsis in favour of aposematism,
but that, once evolved, kin grouping was not necessary for
the maintenance of aposematism. When aposematism
already exists, it could be stabilized by (i) a positive
relationship between conspicuousness and learning and (ii)
a supernormal (or peak-shift-like) response, in which the
strongest levels of avoidance are conferred on phenotypes
that are more conspicuous than those generally encoun-
tered. The game theoretic approach developed by Leimar
et al. (2006) represents a seminal work in the theory of prey
defences and warning signals, providing a framework in
which the evolution of both traits can be analysed.
However, we note a number of areas that in our view
warrant further attention and development.
The model of Leimar et al. (1986) considers a set of naı̈ve

predators (initially one individual) that start out with an
initial ‘‘excitatory’’ attack tendency described as e(x), its
generalization gradient due to the ‘‘predator’s experience of

cryptic and profitable prey of other species’’. When these
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naı̈ve predators now meet unprofitable prey, generalized
attack probabilities are reduced according to an inhibitory
gradient h(x,x1,y1) , where x1 is the conspicuousness and y1
the unprofitability of the encountered prey individual.
Hence, in this model, attack probabilities for a range of
prey appearances are determined by a generalization
function of the form G(x) ¼ e(x)[1�h(x,x1,y1)]

n where n is
the number of previous encounters between predator and
prey.

Although now close to 20 years old, the model of Leimar
remains the dominant work on the coevolution of defences
and signals of those defences (see Ruxton et al., 2004,
Chapter 8). No other published models in aposematism
theory consider the joint evolution of primary and
secondary defences (though see recent and related models
in: Speed and Ruxton, 2005; Merilaita and Tullberg, 2005);
other models focus specifically on the evolution of
aposematic displays ignoring the fact that aposematism
contains an ensemble of primary and secondary defences.
Since the model of Leimar et al. (1986) was constructed to
explicitly examine the effects of individual predator
psychology on aposematic evolution, their formulation is
entirely reasonable. However, the implication of this
component of the model is that the predator can reduce
its range of generalized attack probabilities, because of
repeated inhibitory effects, but it cannot ever raise it.
Whichever prey gets attacked, whatever their appearance
and toxicity, whatever the outcome, the aversion of the
predator increases for every further prey individual
encountered, or at least cannot decrease. However, this is
clearly not an appropriate long-term strategy for a
predator, as it must necessarily lead to ever decreasing
uptake rates. In addition, we argue in this paper that the
generality of the results described in Leimar et al. (1986)
can in some cases be hard to evaluate, as they select specific
functional forms at the outset. A more general model of
predation may provide a more flexible framework for
evaluation.

In this paper, we therefore examine the evolution of
conspicuousness and defence in defended species with a
complementary model to that of Leimar et al. (1986). We
assume that the secondary defence is a form of toxicity
(though it can clearly be extended beyond this) and present
a model that we strive to make as general as possible whilst
still being capable of making useful specific predictions.
Thus, rather than describe the effects of learning in
individual predators, a set of predators is modelled here
as a group in equilibrium for states of learning, hunger, etc.

Furthermore, in the model described here, predators can
both lower and raise their attack probabilities with prey
that contain modest quantities of toxins (Sherratt et al.,
2004). We use the model to investigate (1) the relationship
between defence and the appearance of a prey when the
levels of mortality from causes other than predation and
the degree of kin grouping varies; (2) the optimal level of
conspicuousness for a range of toxicity levels; and (3) the
extent to which optimal toxicity can be affected by the
appearance of an animal and the degree of kin grouping
within the population.

2. Model description

We consider a single population of individuals that are
potentially prey to a predator. Each prey individual i is
described by three parameters {ti, ri, yi}. The parameter ti

describes the toxicity (or, more generally, investment in
anti-predatory defence) of individual i, with increasing
values indicating increasing toxicity, and ti ¼ 0 indicating
minimal investment in toxicity. The parameter ri describes
the conspicuousness of individual i (or more generally the
probability of detection upon encounter with a predator is
an increasing function of ri). Increasing values of ri indicate
increasing conspicuousness, with ri ¼ 0 indicating max-
imum crypsis. The final parameter yi also describes the
appearance of the individual, but such that changes in y
affect the appearance of the individual without affecting its
conspicuousness. Thus two prey types can be equal in
conspicuousness against the background (have identical r

values) but be very different in appearance from each other
(have different y values). For example, two brightly
coloured butterfly species can be equally easy to detect
against the background foliage but can still be identified as
distinct species. The most common definition for crypsis is
due to Endler (1978): ‘‘a colour pattern is cryptic if it
resembles a random sample from the backgroundy’’. As
Endler himself pointed out, a key consequence of the
concept of random samples is that two different patterns
(being two different random samples of the background)
can be equally easily detected. This suggests that two
individuals can look different (i.e. have different y values in
our model) but have the same likelihood of detection
(identical r values): see Ruxton et al. (2004, p. 13) for
further discussion. Thus r and y are orthogonal axes that
together describe the parameter space of possible appear-
ance. Without loss of generality, we assume that these axes
are polar rather than Cartesian, y taking values in (0,2p).
We are interested in finding the evolutionarily stable values
of {ti, ri, yi}.
A key assumption of the model is that toxin production

is expensive. We describe this by assuming that the
fecundity of an individual F is a decreasing function of t.
However, there is also a direct benefit to toxicity in that
increasing investment in toxicity increases the likelihood of
surviving a predatory attack. Specifically, we assume that if
the predator attacks a prey item then the probability that
the prey is captured (K) is a declining function of t.
There is another way that toxicity can affect survivorship

