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Abstract

We investigate a mathematical model for an asexual population with non-overlapping (discrete) gen-

erations, that exists in a changing environment. Sexual populations are also briefly discussed at the end of

the paper.

It is assumed that selection occurs on the value of a single polygenic trait, which is controlled by a finite

number of loci with discrete-effect alleles. The environmental change results in a moving fitness optimum,

causing the trait to be subject to a combination of stabilising and directional selection.
This model is different from that investigated by Waxman and Peck [Genetics 153 (1999) 1041] where

overlapping generations and continuous effect alleles were considered. In this paper, we consider non-

overlapping generations and discrete effect alleles. However in [Genetics 153 (1999) 1041] and the present

work, there is the same pattern of environmental change, namely a constant rate of change of the optimum.

From [Genetics 153 (1999) 1041], no rigorous theoretical conclusion can be drawn about the form of the

solutions as t grows large. Numerical work carried out in [Genetics 153 (1999) 1041] suggests that the

solution is a lagged travelling wave solution, but no mathematical proof exists for the continuous model.

Only partial results, regarding existence of travelling wave solutions and perturbed solutions, have been
established (see [Nonlin. Anal. 53 (2003) 683; An integral equation describing an asexual population in a

changing environment, Preprint]).

For the discrete case of this paper, under the assumption that the ratio between the unit of genotypic

value and the speed of environment change is a rational number, we are able to give rigorous proof of the

following conclusion: the population follows the environmental change with a small lag behind, moreover,

the lag is represented using a calculable quantity.
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1. Introduction

Living organisms do not exist in static environments. They live in environments that change
because of external physical processes or the influence of other organisms (including man) – or
generally a combination of both of these phenomena. These environmental changes can have a
significant impact on the way a population evolves as well as being important for our under-
standing of agriculture and conservation. There have been a number of studies of the effect of
environmental change on living populations by Lynch and coworkers [8,9]. They investigated the
models where individuals are subject to selection on a quantitative trait which is under stabilising
selection and which has a moving fitness optimum. Related models have been considered in [4],
where relatively small populations with high mutation rates were numerically simulated. The
principal concern of these papers was the possibility of extinction of a finite population due to the
environmental change. Other work [5] has employed the infinitesimal model (see e.g. [1,2]), where
again the population is subjecting to stabilising selection with a changing optimum. The infini-
tesimal model assumes an infinite number of loci control the trait and that the effects of alleles at
each locus are infinitesimal. These assumptions are biologically difficult to satisfy. But these in-
vestigations do provide some theoretical insight into the occurring phenomena. Lastly we note
that a more recent work by B€uurger [3] contained additional simulations of finite populations
subject to environmental change. Recent work of Waxman and Peck [13] involved selection on a
single polygenic trait that was controlled by a finite number of loci. The paper included analytical
and numerical analysis of an infinite population that was subject to stabilising selection with a
uniformly moving fitness optimum. A �travelling wave� solution was assumed for this problem
where the distribution of genotypic effects of the population moves without change of shape and
at the same rate as the optimal genotypic value but with some lag behind the fitness optimum.
Extrapolation of the results of B€uurger [3] to large populations and direct interpretation of the
results of Waxman and Peck [13] lead to the conclusion that in large populations of either sexual
and asexual organisms, there may be a large increase in the genetic variance, as the result of
extremely modest environmental changes.

The present work is a rigorous mathematical investigation into a modified version of the
model of [13]. Most considerations here are restricted to the case of asexual populations (but see
Section 7 for a discussion of the case of sexuals). We note that in [13], it was assumed that
generations were overlapping and allelic effects were continuous. As a consequence an integro-
differential equation governed the change of the distribution of genotypic effects. Recent analysis
of this model has established the rigorous existence of a travelling wave solution, but no con-
clusions have been able to be proved about the stability of the solution (see [10,12]). In the
present paper, the modification of the model of [13] corresponds to generations being discrete
and also incorporates discrete effect alleles. Clearly, discrete generations, and discrete alleles are
biological alternatives to the continuous time, continuous allelic model of [13]. Allowing both
generations and alleles to be discrete leads to significant mathematical differences between the
two models. However, it allows a rigorous treatment of some key aspects of the problem, such as
the evolutionarily important long time behaviour. If the findings of [13] are robust, then there
should be little significant differences in the long term observable outcomes of the two models. It
is important to explicitly and rigorously establish this and this is the motivation of the present
paper.
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Unlike for the continuous time and continuous allele model, we are, in this paper, able to
establish rigorous mathematical results that prove the stability of the travelling wave solution. We
also derive a bound on the spreading of the population around the optimum fitness value.

