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Abstract Conflict occurs throughout the animal world. Such conflicts are
often modelled by evolutionary games, where individual animals make a single
decision each within the game. These decisions can be sequential, in either
order, or simultaneous, and the outcome of the game can depend strongly upon
which case is assumed to occur. Real conflicts are generally more complex,
however. A fight over a territory, for instance, can involve a succession of
different stages, and therefore choices, to be made by the protagonists. In
this paper we thus introduce a method of modelling a more complex class of
interactions, where each individual can make a sequence of decisions. We show
that despite the inherent complexity, under certain assumptions, the resulting
game often leads to the case where both animals fight to the fullest extent
or where one concedes immediately, thus mirroring the outcomes of simpler
single decision games. However, for other cases we see that the outcome is not
so simple, and intermediate level contests can occur. This occurs principally
in cases where the duration of contests is uncertain, and partially governed
by external factors which can bring the contest to a sudden end, such as the
weather or the appearance of a predator. We thus develop and theory grounded
in simple evolutionary models, but extending them in various important ways.

Keywords Game theory · Nash equilibrium · animal conflict · Hawk-Dove
game · extensive form games

Mark Broom
Department of Mathematics, City University London, Northampton Square, London,
EC1V 0HB, UK
E-mail: mark.broom@city.ac.uk

Jan Rychtář
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1 Introduction

Conflict is ubiquitous throughout the animal world, taking many different
forms (see e.g. Huntingford, 2013). Such conflicts can be modelled using evo-
lutionary game theory, where different behaviours within the conflict, for ex-
ample be aggressive or passive, are represented by the game strategies (May-
nard Smith and Parker, 1976; Maynard Smith, 1982; Hofbauer and Sigmund,
1998; Broom and Rychtář, 2013). A common feature of evolutionary game
theoretical models is that contests are often assumed to involve only a sin-
gle decision by each participant. These decisions can be taken simultaneously,
without knowledge of the other player’s choice, or in sequence, so that the
second player observes the choice of the first before making its own decision.
It is well known that whether the decisions are simultaneous or sequential, and
if sequential which order the decisions are made, can fundamentally change
the outcome of the game (Houston and McNamara, 1999).

A classic example of the type of behaviour that we are interested in involves
stags, which compete for territories and the associated mating opportunities
with females. These contests can be complex, involving observation of the
size of opponents, parallel walking, pushing and potentially lethal fighting.
The contests are thus not just single events, but go through stages, where
the protagonists can make decisions at different points. Such a situation was
first modelled by Maynard Smith and Price (1973); Maynard Smith (1982)
using the Hawk-Dove game, one of the most important games in biology. In
the classical game, two individuals compete over a resource of value V , with
two available strategies, the aggressive Hawk strategy and the passive Dove
strategy. If one player plays Hawk and the other Dove, the Hawk-player gains V
and the Dove player 0. If both play Dove, the winner is selected at random, so
each receives an average reward of V/2. If both play Hawk, they fight until one
receives an injury of cost C, the other then receiving the reward; the winner is
decided at random, so the average reward is (V −C)/2. Assuming that C > V ,
if each simultaneously chooses a strategy, for indistinguishable individuals, the
unique evolutionarily stable strategy (ESS) is a mixed strategy, where Hawk
is played with probability V/C (and Dove with probability 1 − V/C). For a
sequential game, the unique ESS is that the first player plays Hawk and the
second Dove, so that the first to play always gains the reward. Here the initial
choice by the first player of Hawk commits that player to fight if the other
also chooses Hawk, so that the second player knows that a choice of Hawk
commits it to obtain the negative reward (V −C)/2, forcing it to choose Dove.
The Hawk-Dove game was extended to involve asymmetries with the Owner-
Intruder game (Maynard Smith and Parker, 1976) and this has been elaborated
more recently in a number of ways (see e.g. Sherratt and Mesterton-Gibbons,
2015, for a review).