and this is by influencing the probability that upon
encountering an individual prey item, the predator decides
to attack that particular prey individual. This probability
(denoted by Q) declines with the aversiveness of the
experiences that the predator is likely to have previously
had (and subsequently remembered) on attacking similar
looking prey items. Let us consider a predator attacking
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individual i. We first of all need to define ‘‘similar looking’’
individuals to individual i. We do this with a function
S(ri,yi,rj,yj), which is a measure of the visual similarity
between individuals i and j. S increases as the points {ri,yi}
and {rj,yj} get closer together; in particular in this paper we
treat S as a univariate function of the Euclidian distance
between the two species (see Appendix 1). We also have to
describe the aversiveness of an experience with a prey item,
which we do with function H. Specifically H(tj) is the
aversiveness of attacking individual j. Positive values of H

indicate an aversive experience; the higher the toxicity, the
more positive H is and so the more aversive the experience.
However, if an individual’s investment in toxins is low then
the experience of attacking it may not be aversive at all,
indeed the predator may treat it as a beneficial experience.
We describe such situations by a negative value of H. We
define the critical value of toxicity (tc) as that which
produces a neutrally aversive response:

HðtcÞ ¼ 0. (1)

This non-zero value of tc represents the phenomenon
that prey may have to invest non-trivially in defence to
become sufficiently aversive as to be unattractive to
predators. That is, predators may be prepared to still
consume prey with some mild aversive features, because the
rewards of nutritional content are worth this small cost.
We also need to describe encounter rates between the
predator and prey, and the ease with which they are
subsequently remembered. We assume that the rate that an
individual of conspicuousness r is detected by a predator
(i.e. the rate at which it is encountered by a predator
multiplied by the probability it is detected when it
encounters it) is D, where D is an increasing function of r

but even maximally cryptic prey have some chance of being
detected (i.e. when r ¼ 0, D(r)40). The rate at which such
encounters occur and are later recalled by the predator is L,
where L too is an increasing function of r. If the predator
has perfect recollection of all encounters then L ¼ D.
Drawing all this together, on encountering individual i,
then the available information to the predators (scaled by
the total number of predators) on the attractiveness or
aversiveness of that prey item (denoted Ii) can be calculated
as follows:

I i ¼
1

n

XN

j¼1;jai

LðrjÞHðtjÞSðri; yi; rj ; yjÞ, (2)

where N is the number of prey items in the population
and n is the number of predators. We shall take this as
our measure of the information that an average predator
has about individual i. When this individual meets a
predator, we assume that it is equally likely to be any of
the n available, so that the predator will on average have
this information about its aversiveness. It shall be fur-
ther assumed that the population is in equilibrium, and its
size is sufficiently large, so that any individual encounter
has no effect on the population size. We assume that
on encountering individual i, the probability of the
predator mounting an attack is Q(Ii) and Q declines
with increasing Ii. Note that the larger the prey popula-
tion, the more encounters each predator is likely to
have and so the more information it has. This in turn
means that a predator’s preference will be more clearly
defined, and for a large population I will tend to be a
large positive or large negative value so that Q will be
closer to 0 or 1.
We must now describe the fitness of individual i. We

assume that there is a background mortality rate l. From
our arguments above, the rate of predator-induced
mortality on this individual is D(ri)K(ti)Q(Ii), and so the
fitness of individual i can be described by

F ðtiÞ

lþDðriÞKðtiÞQðI iÞ
.

It is this fitness function that we use in our ESS
calculations, where we consider inclusive fitness as-
suming that the average relatedness between indivi-
duals is a. Note, since we are only interested in situations
where the population is at equilibrium, this fitness
description is equivalent to the alternative per capita rate
of increase. Our key results are presented in the next
section, with some of the ESS calculations outlined in
Appendix 1. It should be noted at this point that a stra-
tegy which can be attained through small, selectively
advantageous steps is called convergence stable. We only
demonstrate when strategies in our model are resistant to
such changes, and do not show that strategies are
convergence stable.
3. Results

We begin by considering the payoff function derived in
the previous section and how it can be used to find ESSs.
3.1. Relative payoffs

We represent the average relatedness of individuals in
the ‘‘local’’ area by a. We assume that the population in
this area consists of a proportion of identical individuals a

which plays the strategy t,r,y, the remaining members of
the population being unrelated to this group and playing
t1; r1; y1. t1; r1; y1 is an ESS if and only if the reward to a
t1; r1; y1-individual in such a population is greater than the
reward to a t,r,y-individual, for any possible set of
alternative parameters t,r,y. We shall consider local ESSs
only, where it is assumed that alternative strategies are
mutations which are very close to the original values.
The payoff to an individual playing a mutant strategy is

given by

Pðt; r; y; t1; r1; y1Þ ¼
F ðtÞ

lþDðrÞKðtÞQðIÞ
, (3)
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where

I ¼
N

n
faLðrÞHðtÞSðr; r; y; yÞ

þ ð1� aÞLðr1ÞHðt1ÞSðr; r1; y; y1Þg,

Sðr; r1; y; y1Þ ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r2 � 2r1r cos ðy1 � yÞ

q� �

and Sð0Þ ¼ 1.
The payoff to a resident (averaged over a much larger

area) is

Pðt1; r1; y1; t1; r1; y1Þ ¼
F ðt1Þ

lþDðr1ÞKðt1ÞQðI1Þ
,

where

I1 ¼
N

n
Lðr1ÞHðt1Þ,

in which I is the toxicity information for the mutant in the
local area, and I1 is the toxicity information for the resident
over the larger area (essentially unaffected by the mutant).
To obtain the inclusive fitness for both mutant and resident
the payoffs should be multiplied by the term ð1þ aðN21ÞÞ;
we leave this term out as it has no effect on our results.

We explore the different types of ESS possible in our
model in this section. We break this down by considering
the different types of conspicuousness (r1) in turn.