Our analysis is not completely general for the model at hand, because of a fundamental dif-
ference between models with continuous alleles and continuous time, compared with models with
discrete effect alleles and discrete time. In the continuous allele and continuous time model, a
genotypic value always exists that lies precisely at the genotypic value corresponding to fitness
being optimal (the �optimal genotypic value�). By contrast, consider a discrete allele, discrete time
model where the fitness optimum advances by a fixed amount, a, each generation, and where
splitting between all adjacent allelic effects is D. In such a model, a=D will not, in general, be a
rational number. When this is the case, no possible genotypic value can match the optimal ge-
notypic value. It follows that a mismatch between possible genotypic values and the optimal
genotypic value can occur. The methods we adopt cannot deal with the case where a=D is irra-
tional, and are restricted to a=D equal to a rational fraction. In this case, there may not be a
matching of any possible genotypic value and the optimal genotypic value, in any particular
generation, however there will always be a matching after a finite number of generations.

While the above is a limitation arising from discreteness of alleles and generations, we note an
advantage of such a model (that is not, however, exploited in the present paper), is that it can be
readily transferred to the computer (after truncation, all numbers we deal with are rational), and
this allows investigation of transient phenomena associated with the approach to a travelling wave
solution that was described above.

Let us note here that one of the mathematical differences between the overlapping and discrete
generation models involves the population number regulation mechanism. In a model with
overlapping generations, the population number needs to be regulated, so the numbers do not
grow or decay (typically exponentially) with time. This made its influence directly felt in the
continuous dynamics of [13] by the presence of a non-linear term coupling birth rate to mutation.
In a discrete generation model such a mechanism is not required – population thinning to reduce
population number – i.e. killing a fraction of all individuals, without regard to phenotype, does
not effect any aspect of the dynamics of the distribution of genotypic effects.

This paper is arranged as follows. In Section 2, a discussion of the asexual model is made and basic
mathematical settings given. In Section 3, we change to a convenient moving coordinate system and
prepare for the discussion of the stability of travelling wave solutions. We set up, in Section 4, the
mathematical model describing a uniformly changing environment and in Section 5, we establish the
convergence of the solution as time, t,! 1. Section 6, contains estimates of expectation values and
variance of genotypic values associated with the solution and in Section 7, we briefly discuss the
sexual model and point out possible mathematical difficulties for parallel discussions.

In what follows, we adopt the convention that all sums run from �1 to 1 except where
otherwise stated.

2. A model for asexual population

Consider an effectively infinite population of asexual diploid organisms, where stochastic drift
effects can be neglected. We census the life cycle in the juvenile phase immediately after birth. The
life-cycle consists of the following events:
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i(i) There is a viability selection on juveniles, with surviving individuals termed adults.
(ii) Reproduction of all adults occurs during a relatively narrow time interval, and is followed by

the death of all adults shortly afterwards.

The non-overlap of adults from one generation to the next yields discrete generations, which we
label by t ð¼ 0; 1; 2; 3; . . .Þ.

Selection occurs on the phenotypic value of a trait that is controlled by L diploid loci. We
assume additive effects both between and across loci so there is no epistasis or dominance, at the
level of the trait. The phenotypic value of the trait, Z, decomposes into a genotypic value, G, and
an environmental effect E, i.e. Z ¼ Gþ E.

Allelic effects at each locus are taken to be 0;�D;�2D; . . . where D is a parameter of the model
and the genotypic value associated with the trait is a sum of 2L allelic contributions. Thus the
possible genotypic values of the trait are
gi ¼ i� D; i ¼ 0;�1;�2; . . . : ð2:1Þ

The environmental effect, E, is a random variable that is independent of G and has mean 0 and

variance VE.
Let W ðz� ctÞ be the probability that a juvenile in generation t, with phenotypic value z, survives

to reproductive maturity. We adopt a Gaussian stabilizing selection scheme:
W ðz� ctÞ ¼ expð�ðz� ctÞ2=ð2VP ÞÞ and ct is the time-dependent location of the optimal pheno-
typic value and V �1

