
ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2011.01528.x

TWO MEASURES OF EFFECTIVE POPULATION
SIZE FOR GRAPHS
Mark Broom1,2 and Bernhard Voelkl3

1Centre for Mathematical Science, City University, London, EC1V 0HB, United Kingdom
2E-mail: Mark.Broom.1@city.ac.uk

3Institute for Theoretical Biology, Humboldt University at Berlin, D-10115 Berlin, Germany

Received February 24, 2011

Accepted November 16, 2011

Effective population size is a key parameter in population ecology because it allows prediction of the dynamics of genetic variation

and the rate of genetic drift and inbreeding. It is important for the definition of “nearly neutral” mutations and, hence, has

consequences for the fixation or extinction probabilities of advantageous and deleterious mutations. As graph-based population

models become increasingly popular for studying evolution in spatially or socially structured populations, a neutral theory for

evolution on graphs is called for. Here, we derive formulae for two alternative measures of effective population size, the variance

effective and inbreeding effective size of general unweighted and undirected graphs. We show how these two quantities relate

to each other and we derive effective sizes for the complete graph the cycle and bipartite graphs. For one-dimensional lattices

and small-world graphs, we estimate the inbreeding effective size using simulations. The presented method is suitable for any

structured population of haploid individuals with overlapping generations.

KEY WORDS: Coalescent theory, genetic drift, inbreeding, population structure.

In population genetics, early models of evolutionary processes

were based on simplifying assumptions of idealized well-mixed

populations. To study the dispersal process in finite populations,

Fisher (1930) and Wright (1931) introduced a simple model pop-

ulation that was later termed the “Wright–Fisher idealized pop-

ulation.” This population model assumes random mating among

individuals, nonoverlapping generations, and a constant popula-

tion size of N diploid individuals. Reproduction is a binomial

sampling process from an infinitely large pool of gametes pro-

duced by the previous generation. Studying the dynamics of this

population was a highly educative venture and indispensable for

our understanding of evolutionary processes. Yet, as natural popu-

lations do not comply with these assumptions, a next generation of

models, like the finite island model (Wright 1940) or the stepping

stone model (Kimura 1953), incorporated aspects of population

structure. Several extensions of these models were suggested that

relaxed some of the original assumptions (e.g., Maruyama 1970a;

1970b; Slatkin 1977; Maruyama and Kimura 1980; Ewens 1989;

Barton 1993; Chesser et al. 1993; Whitlock and Barton 1997;

Whigham et al. 2008). To study the evolutionary process in spa-

tially distributed populations, reaction–diffusion models were de-

veloped where space is represented explicitly as a continuous

area (Nagylaki 1978). More recently, population ecologists have

turned to a different approach and model populations as graphs,

which allows one to study effectively any possible population

structure within a single framework (Whigham et al. 2008).

Combadao et al. (2007) used simulations to study the speed

of Mueller’s ratchet—the accumulation of deleterious mutations

in nonrecombining genomes—for regular graphs, small-world

graphs, and random graphs. Whigham and colleagues (2008) used

a similar approach to study the loss of neutral variation in struc-

tured populations of different ploidy levels. As in these studies,

vertices did not represent single individuals but demes, they were

conceptually still similar to the original island and stepping stone

models. In a different class of graph-based models, individuals

were modeled explicitly as vertices. Early models of that type
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were simple gridlike models (Nowak and May 1992; Killingback

and Doebeli 1996; Nakamaru et al. 1997; Hauert and Doebeli

2004) where the grid was thought to represent a spatially struc-

tured population. Lieberman et al. (2005) then argued that grids

or lattices are only special cases of graphs and that one can gain

much more insights by studying evolution on a more general class

of graphs. This approach was primarily applied for studying the

evolution of cooperation in structured populations (Ohtsuki and

Nowak 2006; Santos et al. 2006; Grafen 2007; Lehmann et al.

2007; Taylor et al. 2007; Voelkl and Kasper 2009) and investi-

gating important properties such as the fixation probabilities of

advantageous mutations or their fixation time (Broom and Rychtar

2008; Broom et al. 2009). However, although literature in this area

is accumulating rapidly, a neutral theory of evolution on graphs

is still missing.

In finite populations, allele frequencies fluctuate from gen-

eration to generation due to random sampling from a finite pool

of gametes. These changes drive the dispersal process, or genetic

drift, which is suggested to be the dominating factor governing

molecular evolution (Kimura 1983). The ultimate consequence of

genetic drift in the absence of migration, mutation, and natural

selection is the loss of genetic variation and, finally, the fixation

of a single allele. The expected time for this to happen depends

on the size of the population but also on the structure of the

population. Sewall Wright (1931) introduced a quantity that he

termed “effective population number,” which he defined opera-

tionally as the size of an idealized Wright–Fisher population that

would undergo the same amount of genetic change as the pop-

ulation in question. Depending on the genetic property one is

interested in, the effective population size has to be calculated in

different ways and these calculations can yield different results

(Ewens 1979; Caballero 1994), though it was shown that for suffi-

ciently large populations, these different effective sizes converge

in the long-term limit (Whitlock and Barton 1997). We will re-

strict our discussion to two measures—the inbreeding effective

size (Wright 1931) and the variance effective size (Crow 1954)

for three reasons. First, these two measures have the longest his-

tory in classical population genetics (Kimura 1983). Second, they

are still frequently used and have proven to be very useful—for

example, the inbreeding effective size allowed the development

of statistical methods for making inferences about evolutionary

processes (Charlesworth et al. 2003). And finally, both measures

are based on intuitive concepts—the estimated time to common

ancestry and the sampling variance from one generation to the

next.