Real animal conflicts are often more complex than just involving a single
decision by each combatant, and animals may make a sequence of decisions
affected by the decisions made by themselves and their opponent, and the out-
comes of those decisions, earlier in the contest. This is the case in the example



Evolutionary games with sequential decisions and dollar auctions 3

of stags competing for a territory considered above. Games with a single de-
cision are often a useful simplification for the more complex case, with the
significant advantage of analytical simplicity, but the potential disadvantage
of a lack of realism. Thus in the sequential Hawk-Dove game, the first player
gains from the unrealistic assumption that its initial aggressive act commits it
to fight with full aggression for the whole contest. The models of Mesterton-
Gibbons et al (2014, 2016) consider a contest for a resource which can feature
many stages of challenge and rechallenge. The model is based upon an iter-
ated Hawk-Dove game, which has similar features to the iterated Prisoner’s
Dilemma (Axelrod, 1981), in that optimal behaviour is heavily influenced by
both the expectation of an opponent’s future strategy and also the likelihood
of further contests.

An alternative situation that can lead to complex contests is animal forag-
ing. Whlist foraging, animals may discover patches of resources, the value of
which can vary considerably, and they must balance out the benefit of staying
in the patch and continuing to feed, or to leave and seek a potentially richer
patch elsewhere. If there is a single individual only and the patch becomes
increasingly depleted though time, the individual does not have to consider
the choices of an opponent (though the value of patches elsewhere may depend
upon some population strategy of others), and it must simply pick the best
time to leave (Charnov, 1976). However, if there is more than one individual,
the choices of others are important. For a non-depleting patch with no move-
ment costs, this relates to the Ideal free distribution (Fretwell and Lucas, 1969;
Cressman et al, 2004). When resources become depleted, then individuals play
a game where costs and benefits change through time, and this becomes a gen-
eralized war of attrition (Bishop and Cannings, 1978). This is a development
of the classical war of attrition (Bishop and Cannings, 1976) where two indi-
viduals compete for a reward by trying to outwait the other individual, see
also Maynard Smith and Parker (1976); Hammerstein and Parker (1982). A
specific example with parasitiod wasps visiting a patch of host larvae is given
in Haccou et al (2003).

In this paper we introduce a method of analysing an animal conflict over
an indivisible valuable resource, as in the Hawk-Dove game, involving a poten-
tially long sequence of decisions. These are binary in form, where individuals
choose to persist in the contest (at some additional cost) or concede, concession
allowing the opponent to take the resource. The costs may vary, depending
upon the stage of the contest, for example if the nature of the contest changes
(as in the case of the mentioned stags above). Each possess a level of resources
which may prevent them from competing indefinitely. Similarly the contest
may eventually stop due to some external influence, for example the arrival
of night or a predator, and at that point the resource will be allocated to one
of the individuals at random (generally not uniformly at random, however).
We analyse our game under a number of scenarios, and also connect it to the
dollar auction, a game from Economics with some similar features.
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2 The model

Two individuals I1 and I2 compete for a valuable resource, which is worth
Vi to individual i for i = 1, 2. The contests follows a sequence of alternating
decisions, one at each time step, starting with I1, where the individual can
remain in the game at a cost, or concede the resource to its opponent. As
individuals have to pay a cost any time they decide to remain in the contest,
we will also refer to the decision to stay in the contest as an investment and we
will denote the cost of the jth investment of individual Ii by ci,j . We assume
that ci,j ≥ ε, for some 0 < ε < min(a1V1, a2V2) and all i, j. We assume that
the game may continue for up to T ∈ N ∪ {∞} time steps.

If T < ∞, then the game ends no later than after step T by either (a)
an individual giving up at any step T ′ ≤ T , or (b) the contest reaching the
stopping point just after step T . If T is odd, the stopping point happens after
I1’s investment; if T is even, the stopping point happen after I2’s investment.
In any case, an individual Ii can invest up to a maximum of Ji times where

J1 = int
T + 1

2
, (1)

J2 = int
T

2
. (2)

At the stopping point, Ii gains the reward with probability ai, so that a2 =
1−a1. See Figure 1 for an illustration of the game. After their jth investment,
Ii has paid a total cost Ci,j =

∑j
k=1 ci,k. Each individual has a maximum level

of resources Ri that they can invest, so that Ci,j can never exceed Ri. When
Ri < ∞, this condition together with the minimum investment level ε > 0
guarantees that individuals have to eventually concede at some point. There
are three distinct cases for the payoffs in this game.