P ð> 0Þ is a measure of the strength of selection on phenotypes. The fraction of
individuals with genotypic value gi, in generation t, that survive to reproductive maturity is
proportional to a quantity wðgi � ctÞ that is obtained by averaging W ðgi þ E � ctÞ over all envi-
ronmental effects E. We scale wðgi � ctÞ so it achieves the value of unity at its optimum value.
Thus
wðg � ctÞ ¼

R1
�1 W ðg � ct þ eÞ exp � e2

2VE

� �
de

R1
�1 W ðeÞ exp � e2

2VE

� �
de

: ð2:2Þ
This leads to
wðg � ctÞ ¼ exp
�
� ðg � ctÞ2=ð2VSÞ

�
; where VS ¼ VP þ VE: ð2:3Þ
We assume fertility is independent of genotype and shall refer to wðg � ctÞ as the fitness of in-
dividuals, in generation t, with genotypic value g.

Mutations are taken to occur at the birth of offspring. Let l be the probability of a single allele
mutating to a different allele. Then the probability of one or more mutations of the 2L alleles in an
individual is 1� ð1� lÞ2L. Assuming 2Ll � 1 yields 1� ð1� lÞ2L � 2Ll and we define the
genomic mutation rate to be
U � 2Ll: ð2:4Þ
The approximation 1� ð1� lÞ2L � 2Ll is equivalent to, at most, only one of the genes controlling
the trait in an offspring being different to that of its parent. Accordingly, in this approximation,
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the distribution of mutant effects will equal the distribution of mutant effects of a single allele. The
asexual population may thus be treated as a one locus haploid population, with mutation rate U .

The probability that a parent of genotypic value gi will produce an offspring with genotypic
value gj, where j 6¼ i, is Uf ðgi � gjÞ where f ðgi � gjÞ is the distribution of mutant effects. This is
normalised to unity

P
ið6¼0Þ f ðgiÞ ¼ 1 and (cf. [6,7,11]) we take a Gaussian form
f ðgiÞ ¼
exp � g2i =ð2r2Þ

� �
P

jð6¼0Þ exp � g2j=ð2r2Þ
� � ; gi 6¼ 0: ð2:5Þ
Providing we define f ð0Þ ¼ 0, we can write all summations involving f ðgiÞ without restriction.
Let the proportion of the population having genotypic value gi in generation t be denoted by

Uðt; iÞ. It follows from the above model that
Uðt þ 1; iÞ ¼
ð1� UÞwðgi � ctÞUðt; iÞ þ U

P
j f ðgi � gjÞwðgj � ctÞUðt; jÞP

j wðgj � ctÞUðt; jÞ
: ð2:6Þ
This equation can be numerically investigated for a number of possible ct including random or
deterministic choices. Here we only consider the case where the environment changes uniformly
with time and take
ct ¼ a� t ð2:7Þ

and without loss of generality, we take aP 0.

We now look at some basic mathematical properties of the model.
First, we denote by
L�1 ¼ ð. . . ; x�j; . . . ; x0; . . . xj; . . .Þ; 1

(
6 j61; and

X
j

jxjj < 1
)
: ð2:8Þ

L�1
þ ¼ fx 2 L�1; xj P 0 for all jg: ð2:9Þ
It is easy to see that L�1 is a Banach space endowed with the Natural norm kxk ¼
P

j jxjj.
Bl ¼ x 2 L�1
þ ;

X
j

xj

(
6 l

)
: ð2:10Þ
From the formulation (2.6), we can obtain the following mathematical conclusion:

Proposition 2.1. Let the initial data satisfy Uð0; jÞ 2 B1 and
P

j Uð0; jÞ ¼ 1. Taking into account
that

P
j f ðgi � gjÞ ¼

P
i f ðgi � gjÞ ¼ 1, we have
Uðt; jÞ > 0 for all tP 1 and all possible values of j;X
j

Uðt; jÞ ¼ 1 for all j: ð2:11Þ
Proof. From the formula (2.6), it is clear that
Uðt; jÞ > 0 for all tP 1 and all possible values of j
holds. Also
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X
i

Uðt; iÞ ¼
X
i

ð1� UÞwðgi � ctÞUðt; iÞ þ U
P

j f ðgi � gjÞwðgj � ctÞUðt; iÞP
j wðgj � ctÞUðt; jÞ

¼ 1� U þ U ¼ 1:
Hence the proposition holds. �

To advance our study, we need to adopt a different coordinate system that we are going to
introduce in the following.
3. A change of coordinates

At large times, ct achieves very large values. To accommodate this, we shall go to new variables,
i.e. adopt new coordinates, which move along with the optimal genotypic value, so that in the new
coordinates, the optimal genotypic value is always close to zero.