The Wright–Fisher process assumes discrete, nonoverlap-

ping generations, where all individuals reproduce at the same

time and contribute to a common pool of gametes from which

a sample is drawn as the next generation’s individuals. Although

such a process might be an appropriate model for annual reproduc-

ing plants or certain invertebrates, many other organisms do not

exhibit synchronized reproduction. Moran (1962) therefore sug-

gested a completely different model, where at each time-point,

only a single individual is allowed to reproduce. This process is

equivalent to the process in the voter model (Holley and Liggett

1975) in statistical mechanics (see also Blythe and McKane 2007;

Sood et al. 2008; Pugliese and Castellano 2009).

In the following sections, we will derive the effective pop-

ulation size for the Moran reproduction scheme for the class of

undirected and unweighted graphs. That is, the resulting formulae

will not be restricted to well-mixed populations but will allow us

to evaluate the effective size for any structured haploid population

of constant size with overlapping generations.

Evolutionary Dynamics
To define the effective population size for graphs, we assume the

following population dynamics introduced by Lieberman et al.

(2005), called the Invasion Process. The population is represented

as a finite, undirected, and connected graph G = (V, E), where

V is the set of vertices and E is the set of edges (see Table 1 for

further definitions). Each vertex represents one individual of the

population. Each individual can be either of type A or a, where

these two types can be seen as two alleles of a single genetic

locus. We treat the population dynamics as a discrete time Markov

chain. In each unit of time, one individual is chosen at random to

produce exactly one offspring of identical type (carrying the same

allele). Immediately afterwards, one randomly chosen neighbor

of the selected individual dies and is replaced by the offspring.

This birth–death update process ensures that the population size

remains constant. If we denote the set of all individuals of type A
as set C ⊂ V , then in the next step type A individuals will either

inhabit all vertices in

(i) a set C ∪ j, j /∈ C , if an individual i ∈ C was chosen for

reproduction and an individual j in the neighborhood of i

was replaced by the offspring of i ; or

(ii) a set C \ i, i ∈ C , if an individual j /∈ C was chosen for

reproduction and an individual i in the neighborhood of j

was replaced by the offspring of j ; or

(iii) a set C , if an individual i ∈ C was chosen for reproduction

and the offspring of i replaces an individual j ∈ C in the

neighborhood of i , or if an individual i /∈ C was chosen for

reproduction and the offspring of i replaces an individual

j /∈ C in the neighborhood of i .

The states C = V and C = ∅ are the absorbing states of the

dynamics.
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Table 1. Graph theoretic terms used in this article.

Term Definition

Graph A graph is an abstract representation of a set V of objects—called vertices—where pairs of objects
can be connected by links—called edges.

Complete graph A complete graph is a graph where every vertex is connected to any other vertex of the graph.
Density The density of a graph is the ratio of the number of existing edges over the number of edges for a

complete graph of the same size.
Degree The degree k of a vertex is the number of edges incident to that vertex.
Regular graph A regular graph is a graph where all vertices have the same degree.
Bipartite graph A bipartite graph is a graph with two disjoint subsets of vertices A and B such that every edge

connects a vertex in A to a vertex in B. A complete bipartite graph has edges between every
vertex in A and every vertex in B.

Neighborhood A vertex which is connected to a vertex i is a neighbor of i. The set of all vertices connected to
vertex i is the neighborhood �i of i.

Path A path in a graph is a sequence of vertices such that there is an edge from each vertex to the next
vertex in the sequence.

Cycle A cycle is a graph that consists of a single path such that the initial vertex and the final vertex are
the same. The number of vertices equals the number of edges and every vertex is of degree two.

Characteristic path length The characteristic path length L is the average number of edges in the shortest path between all
pairs of vertices in a graph.

Clustering coefficient The clustering coefficient γi of vertex i measures the extent to which neighbors of i are connected

between themselves. It is given by γi = |E(�i )|/ (ki )
2

, where E(�i ) is the set of edges in the

neighborhood of i. The clustering coefficient γ of a graph is γi averaged over all i ∈ V .
Small world A small-world graph is a graph in which most vertices are not neighbors of one another but can be

reached from every other vertex by a small number of steps. It is usually defined as a graph
where the shortest path between two randomly chosen vertices grows proportionally to the
logarithm of the number of vertices of the graph.