3.2. Optimal toxicity

The ESS value of t can be found by solving the following
equation at t ¼ t1; r ¼ r1; y ¼ y1:

q
qt

Pðt; r; y; t1; r1; y1Þ ¼ 0)

g1ðr1; t1Þ ¼
lþDðr1ÞKðt1ÞQðI1Þ

Dðr1ÞKðt1ÞQðI1Þ

F 0ðt1Þ

F ðt1Þ

�
�

K 0ðt1Þ

Kðt1Þ

�aI1
Q0ðI1Þ

QðI1Þ

H 0ðt1Þ

Hðt1Þ

�
¼ 0. ð4aÞ

This solution is stable if

q2

qt2
Pðt; r; y; t1; r1; y1Þo0.

This reduces to

�
lþDðr1ÞKðt1ÞQðI1Þ

Dðr1ÞKðt1ÞQðI1Þ

F 00ðt1Þ

F ðt1Þ
þ

K 00ðt1Þ

Kðt1Þ

þ 2a
K 0ðt1Þ

Kðt1Þ
I1

Q0ðI1Þ

QðI1Þ

H 0ðt1Þ

Hðt1Þ

þ a2 Q00ðI1Þ

QðI1Þ
I1

H 0ðt1Þ

Hðt1Þ

� �2

þ aI1
Q0ðI1Þ

QðI1Þ

H 00ðt1Þ

Hðt1Þ
40. ð4bÞ

We can thus use this condition to check stability for any
particular situation, although it is not possible to verify
that such solutions are always stable.
Note that it is also possible for t1 ¼ 0 to be stable, which
occurs if

g1ðr1; 0Þo0. (4c)

For the sake of simplicity we shall assume that there is
precisely one value of t1 which satisfies condition (4a), or
alternatively (4c) for any given r1 (a reasonable assumption
for well-behaved functional forms). We show in Appendix
1 that whenever I140 ðt4tcÞ, the (unique) optimal value of
t1 increases as r1 increases, so if optimal toxicity is aversive
for any value of r1, it is for all larger values of r, under
reasonable assumptions. Thus for each such appearance
there is an equilibrium level of toxicity (t1) given by
Eq. (4a), provided that this yields a non-zero toxicity,
where the information of toxicity is given as in Section 3.1.
Note that to be precise

I1 ¼
N � 1

n

� �
Lðr1ÞHðt1Þ �

N

n

� �
Lðr1ÞHðt1Þ (5)

since N is finite, but large.

3.2.1. ESS featuring maximal crypsis (i.e. r1 ¼ 0)

Appendix 1 demonstrates that there will be an ESS with
r1 ¼ 0, if and only if we satisfy the condition:

D0ð0Þ

Dð0Þ
þ I1

Q0ðI1Þ

QðI1Þ
S0ð0Þð1� aÞ þ a

L0ð0Þ

Lð0Þ

� �
40, (6)

where we represent the average relatedness of individuals in
the ‘‘local’’ area by a,

I1 ¼ ðN=nÞLð0ÞHðt1Þ, and t1 is the ESS level of toxicity,
which is found by substituting r1 ¼ 0 in Eq. (4a).
Note that it is also possible for t1 ¼ 0 to be stable, which

occurs if

g1ð0; 0Þo0. (7)

This set of equations can only be solved iteratively once
specific functional forms for all the functions and all
parameter values have been specified. But the results in
Appendix 1 do allow us to draw general conclusions about
the type of maximally cryptic ESSs that are possible.
Specifically, there is an ESS with maximum crypsis and
minimal investment in toxins (i.e. r1 ¼ 0, t1 ¼ 0) provided
that inequalities (6) and (7)are satisfied.
However, it is also possible for the ESS to involve

significant investment in toxins without this triggering a
change from maximally cryptic appearance. That is, there
is an ESS with (r1 ¼ 0 and t140), if Eq. (4a) and inequality
(6) are satisfied.

3.2.2. ESS with warning colouration (i.e. r140)

One result from Appendix 1 is that individuals will never
give up on maximal crypsis unless there is investment in
toxins. That is, there is never an ESS with r140 and t1 ¼ 0.
In fact, there is no ESS with r140, unless the associated
toxin investment is sufficiently strong to be aversive (i.e.
t14tc). However an ESS with r140 can exist providing
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that Eq. (4a) is satisfied, together with

t14tc (8)

and

g2ðr1; t1Þ � g3ðr1; t1Þo0, (9)

where

g2ðr1; t1Þ ¼
D0ðr1Þ

Dðr1Þ
þ aI1

Q0ðI1Þ

QðI1Þ

L0ðr1Þ

Lðr1Þ

� �
, (10)

g3ðr1; t1Þ ¼
Q0ðI1Þ

QðI1Þ
S0ð0ÞI1ð1� aÞ. (11)

However, an interesting aspect to this case is that we
demonstrate in Appendix 1 that when an ESS with warning
colouration is possible, then there is no unique ESS,
indeed, there is an infinite number of ESSs. Specifically,
under reasonable conditions on the parameters, there will
be a lower critical value of r (denoted R), and all values
r4R, have a unique value of t such that {r,t(r)} is an ESS.
This critical value of R is given by

V ðI1Þ ¼ �I1
Q0ðI1Þ

QðI1Þ
¼ �

D0ðRÞ

DðRÞ

�
S0ð0Þð1� aÞ � a

L0ðRÞ

LðRÞ

� �
.

(12)

The value of t(r) (obtained from Eq. (4a)) always
increases with increasing r, and so we predict a strong
correlation between investment in toxicity and conspicu-
ousness of aposematic signals.

3.2.3. ESSs where there is heterogeneity in appearance

between individuals

For the ESSs that have been discussed so far, the value
of y has been irrelevant. For maximally cryptic solutions
with r ¼ 0, it is easy to see that there is no selection
pressure on the value of y. For the ESSs with aversive prey
ðt14tcÞ and warning colouration ðr40Þ, it is clear there is
now strong selection pressure on y, but while this selection
pressure drives the population towards homogeneity in this
parameter, the final parameter value settled upon is
irrelevant providing all individuals adopt the same value
(i.e. all individuals look alike).