As a first step to transforming the problem to a more manageable one, define
k ¼ intðct=DÞ; ð3:1Þ

k0 ¼ intðctþ1=DÞ; ð3:2Þ
where intðxÞ denotes the largest integer 6 x, thus intð3:2Þ ¼ 3, etc. Then set
Wðt; i� kÞ ¼ Uðt; iÞ ð3:3Þ
and W obeys
Wðt þ 1; i� k0Þ ¼
ð1� UÞwðgi � ctÞWðt; i� kÞ þ U

P
j f ðgi � gjÞwðgj � ctÞWðt; j� kÞP

j wðgj � ctÞWðt; i� kÞ : ð3:4Þ
By shifting indices in this equation: i ! iþ k0 and using ��� to denote ordinary matrix multipli-
cation, we obtain the matrix equation
Wðt þ 1Þ ¼
RðtÞ �WðtÞ

F T � RðtÞ �WðtÞ
: ð3:5Þ
Here WðtÞ is a column vector with elements Wðt; iÞ, RðtÞ is a matrix with elements
RijðtÞ ¼ ð1
n

� UÞdðiþ k0 � k; jÞ þ Uf ðgi � gj þ D½k0 � k�Þ
o
� wðgj þ Dk� ctÞ: ð3:6Þ
dði; jÞ denotes a Kronecker delta (dði; jÞ ¼ 1 if i ¼ j and is zero otherwise) and F T ¼ ð1; 1; 1; . . .Þ is
a row vector. Multiplying any column vector by F T corresponds to summing over all elements of
the column vector. For example, the normalisation of WðtÞ i.e.

P
i Wðt; iÞ ¼ 1 is written

F T �WðtÞ ¼ 1.
The solution for WðtÞ follows from repeated application of Eq. (3.5). It is found to be
WðtÞ ¼
HðtÞ �Wð0Þ

F T � HðtÞ �Wð0Þ
; ð3:7Þ
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where
HðtÞ � Rðt � 1Þ � Rðt � 2Þ � � �Rð0Þ: ð3:8Þ
To understand the behaviour of the solution, we concentrate on the behaviour of the linear
operator R: choosing gðtÞ 2 B, we define
gðt þ 1Þ ¼ RðtÞgðtÞ;

then, provided gð0Þ ¼ Uð0Þ, we have the simple relationship
Uðt þ 1Þ ¼ gðt þ 1Þ
F Tgðt þ 1Þ :
Some elementary properties of the operator RðtÞ are listed below.

Proposition 3.1. Letting x 2 B, we have
F TRðtÞx6 F Tx:
Consequently, if F Tx < 1, then F TRðtÞx < 1.
The proof of this is elementary and we omit the details.

Proposition 3.2. For any given l > 0, for any setC 	 Bl, and for any t > 0, RðtÞC is pre-compact inR�1
þ .

Sketch of proof. For any sequence
cj ¼ ð. . . ; cj�N ; . . . ; c
j
0; . . . ; c

j
N ; . . .Þ

T 2 Bl;
for any given integer N , the cut off sequence
Cj
N ¼ ðcj�N ; . . . ; c

j
0; . . . ; c

j
NÞ

T

has a subsequence that converges. Because ðRðtÞcjÞk for k > N decays square exponentially with k
and cjk are small for large k, a simple diagonal argument leads to the conclusion. �
4. A uniformly changing environment

We have ct ¼ at where a is a non-negative constant, and an important quantity is the ratio a=D.
This is the amount the optimal genotypic value advances in one generation, when measured in
units of the splitting of genotypic values, D. This ratio will generally not be an integer but a
fraction. Accordingly, we consider a=D ¼ p=q where p and q are integers with no common divisor.
With this choice, kðt þ 1Þ � kðtÞ and kðtÞ � at=D are both periodic in t with minimum period q:
kðt þ qþ 1Þ � kðt þ qÞ ¼ kðt þ 1Þ � kðtÞ, kðt þ qÞ � aðt þ qÞ=D ¼ kðtÞ � at=D. It follows that the
matrix RðtÞ also has this periodicity
Rðt þ qÞ ¼ RðtÞ: ð4:1Þ
How does the population behave after a long time period? Periodicity of RðtÞmeans that in HðtÞ
in (3.8), we can identify and �peel� off a number of factors of KðtÞ which we define by
KðtÞ ¼ Rðt � 1Þ � Rðt � 2Þ � � �Rðt � qÞ: ð4:2Þ
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We can write
Fig. 1

distrib

eigenv

values

a ¼ D
HðtÞ ¼ KðtÞ
h iintðt=qÞ

Rðq½t; q�Þ � Rðq½t; q� � 1Þ � � �Rð0Þ; ð4:3Þ
where ½t; q� ¼ t=q� intðt=qÞ is the fractional part of t=q and q½t; q� is an integer in the range
ðq� 1ÞP q½t; q�P 0. Eq. (4.3) allows us to write (3.7) as
WðtÞ ¼
KðtÞ
h iintðt=qÞ