1. If I1 concedes at its jth decision, then I1 receives payoff −C1,j−1 and I2
receives V2 − C2,j−1.

2. If I2 concedes at its jth decision, then I1 receives payoff V1 − C1,j and I2
receives −C2,j−1.

3. If neither concedes and the game reaches the stopping point after step T ,
I1 receives payoff a1V1 − C1,J1

and I2 receives a2V2 − C2,J2
.

We are interested in finding the optimal strategy for each player. Assuming
that an individual can find itself in the I1 or I2 role, a strategy is then a
combination of what to do as I1, and what to do as I2. Each player only has
the chance to play if all previous investments of both players have been made,
so that a pure strategy is simply the round in each case that an individual
would concede, assuming that it were reached, as I1 or I2. This can be reduced
to a pair of integers (including infinity as an allowable choice), so that Sj1,j2

represents invest in the first ji − 1 rounds and then concede as Ii.
We shall consider a number of cases. In Section 3 we consider the case

where all parameters Vi, ci,j , ai, Ri and T are a priori fixed and known to both
players. In Section 4 we will consider parameters Vi, ci,j , ai, Ri fixed and known
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step 1: I1 chooses

I1 gets 0

I2 gets V2

concedes

step 2: I2 chooses

continues

I1 gets V1 − c11
I2 gets 0

concedes

step 3: I1 chooses

continues

I1 gets −c11
I2 gets V2 − c21

concedes

step 4: I2 chooses

continues

I1 gets V1 − c11 − c12
I2 gets −c21

concedes

Stopping point

continues

I1 gets a1V1 − c11 − c12
I2 gets a2V2 − c21 − c22

Fig. 1: An example of the game for T = 4 where each individual can make (up
to) two choices.

but will assume that T follows a random distribution, i.e. the stopping time is
not a priori fixed, and so unknown to either of the players. In Section 5 we will
consider the parameters Vi, ai, Ri and T known and fixed, but we will allow
individuals to choose the cost of staying in the game themselves (under the
condition that if the game reaches step T , their total investment must reach
an a priori known and fixed value Ci). Finally, in Section 6, we will consider
the dollar auction game (Shubik, 1971), as a special case of our game and in
particular we will solve a variant of the dollar auction game where individuals
are assumed to have no memory.

3 Fixed and known parameter values

In this section consider the game Γ = 〈T, Vi, Ri, ai, ci,j〉 described above where
the values of Vi, ci,j , ai, Ri and T < ∞ are a priori fixed and known to both
players. Since the ci,j and T are fixed and known, Ii knows how much it will
have to invest to reach the end of the contest, which we denote by C1 = C1,J1

and C2 = C2,J2 , for I1 and I2 respectively; here J1 and J2 are given by (1)
and (2).

We can work from the end of the contests, using the standard backwards
induction method (see e.g. Broom and Rychtář, 2013), to solve the game. We
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shall take this approach throughout the paper; when applying this method we
shall use the shorthand “working backwards”. Note that, less often, we shall
need to work from the start of the game, denoted as “working forwards”.

Let Bi,j denote the expected future payoff to Ii before its jth choice and
let Ai,j denote the expected future payoff after its jth choice (assuming that
it has not conceded). At any step j, the individual Ii chooses the better of the
following two options

1. to concede, get no reward (and pay the cost Ci,j−1 after already investing
j − 1 times), or

2. to continue, pay the cost ci,j (plus the cost Ci,j−1 of already investing j−1
times), and expect to get payoff Bi,j .