However, in Appendix 1 we demonstrate that there are
situations where the prey contains no toxins or some
moderate level of toxin but is not aversive in the sense that
predators increase their willingness to attack similar
looking prey in future ðt1otcÞ where the solution is more
complicated. Here, the evolutionarily stable appearance is
not full crypsis (i.e. r140). This is due to the fact that
looking very similar to other non-toxic cryptic individuals
outweighs the benefit of the extra crypsis. Some ‘‘apose-
matic distinctiveness’’ (in the sense of A.R. Wallace’s
original formulation) from more edible prey types is
therefore optimal, even though the prey is not outrightly
aversive. Such a solution will only occur when a small
decrease in crypsis (a small increase in r) does not cause a
large increase in encounter rate (D(r)).
4. Discussion

We first consider the general classes of possible ESS
solution and subsequently consider how variation in the
value of key variables determines which solution(s) is most
likely. Finally, we compare the model described in this
paper with the original model in Leimar et al. (1986).

4.1. Evolutionary stable outcomes

Our model predicts four distinct possibilities for a
solution with maximum crypsis ðr ¼ 0Þ. Namely that (1)
such a solution exists with zero toxicity ðt ¼ 0Þ, (2) it exists
with a non-zero but non-aversive level of toxicity
ð0ototcÞ, (3) it exists with a high, aversive level of toxicity
ðt4tcÞ or (4) that no such maximally cryptic solution exists.
That is, under some, but not all circumstances, an ESS
involving the prey all minimizing the rate at which they are
detected by predators occurs. Interestingly, maximally
cryptic prey may still invest in toxins, because of the
increased chance of surviving an attack that comes from
having toxins. The toxin load of maximally cryptic prey
may be sufficiently strong that the predators will find them
aversive, and seek to avoid similar looking prey in future.
However, this aversiveness does not necessarily trigger
aposematic signalling, and highly toxic prey can still be
maximally cryptic, because the increase in rate of attack
from becoming more conspicuous is not necessarily always
compensated for by increased avoidance of aversive prey
by predators. In other circumstances, the optimal toxin
load may be insufficient to generate aversion but still be
non-zero (because it increases survival), and in yet other
circumstances, it is optimal to make no investment in
toxins at all.
Each of these four possibilities may (for some combina-

tions of parameter values) exist as the only ESS (which we
label as situation a). However, there are also combinations
of parameter values where each type of maximally cryptic
ESS exists alongside a range of non-cryptic ESSs, which
involve aversive levels of toxins (we label such situations b).
Any such non-cryptic solution is more stable the larger the
information of the toxicity of that appearance (thus
conditions are often given in terms of I1 being greater
than some value).
Under reasonable conditions the solution pair r; tðrÞ are

stable for values of r above a given threshold R, so that
multiple (infinite) solutions exist in many circumstances.
Effectively, if an animal is conspicuous enough to be easily
seen and this indicates high toxicity so that predators avoid
it, it does not matter exactly which level of conspicuousness
the prey individuals choose as long as everyone looks the
same. Any animal that changes its appearance will suffer,
so all levels of conspicuousness above a certain threshold
are stable.
We also note that higher levels of conspicuousness are

generally associated with higher levels of toxicity. Thus
there are eight distinct scenarios (1–4,a–b), between each of
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which we can specify (admittedly complex) boundary
conditions in terms of the values given to parameter values.

Note that it is possible that there is no solution either
with r ¼ 0 or r40, where all individuals are identical in
toxicity and appearance. In this case, the solution will have
the population of prey individuals uniformly spread across
all y values. They need not all have identical r values, and
in general will not. Generally we expect a critical maximum
value of r, below which all prey select values. Again
increasing r will be associated with increasing (or at least
non-decreasing) toxicity. Such non-point solutions occur
when prey seek to be different from others, to disrupt
associative learning. In our model increased between-
individual separation in appearance is associated with
increased conspicuousness (and so increased attack rates).
It is this trade-off between minimizing attack rates and
maximizing visual difference from other prey that generates
this heterogeneous-appearance ESS.

Whilst we have found the (local) ESSs for each scenario,
we have not considered the convergence stability of each
solution. It is likely that when there is a unique cryptic ESS
then this will be globally stable, and we have discussed the
case where there is no pure solution above. When there are
aposematic ESSs, there are an infinite number of them, and
the situation will be much more complicated. It is not clear
that all the ESSs will be able to be reached by repeated
localized mutations. It is possible that starting from
crypsis, the lowest value of r that can be stable, the lower
bound R, will always be attained. It is also possible that
there will be a non-point solution as well as the aposematic
point solutions, so that none of these aposematic ESSs can
be reached from crypsis. It is unclear what dynamic
behaviour will occur from a starting point where r40.
One thing that we can say is that close to any point solution
evolution in the direction of r is likely to be stronger than
that in the direction of t because of the discontinuity in the
derivative in this direction so that although analysis is
likely to be complicated, it may effectively reduce to the
one-dimensional case, and depend crucially on expressions
(4a–c). Also there can be a single cryptic solution as well as
many aposematic solutions, and the behaviour here may
again be different. We have not even begun to address
these interesting dynamic questions, which will be reserved
for later work.