�Wðq½t; q�Þ

F T � KðtÞ
h iintðt=qÞ

�Wðq½t; q�Þ
: ð4:4Þ
Since RðtÞ is a compact operator for any value of t, KðtÞ is the product of finite many compact
operators.

Furthermore, let KNðtÞ be an operator defined by if y ¼ KNx, then
yi ¼
PN

j¼�N KijðtÞxj when jij6N ;
0 when jijPN :

�

We know that
kKNðtÞ � KðtÞk ! 0 as N ! 1; ð4:5Þ

where k � k is the operator norm.

From standard positive matrix theory, as all elements of the restricted KNðtÞ are strictly posi-
tive, KNðtÞ has a simple positive eigenvalue that is larger than the modulus of any other eigenvalue.
The associated eigenvector can be chosen to be non-negative. In Fig. 1 we plot the eigenvalues of
the matrix KNð0Þ in the complex plane. The rich structure exhibited does not disguise the existence
of the eigenvalue of maximum modulus lying on the positive real axis.
. Eigenvalues, k, in the complex plane, of the truncated matrix KN ð0Þ that determines the time development of the

ution of genotypic values, in the moving coordinate system; see (4.4). The eigenvalue of largest modulus, whose

ector determines the large time solution, is shown in Section 4 to be simple, real and positive. The parameter

adopted for the figure are (see main text for definitions) l ¼ 10�5, Vs ¼ 20, m ¼ 0:2, L ¼ 10, D ¼ 0:02 and

=6.
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Due to norm convergence, this property holds for KðtÞ as well. Let us denote this �largest�
positive eigenvalue by XqðtÞ and let HðtÞ be the associated unit non-negative eigenvector, then it is
straightforward to show the following

Theorem 4.1. Let XqðtÞ and HðtÞ be defined as above, and let the initial data Wð0Þ be non-negative.
Then
WðtÞ ! HðtÞ: ð4:6Þ
From the operator convergence property, the structure of HðtÞ can be approximated by the
eigenvectors of KNðtÞ.

Note that KðtÞ is periodic in t with period q and as a result, HðtÞ has the same periodicity
Hðt þ qÞ ¼ HðtÞ: ð4:7Þ
Remark 4.2. In order for our mathematics proofs to work, we have to make the assumption that
a=D is a rational number. We notice that this assumption includes all numerically treatable sit-
uations.

When a=D is an irrational number, our method of proof does not work. We believe that this
should be no different from the rational case and we hope to deal with this situation in a separate
work.
5. The behaviour of the solution as tfi‘

First from the fact that UðtÞ ! H, it is interesting to look at the structure of HðtÞ. It is known
that HðtÞ is the eigenvector associated with the matrix K ¼ Rðp � 1ÞRðp � 2Þ � � �Rð0Þ.

Noting that
RðtÞ ¼ ðRijðtÞÞNi;j¼�N ;

RijðtÞ ¼ ð1
�

� UÞdði� jþ k0 � kÞ þ Uf ðDði� jþ k0 � kÞÞ
�
wðDjþ Dk� ctÞ

6 ce�mðj2þði�jÞ2Þ;
where c and m are some constants. Elementary computation and argument leads to
Kij 6 c0e�m0 maxfi;jg2 ;
where c0 and m0 are constants.
Using the eigenvector relationship
KðtÞHðtÞ ¼ XqðtÞHðtÞ;
we easily deduce that XðtÞ is strictly positive. Hence we have
HiðtÞ ¼
1

XqðtÞ
X
j

KijðtÞHjðtÞ6~cce�~mmi2 :
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We are now in a position to show the following results:

Theorem 5.1. There exist positive constants a, b, l and b such that
ae�lðiþk0�kÞ2
6HiðtÞ6 be�bi2 :
Proof. The fact that HiðtÞ6 be�bi2 has just been proved. Now we show the other half of the in-
equality. From
Hi ¼
1

Xq

X
j

KijHj PKiiHi þ Ki0H0:
Since H0 ¼ 1
Xq

P
j K0jHj > 0, we derive easily that
Hi P
1

1� Kii
Ki0H0 PCKi0 P ae�lðiþk0�kÞ2 : �
Remark 5.2. The number k0 � k is bounded, hence the skewing effect on the function H is limited.
k0 � k is a periodic function of time t with period q, which is also the period of H.