However, the individual can continue only if it has sufficient resources to do
so. Consequently,

Bi,j =


0, if Ri < Ci,j ,

−ci,j +Ai,j , if Ri ≥ Ci,j and Ai,j > ci,j ,

0, otherwise,

(3)

where

A1,j =

{
V1 if B2,j = 0, and

B1,j+1 otherwise;
(4)

A2,j =

{
V2 if B1,j+1 = 0, and

B2,j+1 otherwise.
(5)

In (3) the cases appropriately correspond to (a) inability to continue due to
not having sufficient resources, (b) ability to continue and a profitability of
doing so, and (c) ability to continue but not a profitability of doing so. If
(a) happens, we say that Ii reached a point of concession by inability. If (c)
happens, we say that Ii reached a point of concession by unprofitability. A
block is a point of concession by unprofitability where ci,j ≥ Vi (note that Ai,j

is never more then Vi).
We note that in equations (4) and (5) we have assumed that if the expected

future reward for the two choices of continuing and conceding are identical,
then the individual concedes. If ties were (sometimes) resolved the other way,
then our equations would be slightly different. Often in evolutionary games, we
make the generic payoff assumption (Samuelson, 1997; Broom and Rychtář,
2013), assuming that as payoffs occur from nature, following some natural
variation, such ties never occur. This assumption is reasonable for games where
there is a clear end point, which we consider in the rest of this section, Section 5
and the first part of Section 6.1. There are complications when there is not such
an end-point, as then the selection of mixed strategies (allowing concession at
a given position with a probability between 0 and 1) can generate equalities.
In cases with clear roles, such mixtures are unstable (Selten, 1980), so that
the assumption is valid for the rest of the paper too, with the exception of
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Section 6.3, where extremely limited memory but infinite resources allows a
game without roles and which carries on indefinitely (and where we see that
such mixed strategies feature).

3.1 Blocks and unblocking

Here, we present the main four results for games without blocks. The games in
this section are all examples of truly asymmetric finite extensive form games
and thus, following Theorem 4.5.3 of Cressman (2003), there is a one-to-one
correspondence between ESSs and strict Nash equilibria (NE). If we assume
generic games and no equalities, then the solutions for each of our main re-
sults yields a unique strict NE, which is thus the unique ESS. Without this
assumption, they are (perhaps non-strict) Nash equilibria only. The results are
summarised in Table 1.

Theorem 1 The first individual that would reach a concession point must
concede immediately, i.e. before making its first investment.

Proof Suppose without loss of generality that I2 reaches the concession point
first and that it happened at its jth investment, j > 1. In this case, we have:

1. B2,j = 0 (I2 reached a concession point),
2. B2,j−1 > 0 (it was the first concession point for I2),
3. B1,j > 0 (I1 has not reached a concession point yet).

Hence I1 invests at the previous step and thus A2,j−1 = B2,j = 0 which leads
to

B2,j−1 = max(−c2,j−1, 0) = 0, (6)

and so I2 should concede at its j − 1th step, which is a contradiction. Thus if
I2 would reach a concession point first, it should concede at j = 1. ut

In general, a game may contain a number of blocks, say at time steps
Tb1 , Tb2 , . . . . However, the game must stop at Tb = minj{Tbj}. Any game can
be unblocked by considering a game with identical parameters except that Tb
replaces T and (0, 1) (or (1, 0)) replaces (a1, a2) if Tb is odd (or even). Here
the outcome (i.e. the optimal strategies and eventual payoffs) of the unblocked
game is the same as the original one.

3.2 Solving games with no blocks or unblocked games

The solution of the unblocked game depends upon two types of conditions:

Condition R1: R1 ≥ C1; (7)

Condition R2: R2 ≥ C2; (8)

Condition P1: a1V1 > C1; (9)

Condition P2: a2V2 > C2; (10)
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Note that condition R holds if the individual has enough resources to continue
to the end and condition P holds if it is profitable for the individual to do so.