Rewiring Rewiring is the process of replacing an edge from vertex i to vertex j by an edge from vertex i to
any other vertex k ∈ V \ {i, j} of the graph.

Measures of Effective Population
Size
INBREEDING EFFECTIVE POPULATION SIZE

Wright (1931) defined the inbreeding effective population size as

the size of an idealized Wright–Fisher population which would

give rise to the same change in the rate of inbreeding as the actual

population under consideration. The coefficient of inbreeding of

diploid individuals, with respect to a specific locus, is the prob-

ability that the two alleles carried by an individual are identical

by descent (Crow and Kimura 1970). Although it is questionable

whether the term “inbreeding” still makes sense for haploid in-

dividuals, it is possible to calculate an inbreeding coefficient for

a population of haploid individuals by evaluating the probability

that two randomly chosen individuals are identical by descent.

In the Moran model, the probability that two randomly chosen

individuals are not identical by descent declines at a rate of 2/N 2

per unit of time (Moran 1962). Because in this model a gen-

eration comprises N time units, the probability of nonidentity

declines at a rate of 2/N per generation and, consequently, the in-

breeding effective size for a well-mixed Moran population is N/2

with respect to the haploid Wright–Fisher population (Felsenstein

1971).

In the following, we shall denote: the time for the individuals

at two randomly chosen nodes in a complete graph to be copies of

a single original node (coalescence of two random lineages) as Tc;

the time for complete coalescence in the population as Tc,pop; the

time for coalescence to occur given that all individuals are a copy

of original individual j as Tc, j ; the probability that all individuals

are a copy of individual j as Pj ; the time of a randomly placed

mutant to fix (given that it does) as T f ; and the time to fixation of

individual j (given that it does) as T f, j .

It should be noted that for most graphs (although not the

complete graph) Tc, j will depend upon j . Further, the terms Tc, j

and T f, j are really two alternative ways of writing the same thing.

We can see that in general

E[Tc,pop] =
N∑

j=1

E[Tc, j ]Pj =
N∑

j=1

E[T f, j ]Pj . (1)
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On any regular graph, and in particular the complete graph, Pj =
1/N for all j , so that

E[Tc,pop] = 1

N

N∑
j=1

E[T f, j ] = E[T f ]. (2)

Thus, T f has the same expectation as the time to complete coales-

cence of the population for neutral mutants on a complete graph.

The time to complete coalescence on the complete graph can be

expressed in terms of the sum of the times to successively remove

alleles from the population (Kingman 1982) giving

Tc,pop =
N∑

i=2

2

i(i − 1)
Tc

= 2Tc

(
1

N − 1
− 1

N
+ 1

N − 2
− 1

N − 1
+ · · ·

+1

2
− 1

3
+ 1 − 1

2

)

= 2Tc
N − 1

N
.

Thus, we have

E[T f ] = E[Tc,pop] = 2E[Tc]
N − 1

N
. (3)

The inbreeding effective population size is defined as Ne, f , where

E[Tc] = N Ne, f (Felsenstein 1971). This corresponds to Ne, f

complete generations, because in the Moran process, every time

step constitutes a single change only, so for a complete gener-

ational updating we need N steps. Thus, replacing E[Tc] by its

equivalent expression for complete graphs, we can find a general

expression for Ne, f for any graph:

Ne, f = E[Tc]

N
= N

2(N − 1)
E[T f ]

1

N
= E[T f ]

2(N − 1)
. (4)

In general, T f can be found using the approach presented

in Broom et al. (2010) or, for more complicated graphs, by

simulation.

We note that we have assumed a dynamics which does not

allow an offspring to replace its own parent. If we allowed this in

a well-mixed population, the effect would be to slow the evolution

of the process as at every time step the kind of transition that we

have described occurs with probability 1 − 1/N , so that every

transition time has expectation N/(N − 1) times the original one.

This is perhaps a fairer comparison to the original Wright–Fisher

model, as this allowed replacement of a parent. Thus, we define

an adjusted inbreeding effective population size N ∗
e, f by

N ∗
e, f = N

N − 1
Ne, f = N E[T f ]

2(N − 1)2
. (5)

VARIANCE EFFECTIVE POPULATION SIZE

Following Crow (1954), we define the variance effective size

of a population as the number of individuals that an idealized

Wright–Fisher population would need to show the same amount

of sampling variance in allele frequency as the population in

question. For the Moran process, the variance effective size equals

the inbreeding effective size Ne,v = Ne, f = N/2. We consider a

population with two alleles, A and a, occurring at frequencies

1 − p and p, respectively. If the variance in the change of allele

frequency in the graph per time unit is var(�p), then according to

Felsenstein (1971)

var[�p] ≈ 1

N Ne,v
p(1 − p) ⇒ Ne,v ≈ 1

2N

2p(1 − p)

var[�p]
.