Remark 5.3. Because of the bounds obtained in Theorem 5.1, we know that HðtÞ is normalisable:
X
j

HjðtÞ ¼ 1
and HjðtÞ > 0 for all j and t.

From now on, unless otherwise stated, H is assumed to be normalised.
6. Expected value of G and geometrical mean fitness

To appreciate the form of the solution, note that as t grows large, WðtÞ approaches HðtÞ, which
is a periodic function of t, with period q. Thus WðtÞ varies in a periodic manner but never loses its
shape over long periods of time. In Fig. 2 we plot the distribution, HðtÞ, at a time
t ¼ 0 moduloðqÞ, as a function of genotypic values, g.

6.1. An estimate of the expected value of G

Furthermore the expected value of G� at is given by E½G� at� ¼
P

iðDi� atÞWðt; i� kðtÞÞ and
at large times WiðtÞ becomes HiðtÞ the ith component of HðtÞ. Thus
E½G� at� ¼
X
i

ðDi� atÞHi�kðtÞðtÞ ¼
X
i

½Di� at þ DkðtÞ�HiðtÞ

¼ D
X
i

iHiðtÞ � ðat � DkðtÞÞ: ð6:1Þ
Because at � DkðtÞ ¼ Dfpt=q� intðpt=qÞg is periodic in t, with period q (and so is HiðtÞ) it follows
that EðGi � atÞ is also periodic in t with the same period. We can thus write



Fig. 2. The distribution (histogram) of genotypic values (referred to the moving coordinate system of Section 3), HðtÞ,
at time t ¼ 0 moduloðqÞ, as a function of genotypic values, g. At long times, the distribution in the original coordinates,

Uðt; iÞ, settles down to Hðt; i� intðat=DÞÞ where a is the amount the optimum changes in one generation and D is the

separation in adjacent genotypic values. The distribution is seen, in the figure, to be offset to the left, from the origin,

g ¼ 0. This corresponds to a lag of the distribution behind the fitness optimum, which in the moving coordinate system,

lies at g ¼ 0. The parameter values adopted are the same as those for Fig. 1.
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EðGÞ ¼ at þ f ðtÞ; ð6:2Þ

where f ðtÞ is a bounded function in t satisfying f ðt þ qÞ ¼ f ðtÞ.

Therefore, we can call the function HðtÞ a tracking solution because it is a solution where the
population, on average, tracks the optimum in fitness function, which lies at at.

To gain further insight into the periodic part, we can use the following observations:
Let hj ¼ ae�lðjþk0�kÞ2 , gj ¼ be�bj2 . We know that
hj 6Hj 6 gj:
Note that hj is symmetric about j0 ¼ �ðk0 � kÞ. We know that
P

hj ¼ H . Let
hj ¼
hj; j < K;
hj þ gj; jPK;

�

where K > 0 is chosen such that

P
j hj þ

P
jPK gj ¼ 1. This can always be achieved because gj is a

upper bound, so that we can increase the size of the elements gj without affecting the estimates.

Proposition 6.1
X
j

jHj 6

X
j

jhj:
Proof. Since
hj > Hj when jPK;X
hj ¼

X
Hj ¼ 1;
we derive that for any integer m, we have
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Xm
j¼�1

hj <
Xm
j¼�1

Hj:
Defining
ChðmÞ ¼
Xm
j¼�1

hj;

CHðmÞ ¼
Xm
j¼�1

Hj;
we have
X1
j¼�1

jhj ¼
X1
m¼1

X1
j¼m

hj

 !
þ
X�1

m¼�1

Xm
j¼�1

ð
 

� hjÞ
!