Theorem 2 In the unblocked game, if either condition R1 or condition R2
(or both) does not hold, then at least one individual would run out of resources
before T is reached and the first individual who would run out of resources
must concede immediately. Specifically, if, for some j

R1 −
j∑

k=1

c1,k < 0 while R2 −
j−1∑
k=1

c2,k ≥ 0 (11)

then I1 should concede immediately. If, for some j,

R2 −
j∑

k=1

c2,k < 0 while R1 −
j∑

k=1

c1,k ≥ 0 (12)

then I2 should concede immediately.

Note that it is clear that at most one of (11) and (12) can hold.

Proof The first individual to run out of resources has reached a concession
point. Assume that it is individual I2. As the game is an unblocked game,
individual I1 has not yet reach a block or a point of concession by inability.
Working backwards, there is no earlier point of concession by unprofitability.
Indeed, once B2,j = 0, then A1,j = V1 > 0. Since there is no block, V1 > c1,j
and so B1,j = V1−c1,j > 0, i.e. it is not a point of concession by unprofitability
for I1. Also, A2,j−1 = B2,j = 0 and thus B2,j−1 = 0 and so on. Thus, I2
reaches a first concession point, and must thus concede before making the first
investment by Theorem 1. ut

Theorem 3 In the unblocked game, if conditions R1 and R2 hold, but at
least one of condition P1 and P2 does not, then at the start of the contest, the
expected reward of remaining in the contest is non-positive, conditional on the
other player not conceding, for at least one player. Moreover, the player for
which this expected payoff becomes positive last should concede immediately.

Proof Suppose that T is even, and thus J1 = J2 = T/2. We let J = J1. Then
we have

B2,J = max(0, a2V2 − c2,J). (13)

Assuming that A2,J > 0 we then obtain

B1,J = max(0, a1V1 − c1,J). (14)

Supposing that, working backwards, the first time that the expected future
reward to either individual becomes negative is for I1 at the point where it
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would make its jth investment. Sequential application of (3)-(5) yields

B2,j = max

0, a2V2 −
J∑

k=j

c2,k

 > 0, (15)

B1,j = max

0, a1V1 −
J∑

k=j

c1,k

 = 0. (16)

This means that I1 should concede at stage j, which then yields A2,j−1 =
V2 − c2,j−1 > 0 because there are no blocks. Working then follows that for
Theorem 1, and so I1 should concede at the very start of the game. Working is
similar whether T is odd, or if I2’s future expected reward becomes negative
first. ut

We note that here the individual which would make large investments to-
wards the end of the contest is the one that has to concede. Thus an individual
that would make large investments at the beginning of the contest might never
have to make them, as its opponent concedes immediately. We revisit this idea
in Section 5.

Theorem 4 If conditions R1, R2 and P1, P2 hold, then each player has posi-
tive expected future reward at the start of the contest no matter what the other
player does, so both should continue to the end of the contest.

Proof Suppose again that T is even. and thus J1 = J2 = T/2. We let J = J1.
Then we have

B2,J = a2V2 − c2,J > 0, (17)

B1,J = a1V1 − c1,J > 0. (18)

Sequential application of (3)-(5) yields

B2,j = a2V2 −
J∑

k=j

c2,k > 0, (19)

B1,j = a1V1 −
J∑

k=j

c1,k > 0. (20)

Since aiVi ≥ Ci =
∑J

k=1 ci,k, both individuals should clearly invest at every
stage. A similar argument holds for odd T . ut
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Conditions Outcomes
R1, R2, P1, P2 I1, I2 invest at every step
R1, R2, P1, ¬ P2 I2 concedes immediately
R1, R2, ¬ P1, P2 I1 concedes immediately
R1, R2, ¬ P1, ¬ P2 and (15) and (16) hold for some j I1 concedes immediately
R1, R2, ¬ P1, ¬ P2 and neither (15) nor (16) hold for any j I2 concedes immediately
R1, ¬ R2 I2 concedes immediately
¬ R1, R2 I1 concedes immediately
¬ R1, ¬ R2 and (11) holds for some j I1 concedes immediately
¬ R1, ¬ R2 and (12) holds for some j I2 concedes immediately

Table 1: Result summary for the case of fixed and known parameter values.
For strict inequality of parameter conditions these are strict NEs and so ESSs,
otherwise they are NEs.