4.2. Key parameters and the nature of the ESS

Rather than solve our equations for specific cases of
functional responses and parameter values, we can make
general statements about the influence of our various
parameters on which solutions are likely to occur. For any
particular value of r there is a unique optimal value of
toxicity t. In general for r40 the higher t is in conjunction
with r, the more likely it is to be stable against changes in
appearance (higher t means higher I1, see Eqs. (5) and (6)).
Increasing the level of deaths from other causes l reduces
the value of t for a given r, and so reduces the likelihood of
the solution being stable, and reduces the stable range of
non-cryptic solutions. This makes sense since, as the
influence of predation declines, the value of deterrence
declines relative to the decreased fecundity of higher
toxicity. Increasing the level of relatedness a increases the
toxicity level that is optimal for any given r, and makes that
solution more likely to be stable. In general, increasing
relatedness increases the range of non-cryptic stable
solutions. The higher the relatedness, the closer the
individual best strategy is to the group optimum, which
tends to be higher toxicity and conspicuousness. The
strategy is less liable to cheating (copying appearance with
less toxicity), since, if you cheat, you harm your relatives
whilst helping yourself.
If we substitute some plausible functional forms for the

general functions used in the model, then we gain some
further insights. Specifically Appendix 2 demonstrates that
high toxicity tends to occur when the population of prey is
large, the relatedness in the population is large, detection
probability is large (even when maximally cryptic), learning
occurs quickly, fecundity declines slowly with toxicity, the
probability of attack declines quickly with information of
toxicity and the level of toxicity needed to be aversive is
large.
Note that when death can only occur through predation

(i.e. l ¼ 0) and relatedness has no effect ða ¼ 0Þ, there is an
optimal toxicity independent of appearance. This can be
explained by the fact that each individual just finds its best
level (any population using some trade-off between toxicity
and appearance is invaded by an individual with identical
appearance and optimal toxicity). When other mortality
factors and/or relatedness feature, then there is an optimal
level of toxicity for any appearance.

4.3. The present model compared to that of Leimar et al.

(1986)

The key difference between the model of Leimar et al.
and ours is the assumptions about the predator population.
In their model, there are essentially a group of new
predators emerging at the start of a season and then
continuing to learn over time, so that learning causes
changes in the predation pressure over time. This is, in
our view, eminently reasonable in a study that aims
to examine the initial origins of aposematism, in which
all predators were initially naı̈ve. Here, by contrast, we
consider an equilibrium situation, where there is no
change in predation pressure over time. The equilibrium
level may have been reached by learning, or genetic
inheritance or a combination of the two. However, the
equilibrium is maintained essentially because there is
always a balanced mix of young and old individuals in
overlapping generations. After the initial evolution of
aposematism, the Leimar et al. model might thus corre-
spond ecologically to seasonal predators such as wasps,
and ours to more long-lived predators, such as birds and
lizards.
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Note that in Leimar et al.’s model solution (2)—where
there is non-zero investment in toxins but not sufficient to
cause aversion—is not possible as (in their model) all non-
zero t are aversive, and learning can never make a predator
more likely to eat something, so as time goes on all prey
individuals are in less and less danger. Leimar et al.’s
solutions can include a maximally cryptic ESS with either
no investment in defences (solution 1) or with defences
sufficient to cause aversion (solution 3) with a single ESS
r40, as opposed to the range of solutions r4R that we
generate.

It should be noted that Leimar’s solutions are not true
co-evolutionary ESSs, in the sense that they fix one
parameter (e.g. t) and then find the optimal solution with
the other. If we did this, our model would also yield (at
most) one stable solution r40. Conversely if both of their
parameters were allowed to vary simultaneously it is
possible that solutions similar to ours would be generated.
Indeed it seems logical that a range of r values would be
stable. The non-cryptic solutions rely on predators
recognizing the prey and avoiding them. Thus any
appearance that is sufficiently visible may suffice, as long
as all individuals of the species look the same.

Leimar et al.’s model always yields at least one point
solution (i.e. where all individuals have identical appear-
ance). Ours yields no point solution under some circum-
stances. In this case the benefits of crypsis are outweighed
by the similarity of appearance to other edible forms, and a
spread of appearances to dilute the information the
predator receives about the attractiveness of this type of
prey is optimal.

One of Leimar et al.’s key predictions was that a non-
cryptic ESS could only occur if predators are reluctant to
attack prey that are more conspicuous than those so far
encountered, or that faster learning occurred with the more
conspicuous individuals. This is not necessary in our
model, which has ESSs where there is no greater tendency
to avoid the more conspicuous individuals, unless there is
evidence that they are toxic; indeed the precise mechanisms
of learning are not central to our model as they are to
Leimar et al.’s (although they indirectly affect it through
the functions H(t) and L(r), as explained above). Leimar
concludes that an increased level of survival of attacks with
t40 is important to allow ESSs featuring non-zero
investment in defence to exist, and we are in full agreement
with this conclusion.

5. Conclusions

There has been recent speculation (Summers and
Clough, 2001),that there may be a positive relationship
between the conspicuousness of aposematic signals and the
strength of the defence that they advertise. Here, we
present the first explicit mathematical model that can
explore this suggestion, and our model predictions support
this conjecture. These predictions rest to some extent upon
an assumption, which we consider reasonable, about how
our functions manifest themselves in nature (see some
discussion on this in Appendix 1).
Our model makes the novel prediction that if conditions

support the evolution of a sufficiently strong defence that
the prey are aversive and advertise that defence in a
conspicuous appearance, then a broad range of alternate
ESSs are possible. The specific ESS reached depends on the
history of a particular local prey population. Hence, the
model suggests that the great diversity of levels of defence
and appearance of aposematic prey does not necessarily
require special explanation but is an emergent consequence
of the co-evolution of defence and signal of that defence.
The theoretical literature in relation to secondary