¼
X1
m¼1

ð1� Chðm� 1ÞÞ �
X�1

m¼�1
ChðmÞP

X1
m¼1

ð1� CHðm� 1ÞÞ �
X�1

m¼�1
CHðmÞ

¼
X1
j¼�1

jHj: �
Continuing our estimates, we obtain
X
j

jhj ¼
X
j

jhj þ
X
jPK

jbe�bj2

¼ �Hðk0 � kÞ þ
X
jPK

jbe�bj2
6 � Hðk0 � kÞ þ

Z 1

K
ðxþ 1Þbe�bx2 dx

¼ �Hðk0 � kÞ þ b
2b

e�bK2 þ
Z 1

K
be�bx2 dx:
Since
X
jPK

be�bj2 ¼ 1� H ;
there is a K � 1 < K 0 < K (K 0 is not an integer) such that
Z 1

K 0
be�bx2 dx ¼ 1� H : ð6:3Þ
We obtain then
X
j

jhj 6 � Hðk0 � kÞ þ b
2b

e�bK 02 þ 1� H :
(6.3) implies that
b
ffiffiffi
p
b

r
1� U

ffiffiffiffiffiffi
2b

p
K 0

� �� �
¼ 1� H ;
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where
UðtÞ ¼
Z t

�1

1ffiffiffiffiffiffi
2p

p e�s2=2 ds:
Hence by properly increasing b or decreasing b, we have
K 0 ¼ 1ffiffiffiffiffiffi
2b

p U�1 1

 
�

ffiffiffi
b
p

r
1� H

b

!
:

Symmetric argument leads to

Proposition 6.2. We have
�Hðk0 � kÞ � b
2b

e�bK 02
	

þ ð1� HÞ


6

X
j

jHj 6 � Hðk0 � kÞ þ b
2b

e�bK 02
	

þ ð1� HÞ


:

Similar to the proofs of Proposition 6.1, we consider
h0j ¼
hj þ gj; j6 � K;
hj; j > K;

�

and using the relationship
X
j

jh0j ¼
X
j

jhj �
X
jPK

jgj;
we can obtain the proposition.

6.2. A bound on the variance

Using the same notation as before, setting K
 ¼ 1ffiffiffiffi
2b

p U�1 1�
ffiffi
b
p

q
1�H
2b

� �
, we haveX
VarðjÞ6
j

j2Hj

6

X
j

hjj2 þ
X

jjjPK


j2be�bj2

6

X
j

hjj2 þ 2
X
jPK


j2be�bj2

here by symmetry;
X
j

hj

 
þ 2

X
jPK


be�bj2 ¼ 1

!

By increasing b; K
 can be large so thatðx2e�bx2Þ0
�

< 0 when x > K

�

6

X
j

hjj2 þ 2

Z 1

K

ðxþ 1Þ2be�bx2 dx

here
X
j

hjj2
 

¼ H2;

Z 1

K

be�bx2 dx ¼ 1� H

2

!
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¼ H2 þ 2

Z 1

K

x2be�bx2 dx

�
þ
Z 1

K

2xbe�bx2 dxþ

Z 1

K

be�bx2 dx

�

¼ H2 þ
K
b
b

e�bK
2 þ b
b

ffiffiffi
p
b

r
1
�

� U K

ffiffiffiffiffiffi
2b

p� ��
þ 4b
2b

e�bK
2 þ 2
1� H

2

¼ H2 þ ð1� HÞ 1

�
þ 1

2b

�
þ ðK
 þ 2Þ b

b
e�bK
2

:

This is the upper bound for the variance.
We call HðtÞ a delayed tracking solution because it is a solution where the population on av-

erage, tracks from behind, the optimum in fitness function, which lies at at.
7. A sexual population model

We now extend the previous results to the case of an effectively infinite population of randomly
mating sexual individuals. Apart from the mode of reproduction, the life-cycle is as for asexuals,
with census again made in the zygote stage immediately after birth.

Each organism is diploid with L unlinked loci. Alleles contributing to the trait lie at 2L loca-
tions, labelled by an integer, k, running from 1 to 2L. Alleles at positions LP kP 1 are taken to be
of maternal origin and those from positions 2LP kPLþ 1 are of paternal origin. Let Xk be the
effect of the allele at position k. Each Xk can take the values 0;�D;�2D; . . . The phenotypic value
of the trait is Z ¼ Gþ E and assuming additivity of effects across and between loci, the genotypic
value is given by G ¼

P2L
k¼1 Xk.
7.1. Changing environment and tracking solutions

The fitness of a sexual individual with genotypic value g in generation t is, as for asexuals, given
by (2.3), i.e. wðg � ctÞ.