4 A variable stopping time

Now suppose that T follows a random distribution. In particular, we shall
assume that, conditional upon not having stopped prior to this point, the
probability that the game stops after the jth investment of Ii is γi,j .

This leads to a modification of the equations (3)-(5) into

Bi,j =


0, if Ri < Ci,j ,

−ci,j + γi,jaiVi + (1− γi,j)Ai,j , if Ri ≥ Ci,j and γi,jaiVi + (1− γi,j)Ai,j > ci,j ,

0, otherwise,

(21)

A1,j =

{
V1 if B2,j = 0 and

(1− γ2,j)B1,j+1 + γ2,ja1V1 otherwise;
(22)

A2,j =

{
V2 if B1,j+1 = 0 and

(1− γ1,j+1)B2,j+1 + γ1,j+1a2V2 otherwise.
(23)

4.1 Bounded games

There are a number of ways in which a contest can have a clear endpoint, and
we describe each of these below. In these cases, we can work backwards, as
usual.

1. If there is a first block at time Tb (i.e. no block at time T < Tb), then, as we
have seen in Section 3.1, this is equivalent to a game with a fixed endpoint
T = Tb and (a1, a2) = (0, 1) or (1,0), and we analyse the game following the
method from Section 3. We note that in this case theoretically the game
could continue indefinitely, if a player mistakenly invests at a block, but
optimal play leads to termination of the game.

2. If there is at least one γi,j which takes value 1, then T is bounded above. If
γI,J is the earliest such γ, then we have a fixed endpoint at T = 2J+I−2.
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3. If Ri is finite for i = 1, 2, then there will be a point when one player must
concede (assuming that the contest reaches this point), so the future values
at the point of concession will either be (V1, 0) or (0, V2).

If there are both finite resources and T is bounded above, the earliest such
occurrence determines which of the cases 2) and 3) occurs.

We thus have the following procedure for determining the optimal strategy.
Working backwards, as identified by 1-3) above, we find the expected future
reward following equation (21) and equations (22), (23). If this is ever 0, then
an individual would concede, and so the expected future values when conces-
sion occurs will be either (V1, 0) or (0, V2). We can thus find the expected
future rewards for all positions in the game. Now, working forwards, individ-
uals should play until they reach the first value of Ai,j which takes value 0, at
which point the individual in question should concede.

We note that Theorems 2, 3 and 4 follow from a special case of the above
procedure, since as γi,j = 0 for all positions in the game, if ever A1,j = 0, then
this leads to A2,k > 0 and A1,k for k < j, and a similar result for A2,j .

The results in this section thus follow a similar pattern to those in Section
3, and are strict NE/ESSs or NEs under the same conditions (the former if
equalities of conditions can be ruled out, the latter otherwise). The bound
on the game means that there is a fixed end point which we can work back
from, and games will be divided into the same three categories; those where I1
concedes, those where I2 concedes, and those where both players invest until
the end of the contest. In Section 3, however, the fact that games could only
end by the concession of one of the players led to a deterministic process that
meant that if Ii would concede, it would do so at the start of the contest. Here
this is not so, because individuals doomed to eventually concede can hope that
chance intervenes and ends the contest before that concession is necessary. We
can see this in the example in Figure 2.

4.2 Unbounded contests with infinite resources

Now we shall assume that γi,j < 1 for all i, j, so that T has no upper bound,
and that resources are infinite. This case with unbounded contests is more
complicated, as the game could potentially carry on indefinitely. Thus our
game becomes an infinite extensive form game and the results from Cressman
(2003) do not extend to this case. In particular we shall make no claim about
ESSs here (or in later sections where there are an infinite number of available
strategies), and we claim only that solutions are Nash equilibria.