defences is currently unclear about whether or how much
we can expect cryptic prey to be defended. Leimar et al.
(1986) and also Speed and Ruxton (2005) both suggest that
when the threat from predators is small cryptic prey should
not invest in secondary defences. However, many other
authors assume that cryptic prey can in fact be highly
defended (e.g. Harvey et al., 1982; Yachi and Higashi,
1998; Servedio, 2000; Speed, 2001; Brodie and Agrawal,
2001). In this work, we predict that in some cases (with
high costs and/ or low predation risk) maximally cryptic
prey will be undefended. In other cases such as when there
is a higher risk of predation they will be defended but only
moderately: sufficiently to enhance individual survivial but
not sufficiently to make them aversive to predators. In still
other cases prey will be sufficiently defended to be aversive
but still choose not to signal this if the costs of
conspicuousness are too great. One important consequence
is that aposematic colouration is not necessarily the
optimal state for prey that possess substantial defences.
Many of the results in this paper rest on the assumptions of
stability and uniqueness of the optimal toxicity for any
given appearance. The general nature of the model, and the
complexity of the payoff function, has meant that we were
unable to prove that this is always true. Indeed, there will
certainly be functional forms where this uniqueness will not
occur, although we maintain that these are biologically
unlikely. There may be cases where the assumption of
stability is untrue, which could lead to polymorphism
within the population, although we have not been able to
find this. Such solutions, if they exist, would inevitably be
more complex and would probably require significant
simplification of the model to investigate. Our model also
makes the novel prediction of a stable prey strategy that
involves very high levels of variability in appearance in
prey, combined with moderate and variable levels of
defence. At present expectation in many theoretical models
is that pro-apostatic selection favours diversity in edible,
undefended prey populations but that as soon as there is
any level of defence selection becomes anti-apostatic,
favouring uniformity (Mallet and Joron, 1999). However,
we indicate here that one class of stable evolutionary result
is a combination of some moderate investment in
secondary defence with high levels of diversity in the prey
appearance.
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Appendix 1. Derivation of ESS solutions

A.1. Optimal toxicity for a given level of conspicuousness

g1ðr1; t1Þ is increasing with r1 provided that I140, V ðiÞ ¼

�iQ0ðiÞ=QðiÞ is increasing with positive i at the critical value
r1 and Dðr1ÞQðI1Þ increases with r1 (or at least does not
decrease sufficiently quickly) at this value. Increasing
conspicuousness (r1) will certainly increase the rate at
which prey are detected by predators (D). However,
increasing r1 will increase I1, which in turn will decrease
the probability that detection leads to attack (Q). So the
rate of attack (the product DQ) could in principle increase,
decrease, or in the limiting case stay the same as
conspicuousness (r1) increases. Indeed it would be possible
to pick functional forms to achieve all these possible
effects. However, we consider that for the overwhelming
majority of biologically plausible formulations D will
increase faster with r1 than Q decreases, and so the product
DQ will increase with increasing r1. Our arguments are as
follows. As the prey becomes more conspicuous (r1
increases) then the range of distances over which it can
be detected will increase. Since almost all prey live in
habitats where predator–prey interactions occur in two or
three dimensions, a small increase in detection distance can
lead to a large increase in encounter rate (D), because of the
geometric effect. Although increasing conspicuousness will
reduce the likelihood of an encounter leading to an attack,
this probability will not be affected by geometry in the
same way, so we would not expect this probability (Q) to
decrease quickly enough with increasing r to compensate
for the dramatic increase in D with increasing conspicuous-
ness. Further, we would expect Q to be a saturating
function of conspicuousness r1 (see discussions of learning
and discrimination in Pearce and Bouton, 2001; Servedio,
2000; Roper and Redston, 1987; Gamberale-Stille, 2001).
The mechanism that causes the predator to attack
conspicuous defended prey is confusing them with other
prey types that are defended and cryptic, once conspicuous
has increased sufficiently that such confusion is unlikely,
further increases in conspicuousness will have little effect
on Q. In contrast, there is less reason to expect a similar
saturating effect whereby increasing conspicuousness does
not lead to increased encounter rates without imposing
special assumptions of the habitat structure or animal
movement. So again, from this reason our expectation is
that the product DQ will increase with increasing
conspicuousness (increasing r1).

It should be noted here that these conditions are
sufficient, but not necessary, so for instance if V(i) is
increasing rapidly, then Dðr1ÞQðI1Þ could be decreasing (as
long as this is not too quickly) with the same result. In fact
there is a link between these two assumptions. If
L(r) ¼ KD(r) for some constant K (reasonable given the
relationship between these two functions) then Dðr1ÞQðI1Þ

increasing is the same result as V(I1)o1. We shall assume
that these results are true. Similarly at g1ðr1; t1Þ ¼ 0, the
function decreases with t under our assumption of a unique
solution, since there is either a unique solution with t1 ¼ 0
and g1ðr1; 0Þo0 or g1ðr1; 0Þ40 and there is a unique
solution with g1ðr1; t1Þ ¼ 0.
Thus under our assumptions there is a unique solution

for t1 for every r1, which is increasing with r1.
So any solution must include this optimal level of

toxicity. We next proceed to find the values of r1 and y1
which can be stable in conjunction with this. Note that in
the special case where l ¼ a ¼ 0, the optimal level of
toxicity is independent of appearance (but not of aversive-
ness, as it affects this through H(t)).
It may seem strange that optimal toxicity can be

independent of appearance. However, natural selection
acts at the level of the individual, and a stable solution is
one that cannot be beaten by an invader. Any situation
where the population does not choose the level of toxicity
dictated by the trade-off between F and K, e.g. to be more
toxic to deter predation, will be invaded by individuals
which have the same appearance but choose the trade-off
level.
In the case where l is non-zero (but a ¼ 0), there is a link

between optimal t and appearance, for the sole reason that
appearance affects the relative contribution of predation
and other factors to mortality (given by Dðr1ÞQðI1Þ

Kðt1Þ=l).
There is thus a unique value of t1 which is the optimal

toxicity level for any given r1. We have to find which
value(s) of r1, if any, give ESSs.