Defining Tv by

Tv = 2p(1 − p)

var[�p]

(var[�p] is a change per unit of time, so correspondingly Tv is

a measure of time), we consider a population as it changes from

the introduction of a rare mutant to its fixation. We consider the

expectation of Tv , E[Tv], over this process, conditional on fixation

occurring. We condition on fixation because we are primarily

interested in the effect of effective population size on a successful

mutant; most mutants do not fix, and when they do not they are

usually eliminated early having little effect on the population. We

set

Ne,v = E[Tv]

2N
. (6)

For the same reason as for the inbreeding effective population

size, we also define an adjusted variance effective population size

N ∗
e,v by

N ∗
e,v = N

N − 1
Ne,v = E[Tv]

2(N − 1)
. (7)

When considering the fixation of allele a recall that we start

from a single mutant a and follow through the process until fixa-

tion, conditional on fixation occurring. Thus to find var[�p] for

any number i of alleles a (so p = i
N ), we must condition on the

fixation of a. We shall denote Fi as the event that a fixes from a

population where there are i a alleles and Mi, j is the event that

the number of a alleles changes from i to j in a single time step

(thus Mi, j has zero probability for j 
= i − 1, i, i + 1). For any

regular graph (and thus the complete graph) and neutral mutation,
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P[Fi ] = i
N , E[�p] = 0, and

var[�p] = 1

N 2
(P[Mi,i+1|Fi ] + P[Mi,i−1|Fi ])

= 1

N 2

(
P[Mi,i+1 ∩ Fi ]

P[Fi ]
+ P[Mi,i−1 ∩ Fi ]

P[Fi ]

)

= 1

N 2

(
P[Mi,i+1]P[Fi+1]

P[Fi ]
+ P[Mi,i−1]P[Fi−1]

P[Fi ]

)

= 1

N 2

i+1
N P[Mi,i+1] + i−1

N P[Mi,i−1]

i/N

= 1

N 2
(1 − P[Mi,i ]) = 1

N 2di
,

because P[Mi,i+1] = P[Mi,i−1] = 1
2 (1 − P[Mi,i ]), defining di as

the expected duration of a single stay at state i . Thus,

E[Tv] = E

[
2p(1 − p)

var[�p]

]
= E

[
2 i

N
N−i

N
1

N 2di

]
= E[2i(N − i)di ]

=
N−1∑
i=1

2i(N − i) di P[I = i],

where P[I = i] is the proportion of time spent in state i . Defining

mi as the expected number of visits to state i , it is easy to see that

P[I = i] = mi di∑N−1
j=1 m j d j

.

Thus, we obtain

E[Tv] =
N−1∑
i=1

2i(N − i) di
mi di∑N−1

j=1 m j d j

= 2∑N−1
j=1 m j d j

N−1∑
i=1

i(N − i)mi d
2
i .

(8)

In the Appendix, we show that

mi = 2i(N − i)

N
. (9)

Using this equation, we can get the following expression for

E[Tv] :

E[Tv] = N∑N−1
i=1 mi di

N−1∑
i=1

m2
i d2

i ⇒

E[Tv] = N∑N−1
i=1 E[Ti ]

N−1∑
i=1

E[T 2
i ], (10)

where Ti is the total time spent in state i .

We note that this formula holds for regular graphs only. For

irregular graphs, the probability of the next change in the mutant

population size being an increase is dependent on the precise set

of vertices occupied by the mutants, and so every such set needs

to be considered separately and so finding an equivalent formula

for irregular graphs would be a lot more complex.

A COMPARISON BETWEEN INBREEDING EFFECTIVE

SIZE AND VARIANCE EFFECTIVE SIZE

From above, we can obtain the following alternative expression

for the fixation time T f ,

T f =
N−1∑
i=1

Ti . (11)

Combining equations (10) and (11) gives

E[Tv]

E[T f ]
= N

∑N−1
i=1 E[T 2

i ](∑N−1
i=1 E[Ti ]

)2 =
1

N−1

∑N−1
i=1 E[T 2

i ](
1

N−1

∑N−1
i=1 E[Ti ]

)2

N

N − 1

= N E[U 2]

(N − 1)(E[U ])2
, (12)

where U is a discrete uniform distribution on the values

E[T1], . . . , E[TN−1], that is, a random variable with

P(U = E[Ti ]) = 1/(N − 1) i = 1, . . . , N − 1.

Thus,

Ne,v

Ne, f
= E[Tv]

2N

2(N − 1)

E[T f ]
= N − 1

N

N

N − 1

E[U 2]

(E[U ])2
= E[U 2]

(E[U ])2

and so

Ne,v

Ne, f
− 1 = E[U 2] − (E[U ])2

(E[U ])2
= var[U ]

(E[U ])2
. (13)

Since clearly var[U ] ≥ 0, Ne,v ≥ Ne, f always for regular graphs.