Consider now the distribution of alleles. As a result of Mendelian segregation there is inde-
pendence of allelic effects across loci. We make the approximation of statistical independence of
allelic effects between loci (linkage equilibrium). The estimates of Bulmer [2] indicate that pro-
viding genetic variance is small compared with the strength of selection on genotypic values, V �1

S
(see (2.3)), recombination is the dominant force and the approximation of linkage equilibrium has
good validity (cf. [11]).

Let us assume, for simplicity, that the sexual population has, initially, all alleles statistically
independent and identically distributed. A consequence of the linkage equilibrium approximation,
is that all alleles will remain statistically independent and identically distributed over time. We
approximate the distribution of effects of alleles at a single location, e.g. X1 as that of a single
haploid locus in an averaged genetic background composed of the remainder of the ð2L� 1Þ
alleles. We thus write
G ¼ X1 þ Gb; Gb ¼
X2L
k¼2

Xk ð7:1Þ



M. Broom et al. / Mathematical Biosciences 186 (2003) 93–108 107
and X1 � ct=ð2LÞ has the same distribution as X2 � ct=ð2LÞ;X3 � ct=ð2LÞ; . . . With E denoting the
expectation operator, we set
MbðtÞ ¼ E Gb

	
� 2L� 1

2L
ct



¼ ð2L� 1ÞE X1

h
� ct
2L

i
ð7:2Þ
and
VbðtÞ ¼ Var Gb

	
� 2L� 1

2L
ct



¼ ð2L� 1ÞVar X1

h
� ct
2L

i
¼ ð2L� 1ÞVar½X1�: ð7:3Þ
For notational simplicity, we shall write Mb and Vb for the mean and variance of the genetic
background in generation t and M 0

b and V 0
b for these quantities in generation t þ 1.

Assuming the genetic background, Gb, is normally distributed, the fitness of an individual with
allelic effect x1 in generation t is obtained by averaging the fitness, (2.3), over the background, i.e.
Z 1

�1
wðx1 þ gb � ctÞ exp

"
� 1

2Vb
gb

�
�Mb �

2L� 1

2L
ct

�2
#

dgbffiffiffiffiffiffiffiffiffiffi
2pVb

p : ð7:4Þ
The result of this integration leads to the fitness of an individual with allelic effect x1 in generation
t of wSðx1 � ct=ð2LÞ þMbÞ where
wSðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VS
VS þ Vb

r
exp

	
� x2

2ðVS þ VbÞ



: ð7:5Þ
Let USðt; iÞ be the probability that X1 has the value i� D (where i ¼ 0;�1;�2; . . .) in generation
t. Under the assumptions made, it satisfies the one-locus haploid equation
USðt þ 1; iÞ ¼ 1P
j wSðjD� ct=ð2LÞ þMbÞUSðt; jÞ

� ð1
(

� lÞwSðiD� ct=ð2LÞ þMbÞUSðt; iÞ

þ l
X
j

f ðiD� jDÞwSðjD� ct=ð2LÞ þMbÞUSðt; jÞ
)
: ð7:6Þ
It is useful to define
kS ¼ int
ct

2LD

� �
; ð7:7Þ

k0S ¼ int
ctþ1

2LD

� �
; ð7:8Þ

USðt; iÞ ¼ WSðt; i� kSÞ: ð7:9Þ

(Note that with �jj �

P
j jWSðt; jÞ we can write Mb ¼ ð2L� 1Þ½D�jjþ DkS � ct=ð2LÞ� and

Vb ¼ ð2L� 1ÞD2
P

jðj� �jjÞ2WSðt; jÞ.) It follows that
WSðt þ 1Þ ¼
RSðtÞ �WSðtÞ

F T � RSðtÞ �WSðtÞ
; ð7:10Þ
where WSðtÞ is column vector with elements WSðt; iÞ and RSðtÞ is a matrix with elements
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RS;ijðtÞ ¼ ð1
n

� lÞdðiþ k0S � kS; jÞ þ lf ðD½iþ k0S � kS � j�Þ
o
� wSðDjþ DkS � ct=ð2LÞ þMbÞ:

ð7:11Þ

This is similar to the corresponding quantity for asexuals, (3.6); the key difference is that there is a
dependence on the time-dependent quantities Mb and Vb (the latter appearing in the ws).
7.2. Prediction of mathematical results

Due to the involvement of the quantities Mb and Vb, the problem is highly non-linear. Although
we expect a similar kind of lagged tracking behaviour, the mathematical proof is beyond the scope
of this article.
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