A.2. The maximum crypsis solution ðr1 ¼ 0Þ

Firstly we look at the possibility of a solution with r1 ¼ 0
(note that this automatically means that the value of y1 is
irrelevant). We only need to consider invasion by larger
values of r, i.e. show that

q
qr

Pðt1; r; y1; t1; 0; y1Þo0,

g2ð0; t1Þ þ g3ð0; t1Þ40,

yielding

D0ð0Þ

Dð0Þ
þ I1

Q0ðI1Þ

QðI1Þ
S0ð0Þð1� aÞ þ a

L0ð0Þ

Lð0Þ

� �
40. (13)

The second term is positive for some functions L(r) and
S(y), (and for sufficiently small a) if and only if Hðt1Þ40.
In this case r1 ¼ 0 is clearly stable.
This means that for some functional forms being

completely cryptic is always an ESS providing the best
value of t is sufficiently toxic to be aversive, in the sense of
reducing attacks by predators.

A.3. Other point solutions ðr140Þ

If r140 then the value of y1 is relevant, and we have to
consider invasion by both larger and smaller values of r
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and different values of y. Considering y ¼ y1 initially, we
are interested in the derivative

q
qr

Pðt1; r; y1; t1; r1; y1Þ

which is discontinuous at r ¼ r1 due to the similarity
function S. The derivative becomes

q
qr

Pðt1; r; y1; t1; r1; y1Þ ¼ �g2ðr1; t1Þ � g3ðr1; t1Þ
q
qr
ðjr� r1jÞ.

For a stable solution we need this derivative to be
positive for ror1 and negative for r4r1. This is equivalent
to

g2ðr1; t1Þ � g3ðr1; t1Þo0, (14a)

g2ðr1; t1Þ þ g3ðr1; t1Þ40. (14b)

Note that the discontinuity in the derivative at r1 means
that there is not a unique equilibrium value and the
conspicuousness level r1 is stable provided that (14) is
satisfied. Eq. (14a) is more difficult to satisfy than (14b)
(unless a is unrealistically large). It is easy to see that it is
impossible to satisfy this for Hðt1Þo0ðI1o0Þ. If Hðt1Þ40
then we require

D0ðr1Þ

Dðr1Þ
� I1

Q0ðI1Þ

QðI1Þ
S0ð0Þð1� aÞ � a

L0ðr1Þ

Lðr1Þ

� �
o0.

Allowing y 6¼y1 does not impose any further restrictions
(invasion by such a strategy is easier to resist whenever
Hðt1Þ40Þ. Any solution satisfying conditions (4) and (15) is
thus stable.

On the (reasonable) assumption that D0ðrÞ=DðrÞ is
decreasing, then if either LðrÞ ¼ KDðrÞ for some constant
K or a is small, t1; r1; y1 is a local ESS if Ror1o1 for some
critical value R (in addition to the possible crypsis r1 ¼ 0
solution). This is a sufficient condition only; this result may
occur even if the above is not satisfied. (Similarly, the result
may hold even if Dðr1ÞQðI1Þ does not increase with r1, and
because of the discontinuity in the derivative of the fitness
function with respect to r, the local ESSs are likely to occur
for values of r1 lying in an interval). This value of R may be
infinite, which would mean that no solution with r140
exists.

To see this, consider the following. Criterion (15) reduces
to

V ðI1Þ4�
D0ðr1Þ

Dðr1Þ

�
S0ð0Þð1� aÞ � a

L0ðr1Þ

Lðr1Þ

� �
, (15)

where the right-hand side of the above is positive. Given
that optimal t1 does not decrease with r1, then I1 increases
with it so that the left-hand side of the above increases
whilst the right-hand side decreases. Thus the critical value
R is given by

V ðI1Þ ¼ �
D0ðRÞ

DðRÞ

�
S0ð0Þð1� aÞ � a

L0ðRÞ

LðRÞ

� �
. (16)
A.4. Solution summary

t ¼ 0 and r ¼ 0 when g1ð0; 0Þo0, g2ð0; 0Þ þ g3ð0; 0Þ40,
t40 and r ¼ 0 when g1ð0; t1Þ ¼ 0, g2ð0; t1Þ þ g3ð0; t1Þ40,
t ¼ 0 and r40 can never occur,
t40 and r40 when g1ðr1; t1Þ ¼ 0 (t14tc also needed),

g2ðr1; t1Þ � g3ðr1; t1Þo0.

A.5. A unique ESS, multiple ESSs or no ESSs?

We have an infinite set of candidate solutions given by
the pair (r,t(r)), for all positive r, where t(r) is obtained
from condition (4) and is non-decreasing with r, as soon as
t(r) reaches tc (recall that tc is the value for which
HðtcÞ ¼ I1 ¼ 0).
If t(r)otc for all values of r, then we know that all of

these solutions are unstable, except possibly when r ¼ 0.
This occurs if the optimal value of t in the limit as r tends to
infinity is not greater than tc, i.e.

g1ð1; tcÞo0

so that

lþDð1ÞKðtcÞQð0Þ

Dð1ÞKðtcÞQð0Þ

F 0ðtcÞ

F ðtcÞ
,

�
K 0ðtcÞ

KðtcÞ
oa

N

n
Lð1ÞH 0ðtcÞ

Q0ð0Þ

Qð0Þ
ð17Þ

if Eq. (17) is true then t(0)otc and so for r1 ¼ 0 we have
I1o0. Thus there is a unique ESS at r1 ¼ 0 if Eqs. (13) and
(17) hold, otherwise no ESSs if Eq. (17) but not Eq. (13)
holds.
If Eq. (17) does not hold, there will be multiple solutions

with r140, as well as a solution with r1 ¼ 0 if and only if
Eq. (13) holds.

A.6. Non-point solutions

It is possible to have a solution where not all of the
population look alike. In particular, there are sets of
functions where no point solution is possible. Since, for
sufficiently small a, r1 ¼ 0 is always a solution when
H(t1)40 we shall briefly consider the situation where
H(t1)o0. In this case each individual gives information of
the non-toxicity of those that it resembles, so that it is best
to look as little like the other species members as possible.
For any given value of r1, it is clear that the best
distribution over y is a uniform one on (0,2p).
If a population follows this distribution of y, then

I1 ¼
N

n
Lðr1ÞHðt1Þ

Z 2p

0

1

2p
S ð2r21 � 2r21 cos ðyÞÞ

0:5
� �

dy

¼
N

n
Lðr1ÞHðt1Þ

Z p

0

1

p
Sð2r1 sin cÞdc.