The fraction var[U ]/(E[U ])2 can be rewritten as var[U/E[U ]],

that is, the variance of U scaled by its mean E[U ] to make it

dimensionless. The larger this quantity, the more the variance

effective population size proportionately exceeds the inbreeding

effective population size. The more variable U/E[U ] is, the more

likely the population is to be observed at the larger values of U ,

that is, in the states where the population spends more time, and

so slower transitions are more likely to be observed, with a corre-

spondingly larger effective population size. This corresponds to

sampling from a distribution either (1) completely at random or

(2) proportional to the length of a random variable. The differ-

ence between these two methods is referred to as “length biased”

sampling (Rao 1977), when the second is used in error as an es-

timate of the first. The more variable the distribution, the bigger

the difference will be.

Effective Population Size for Some
Example Graphs
COMPLETE GRAPHS

Complete graphs represent the case of a well-mixed population.

By calculating the effective population size for a complete graph

we should, therefore, retrieve the effective population size of a

Moran population. To evaluate E[Ti ], we first have to evaluate
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the expected number of visits of each state, mi and the expected

duration of a visit for each state, di . For the latter, we first calculate

the probability of leaving state i , 1 − P[Mi,i ] .

1 − P[Mi,i ] = P[Mi,i+1] + P[Mi,i−1] = i(N − i)

N (N − 1)

+ i(N − i)

N (N − 1)
= 2i(N − i)

N (N − 1)
⇒

di = N (N − 1)

2i(N − i)
⇒

E[Ti ] = mi di = 2i(N − i)

N

N (N − 1)

2i(N − i)
= N − 1.

Thus, var[U ] = 0 and so

Ne,v = Ne, f = E[T f ]

2(N − 1)
= 1

2(N − 1)

N−1∑
i=1

Ti

= 1

2(N − 1)
(N − 1)(N − 1) = N − 1

2

and N ∗
e,v = N ∗

e, f = N
N−1

N−1
2 = N

2 , which is equal to the result

given by Felsenstein (1971).

CYCLES

Although for the population ecologist, the cycle might seem a

highly arbitrary structure that has no correspondence in any nat-

ural population, it is an interesting graph for two reasons. First,

it represents an extreme case, where the effects of spatial struc-

ture on evolutionary dynamics are strongest. Second, due to its

simplicity it is possible to find analytic solutions for certain evo-

lutionary scenarios. As for the complete graph, we first have to

calculate 1 − P[Mi,i ] to get E[Ti ].

1 − P[Mi,i ] = P[Mi,i+1] + P[Mi,i−1] = 1

N
+ 1

N
= 2

N
⇒

di = N

2
⇒

E[Ti ] = 2i(N − i)

N

N

2
= i(N − i).

Thus, we find the inbreeding effective population size using

E[T f ] =
N−1∑
i=1

E[Ti ] =
N−1∑
i=1

i(N − i) = N
N−1∑
i=1

i −
N−1∑
i=1

i2

= (N − 1)N 2

2
−

(
N

6
− N 2

2
+ N 3

3

)
= N 3 − N

6

= N (N 2 − 1)

6
.

This gives

Ne, f = 1

2(N − 1)

N (N 2 − 1)

6
= N (N + 1)

12
. (14)

To find the variance effective population size, we use equa-

tion (10) to give

E[Tv] = N(
N (N 2−1)

6

) N−1∑
i=1

i2(N − i)2 = 6

N 2 − 1

N−1∑
i=1

(i(N − i))2.

Alternatively

E[U ] =
N−1∑
i=1

E[Ti ]P[U = Ti ] =
N−1∑
i=1

1

N − 1
i(N − i)

= 1

N − 1

(
N

N−1∑
i=1

i −
N−1∑
i=1

i2

)

= 1

N − 1

(
N

(N − 1)N

2
− (N − 1)N (2N − 1)

6

)

= N (N + 1)

6
.

E[U 2] =
N−1∑
i=1

1

N − 1
i2(N − i)2

= 1

N − 1

(
N 2

N−1∑
i=1

i2 − 2N
N−1∑
i=1

i3 +
N−1∑
i=1

i4

)

=
(

N 3(2N − 1)

6
− N 3(N − 1)

2

+ 1

30
(6N 4 − 9N 2 + N + 1)

)

= N

30
(N 3 + N 2 + N + 1).

Thus,

var[U ] = N

30
(N 3 + N 2 + N + 1) −

(
N (N + 1)

6

)2

= (N + 1)N (N − 2)(N − 3)

180
≈ N 4

180
.

and

var[U ]

(E[U ])2
≈ N 4/180

N 4/36
= 1

5
.