In fact such a solution is unlikely to be stable, since it
would be invaded by a small group that chooses a smaller
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r, and gets further in appearance from the others and
reduces conspicuousness. A solution is likely to cover a
range of values of r1. Calculation and checking for stability
in this case will be difficult for real functions, and will
probably require numerical solutions. Any solution will be
in the form of a density function

Tðr; yÞ ¼ CðrÞ=2pr, i.e. dependent on r but not y.
It will satisfy the following two conditions:
(i)
 the payoff to all individuals in the population must be
identical,
(ii)
 C(r) is continuous and there will be a unique point,
r(rm), where CðrmÞ ¼ 0 (otherwise individuals could
change to marginally larger r with greater payoff),
giving

N ¼

Z rm

0

CðrÞdr.
Assuming that a ¼ 0, we expect a solution will be of the
form
(1)
 D(wQ(I(w)) ¼ D(0)Q(I(0)) for all w.

(2)
 CðrmÞ ¼ 0

ð3Þ IðwÞ ¼ HðtÞ
1

n

Z rm

0

LðrÞCðrÞ

�

Z 2p

0

1

2p
S ðw2 þ r2 � 2wr cos ðyÞÞ0:5
� �

dy dr
so that

Ið0Þ ¼ HðtÞ
1

n

Z rm

0

LðrÞCðrÞ

Z 2p

0

1

2p
SðrÞdydr

¼ HðtÞ
1

n

Z rm

0

LðrÞCðrÞSðrÞdr.

We conjecture that there will usually be a unique
solution of this type.

Appendix 2. Example functions

We now consider some examples of the functions
described above to show the type of solutions which can
occur.

F ðtÞ ¼ e�t=a; KðtÞ ¼
k

1þ t=b
; HðtÞ ¼ t� g,

DðrÞ ¼ LðrÞ ¼
d0

d0 þ ð1� d0Þe�r
,

SðyÞ ¼ max ð1� ny� n2y2; 0Þ.

Finally the information function Q is given by

QðxÞ ¼
q0e
�xk; x40;

1� ð1� q0Þe
xkq0=ð1�q0Þ; xo0:

(

This yields a unique value for optimal t, given by

g1ðr1; t1Þ ¼ �
lðbþ t1Þe

kðt1�gÞDðr1ÞN=n þDðr1Þbkq0

Dðr1Þbkq0

1

a

þ
1

bþ t1
þ a

N

n
kDðr1Þ.

This general expression works only for t4tc (the ratio of
the derivative of Q and Q is a little more complex for totc,
but the principle is no different). All solutions when totc

are unstable unless r ¼ 0, as mentioned earlier.
In the simplifying case where l ¼ a ¼ 0, we

obtaint1 ¼Max ða� b; 0Þ, independently of r, which works
whether t14tc or not. When a4b, inequality (4b) reduces
to

�
1

a2
þ

2

ðbþ t1Þ
2
¼

1

a2
40

which is clearly satisfied, confirming that the solution is
stable.

r1 ¼ 0 is an ESS if

D0ð0Þ

Dð0Þ
þ I1

Q0ðI1Þ

QðI1Þ
S0ð0Þð1� aÞ þ a

L0ð0Þ

Lð0Þ

� �
40.

When a ¼ 0 we obtain

I1S
0ð0Þ

Q0ðI1ÞDð0Þ

QðI1ÞD
0ð0Þ

4� 1) I1

4�
ð1� ð1� q0Þe

kI1q0=ð1�q0ÞÞd0ð1� d0Þ

�n��q0kekI1q0=ð1�q0Þd0

¼ �
ð1� d0Þ

knq0

ðe�I1kq0=ð1�q0Þ � ð1� q0ÞÞ

for negative I1 (it is trivially true for positive I1). This is
clearly satisfied when I1 is near 0 and when it is very large
and negative, but possibly can be violated for intermediate
values. Thus instability occurs in a critical range of
information I1 only, which for some parameters may be
empty; if I1 is large and negative then individuals are very
attractive to predators and maximum camouflage is best, if
I1 is near zero individuals are slightly attractive to
predators but cannot improve things much by changing
appearance, so staying at r ¼ 0 is again best. For
intermediate values individuals may be able to reduce their
attractiveness by moving away from their current appear-
ance, even though they will be discovered by predators
more often. r1 ¼ 0 is more likely to be a solution if the rate
of decline of attacks as toxicity increases declines slowly,
predators cannot identify differences between individuals
for discriminatory purposes very well or camouflage is very
effective. As long as a is not very large, the same pattern
occurs for non-zero a.

r140 is an ESS if

D0ðr1Þ

Dðr1Þ
� I1

Q0ðI1Þ

QðI1Þ
S0ð0Þð1� aÞ � a

L0ðr1Þ

Lðr1Þ

� �
o0.
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This is only possible if I140. For a ¼ 0 we obtain

I1S0ð0Þ
Q0ðI1ÞDðr1Þ

QðI1ÞD
0ðr1Þ

41) I14
ð1� d0Þe

�r1

knðd0 þ ð1� d0Þe�r1 Þ
.

If further l ¼ 0 then

I1 ¼
N

n

d0

d0 þ ð1� d0Þe�r
ða� b� gÞ

which yields

Nd0nkða� b� gÞ
nð1� d0Þ

4e�r1 ) r14R

¼ ln
nð1� d0Þ

kd0Nnða� b� gÞ

� �

so that any value of r1 that is sufficiently large will be stable
(and for some parameter values this will be true for all r,
since R will be negative). Hence, beyond some threshold
value of conspicuousness, any common form will be stable.
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