Thus,

Ne,v

Ne, f
≈ 1 + 1

5
= 6

5
⇒

Ne,v ≈ 6

5

N (N + 1)

12
≈ N 2

10
. (15)

We can see that the effective population size for a large cycle

is large, being of the order of N 2. This is as we would expect

as evolution is slow on the cycle compared to the well-mixed

population of the complete graph, so happening at a rate that

corresponds to a much larger well-mixed population.
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BIPARTITE GRAPHS

In this section, we consider a type of irregular graph, the (com-

plete) bipartite graph. In such a graph, the N vertices are split into

two sets, A and B, with number of vertices na and nb, respectively,

where N = na + nb. Every pair of vertices which includes one

member from each set is connected by an edge, whereas no two

members of the same set are connected. Although the bipartite

graph has no direct biological correspondent, it is an interesting

example of a heterogeneous graph that has received considerable

attention in previous work (e.g., Sood et al. 2008; Blythe 2010).

It is difficult to find an exact mathematical solution for the ef-

fective population size for this type of graph in general, but we

can make good progress for the inbreeding effective population

size using an approximation. Sood et al. (2008) show that for

the voter model dynamics, provided that both na and nb are suf-

ficiently large, there is a two-stage process of evolution, where

the fraction of mutants equalizes between the two sets quickly,

and then evolution to fixation or elimination is a much slower

process. By similar reasoning, this is also true for the dynamics

that we consider (the Invasion Process, which was described in

the Introduction).

Let us now assume that nb >> na . The probability that the

next individual selected to reproduce will be in set B (and so the

next individual to be changed will be in set A) is nb/N . Thus,

change will happen much faster in A, but the fraction of mutants

will tend to oscillate about the fraction of mutants in the slower

evolving set B. Thus, time to fixation will be governed by the

time for this to occur in B.

We can see from the Complete Graph section that the fixation

time for the complete graph is E[T f ] = (N − 1)2 ≈ N 2. Because

the fraction of mutants is approximately equivalent in A and B,

a good approximation for the number of steps which involve a

B individual being selected for replacement prior to fixation is

n2
b. The proportion of all steps which are of this type is na/N , so

that provided that na and nb are sufficiently large, and that nb is

sufficiently larger than na , a good approximation for E[T f ] is

E[T f ] ≈ n2
b

na/N
= n2

b N

N − nb

which yields

Ne, f ≈ n2
b

2(N − nb)
.

How large do na and nb have to be, and how much larger must nb be

than na , for this approximation to be valid? We carried out simu-

lations, and the approximation was good for both relatively small

nb and na , and nb/na . For simulations involving 100 vertices,

na = 30, nb = 70 and na = 10, nb = 90 yielded good agreement

with the formula (although as expected for na = nb = 50 the for-

mula failed).

LATTICE GRAPHS

Complete graphs and cycles are both extreme cases with respect to

the graph’s density. Although the complete graph is obviously the

graph with the highest density possible, the cycle has the lowest

density for the class of regular graphs. As we have shown, these

two graphs also differ markedly in their effective population sizes.

We would therefore like to know the effective population size for

regular graphs with intermediate density values. Here, we restrict

our investigation to one-dimensional (1D) lattice graphs and to the

inbreeding effective size. (Results for variance effective size are

not shown for brevity but can be obtained equivalently.) We start

with a 1D lattice graph, where each vertex has degree k = 2, which

is a cycle. We then gradually increase the degree k of all vertices

by connecting vertex i to all vertices i + 1, i + 2, . . . , i + k/2

and i − 1, i − 2, . . . , i − k/2 on the cycle. The density for these

graphs is given as D = k/(N − 1). To evaluate the inbreeding ef-

fective population size for these graphs, we simulate neutral evolu-

tion to retrieve an estimate for the expected time T f of a single mu-

tant to fixate (given that it does). Using equation (3), we can then

calculate an estimate for Ne, f . In addition to density, we want to

relate the effective population size to the characteristic path length.

Fig. 1 shows the results for graphs of N = 100. Although for the

cycle (with k = 2 and a density of 0.02), N ∗
e, f is approximately

840, it rapidly declines with increasing density, approaching the

effective size for the well-mixed population (i.e., the complete

graph) already at a density level of about 0.3. The relation be-

tween inbreeding effective size and characteristic path length can

be seen in Fig. 1B. As we would expect, the graphs with the largest

characteristic path length have a higher effective population size,

as long path lengths slow down the evolutionary process.

SMALL-WORLD GRAPHS

By altering the degree of the lattice, we are not only changing the

density of the graph but also the characteristic path length and the

degree of clustering. Thus, to investigate whether the path length

or the degree of clustering affect the effective population size in

the absence of density differences, we followed an approach pro-

posed by Watts and Strogatz (1998). We start with a 1D lattice of

N = 100 and k = 4. We then pseudo-randomly rewire (Table 1)

a certain proportion r of the edges (the rewiring algorithm ex-

cludes self-loops, multiedges, and resulting disconnected graphs,

Fig. 2A). For r = 0, we have a regular 1D lattice which is charac-

terized by a large characteristic path length and a large clustering

degree. The characteristic path length increases linearly with pop-

ulation size, whereas the clustering coefficient is independent of

population size. By increasing r , we are introducing long-range

links in the network which leads to a rapid decrease in the char-

acteristic path length whereas the clustering coefficient remains

initially nearly unchanged. Networks with such properties have

been labeled “small-world networks” (Watts and Strogatz 1998).
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Figure 1. Inbreeding effective size for one-dimensional lattice graphs (N = 100, k = 2, 4, 6, 8, 14, 20, . . . , 98) in relation to (A) density

and (B) characteristic path length. Depicted values are mean estimates based on 106 simulations for each degree k.

Finally, by further increasing r , we get graphs that correspond

in their properties to random graphs with a low clustering coef-

ficient and a characteristic path length that is proportional to the

logarithm of the population size.

For a population size of N = 100 and average degree of

k = 4, the effective population size first drops rapidly with in-

creasing r and then approaches a value that is roughly twice the

effective size for the complete graph (Fig. 2B). However, already

Figure 2. Inbreeding effective size for small-world graphs for different rates of re-wiring. (A) Example of a small-world graph based

on a one-dimensional lattice (N = 18, k = 4) where three edges were pseudo-randomly reconnected. Mean estimates for the effective

size for graphs with (N = 100, k = 4 and 0, 2, 4, 8, 16, . . . , 256) reconnections are given in relation to (B) percentage of reconnections, (C)

characteristic path length, and (D) clustering coefficient.
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for an average degree of k = 6, this asymptotic value is only

1.4 times the effective size for the complete graph. To illustrate

the relation between the effective population size with the net-

work properties of those graphs, we plot the inbreeding effective

population size against characteristic path length (Fig. 2C) and

clustering coefficient (Fig. 2D).

We again see that the effective population size increases with

the characteristic path length, but it also increases with the value

of the clustering coefficient. This is again as we would expect, as

a high clustering coefficient means strong localized properties on

the graph, which again slow evolution.

Conclusion
The importance of population structure for certain evolutionary

processes was already recognized by Sewall Wright (1931) and in-

tensively studied thereafter (for a review see Wang and Caballero

1999). In classical meta-population models, spatial structure was

implemented by assuming that a population consists of many

lines, local colonies, or demes, where reproduction within demes

is random, whereas migration between those subunits is governed

by a specific migration term. Coupled-map lattice models rep-

resent an extension where demes occupy the vertices of a graph

(Lion and van Baalen 2008). For each deme, the local dynamics

has a reaction term derived from a mean-field model and a cou-

pling term that accounts for migration. For a further extension

of the meta-population model, one can assume that each site can

only be occupied by a discrete number of individuals (Metz and

Gyllenberg 2001). Such models might add some more realism

for cases with small deme size, but their main contribution is to

bring in two important aspects: first, they add individuality to the

model, and second, they represent a link to models derived from

probabilistic cellular automata (Durrett and Levin 1994).

Here, we note that coupled map lattices and individual-based

cellular automata are not fundamentally different, but the latter

can be seen as a special case of the former with deme size fixed

at one, while, at the same time, any population with larger deme

size can—in principle—also be represented by an individual-

based automaton. However, as long as the latter does not in-

clude some sort of dynamics mimicking migration, the popula-

tion structure remains entirely static over all generations. This

has important consequences, because in structured populations,

genetic drift tends to produce random differences in allele frequen-

cies between subpopulations, while allowing for small amounts

of migration between them can counteract this effect. Mills and

Allendorf (1996) emphasized that even “one migrant per genera-

tion” can be sufficient to prevent genetic differentiation between

subpopulations. Killingback and Doebeli (1996) and Ifti et al.

(2004) have studied the effects of dispersal in lattice models and

came to similar conclusions. Thus, although excluding migration

is a certain restriction which makes these models less suitable to

represent real-life populations, individual-based models can still

be a convenient approach to study some general principles (e.g.,

Lieberman et al. 2005; Ohtsuki et al. 2006; Grafen 2007; Lehmann

et al. 2007; Taylor et al. 2007). Yet, a neutral theory for evolution

on graphs is urgently needed, and this has been the focus of our

paper.

In this article, we have developed a formula for the inbreeding

effective population size for unweighted and undirected graphs in

terms of their fixation time, which can be obtained explicitly in

simple cases and by simulation for any graph. Thus, we have a

ready means of finding this expression. The variance effective

size is more complex. We have an approximation for this in terms

of our expression Tv which can in general be simulated and we

have an approximation formula for this for the case of regular

graphs, which nevertheless requires simulation in the nonsimple

cases. We see that variance effective population size is always

at least as large as inbreeding population size for regular graphs.

We have carried out some investigations, for example, graphs,

including demonstrating consistency for the complete graph, and

shown how effective population size depends upon the properties

of other graphs (cycles, bipartite graphs, lattices, and small-world

graphs). Regular graphs with a large number of edges in practice

have very similar properties to the complete graph, and we can

see this reflected in the effective population size of our exam-

ples. Similarly, small-world graphs with even moderate rewiring

probability (roughly 10% or more) have substantially smaller ef-

fective population sizes than the original lattice structures. For

bipartite graphs, the fixation time of a single mutant is primarily

determined by the size of the larger subset of the graph.

Following previous work in this area, we took the Wright–

Fisher population as the reference point for defining the effective

population size. As a consequence, the effective size for the com-

plete graph under a sequential Moran updating rule does not equal

N but N/2. Thus, researchers who would prefer to relate their re-

sults directly to those for the complete graph must multiply the

observed effective size by two. Although this is a slight incon-

venience, it has saved us from defining effective size anew and

introducing new terms; something we have tried to avoid given

the already existing plethora of concepts and definitions. Pop-

ulation ecologists have been studying evolutionary processes in

structured populations for a long time whereas, more recently,

mathematicians and physicists have become interested in evo-

lutionary processes on graphs. Here, we have shown how the

concept of effective size that is well established within popula-

tion ecology can be applied to evolutionary scenarios on graphs,

and by this we have tried to build a bridge between these two lines

of scientific inquiry which have been partly running in parallel.
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Appendix
Here, we show that the expected number of visits to the state i on

a regular graph, mi , is given by equation (9).

For neutral mutations and regular graphs, the next change in

the mutant population size is as equally likely to be an increase

as a decrease, whatever the precise set of vertices occupied by the

mutants, and we effectively have a random walk with probability

p = 1/2 of moving forward. An increase in the population size

is just a move to the right in the random walk, and a decrease in

the population size is a move to the left. Conditioning on reaching

fixation, we must first reach i for the first time, thus mi = m∗
i + 1,

where m∗
i is the number of returns to state i . If we go to the left

from i − 1, we must come back, if we go to the right, we may or

may not come back. In general, the population either reaches 0

or N and then stops, as fixation or elimination of the mutant has

occurred.

We get the following equation involving m∗
i

m∗
i = P[AL ](m∗

i + 1) + (1 − P[AL ])[(m∗
i + 1)P[ER]

+ 0(1 − P[ER])]

= (m∗
i + 1)(P[AL ] + (1 − P[AL ])P[ER]), (A1)

where AL is the event that the next move is to the left given that

the population subsequently reaches N , and ER is the event that,

starting from i + 1, the population reaches i given that it reaches

N .

We must consider the following events:

A1: the next move is to the left and then the population

reaches 0;

A2: the next move is to the left and then the population

reaches N ;

A3: the next move is to the right and then the population

reaches 0;

A4: the next move is to the right and then the population

reaches N ;

E1: starting from i + 1, the population reaches N before i ;

E2: starting from i + 1, the population reaches i then N ;

E3: starting from i + 1, the population reaches i then 0.

It is clear that P[A1 ∪ A2 ∪ A3 ∪ A4] = 1, P[Ai ∩ A j ] = 0,

P[A1] = 1
2 (1 − P[Fi−1]) = 1

2
N−i+1

N , P[A2] = 1
2 P[Fi−1] =

1
2

i−1
N ,

P[A3] = 1
2 (1 − P[Fi+1]) = 1

2
N−i−1

N , P[A4] = 1
2 P[Fi+1] =

1
2

i+1
N .

Similarly, it is clear that P[E1 ∪ E2 ∪ E3] = 1, P[Ei ∩
E j ] = 0, P[E1] = 1

N−i , P[E2] = N−i−1
N−i

i
N , and P[E3] =

N−i−1
N−i

N−i
N .

P[ER] = P[E2 | E1 ∪ E2] = P[E2]

P[E1] + P[E2]

=
N−i−1

N−i
i
N

1
N−i + N−i−1

N−i
i
N

= (N − i − 1)i

(N − i − 1)i + N
.

(A2)

P[AL ] = P[A2 | A2 ∪ A4] = P[A2]

P[A2] + P[A4]

=
1
2

i−1
N

1
2

i−1
N + 1

2
i+1
N

= i − 1

2i
.

(A3)

Thus, m∗
i = (m∗

i + 1)
(

i−1
2i + i+1

2i P[ER]
)

⇒ m∗
i (2i − (i − 1) − (i + 1)P[ER]) = (i − 1) + (i + 1)P[ER]

⇒ m∗
i = i − 1 + (i + 1)P[ER]

(i + 1)(1 − P[ER])
=

i − 1 + (i+1)(N−i−1)i
(N−i−1)i+N

(i + 1) N
(N−i−1)i+N

= (i − 1)(N − i − 1)i + N (i − 1) + (i + 1)i(N − i − 1)

(i + 1)N
.

Thus,

mi = 1 + m∗
i = 2i

i + 1
+ 2i2(N − i − 1)

(i + 1)N

= 2i

i + 1

(
1 + i(N − i − 1)

N

)

= 2i

i + 1

(
1 + i − i(i + 1)

N

)
= 2i(N − i)

N
.

(A4)

This is equation (9) as required.
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