We shall only consider the case where:

1. γi,j is constant, so that γi,j = γ for all i, j (this corresponds to T having a
geometric distribution with parameter γ) and

2. costs of investments are constant for each individual, so that ci,j = ci for
all j.
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step 1: I1 chooses

I1 gets 0

I2 gets 4

concedes

step 2: I2 chooses

continues

I1 gets 3

I2 gets 0

concedes

Nature

continues

I1 gets 1

I2 gets 1

stop (γ)

step 3: I1 chooses

continue (1− γ)

I1 gets −1

I2 gets 3

concedes

Stopping point

continues

I1 gets −2

I2 gets 1

Fig. 2: A scheme of the game with T = 3, V1 = V2 = 4, a1(= a2) = 1/2, c1,1 =
c2,1 = 1, c1,2 = 3, γ1,1 = 0, γ2,1 = γ. Note that at step 3 I1 would gain -2
by investing, and -1 by conceding, so it should concede. This means that the
expected rewards after I2 invests at step 2 are 2γ − 1 and 3− 2γ respectively.
The latter is clearly greater than 0, so that I2 should invest at step 2. Thus I1
should invest at step 1 if and only if 2γ − 1 > 0 i.e. γ > 1/2. Thus I1 should
initially invest if the chance of the contest stopping at this intermediate point is
sufficiently large, and if the subsequent decision is reached, it should concede.

As we shall see this can present us with significant complications, and
without such assumptions it is hard to make progress in any generality.

In this case, equations (21) - (23) become

Bi,j = max
(

0,−ci + γaiVi + (1− γ)Ai,j

)
(24)

A1,j =

{
V1 if B2,j = 0 and

(1− γ)B1,j+1 + γa1V1 otherwise;
(25)

A2,j =

{
V2 if B1,j+1 = 0 and

(1− γ)B2,j+1 + γa2V2 otherwise.
(26)

At any given step 2j − 1, I1 should concede whenever

c1 > γa1V1 + (1− γ)Ai,j . (27)
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Similarly, I2 should concede whenever

c2 > (1− γ)a2V2 + (1− γ)A2,j . (28)

If (27) holds, and I1 concedes at step 2j − 1, this means that A2,j = V2, and
thus assuming V2 > c2 as above, I2 should invest at time 2j − 2. This in turn
means that A1,j−1 = 0. Hence (28) holds at step 2j − 3 and consequently I1
should never invest.

Alternatively, if (27) does not hold, and (28) holds, I2 does not invest
(while I1 would invest if given a chance). This means that A1,j = V1 and thus
I1 should invest at time 2j − 1. This yields A2,j−1 = 0 and hence, that I2
should never invest.

If (27) and (28) do not hold, then I1(I2) should invest at step 2j − 1(2j).
Expressing the reward for Ti at its jth step in terms of that at its j+ 1st step
yields

Bi,j = −ci + (γ + (1− γ)γ)aiVi + (1− γ)2Bi,j+1. (29)

We shall now use the above equations to find the solution to our game
under four distinct cases. We note that Case 4 has close links to the classical
dollar auction of Shubik (1971), and we discuss this is Section 6.

4.2.1 Case 1

Firstly let us assume that

c1 < (2− γ)γa1V1, (30)

c2 < (2− γ)γa2V2. (31)

Then, (27) and (28) never hold and thus individuals always invest. Here, the
inclusion of the uncertainty of ending makes the individuals continue rather
than concede. The formula (29) is a recurrence relation of the type

xj = αxj+1 + β (32)

with 0 < α < 1 and β > 0. Denoting x∗ = β/(1− α) we obtain

xj+1 − x∗ =
1

α
(xj − x∗) =

(
1

α

)(j+1)

(x0 − x∗). (33)

As 1/α > 1, then it is clear that unless xj = x∗ for all j, then |xj | → ∞ as
j → ∞. But the latter clearly cannot occur, as from (24) xj is bounded, so
we must have that xj = x∗ for all j. Consequently, the expected payoffs for Ii
are given by

Bi,j =

(
aiVi −

ci
1− (1− γ)2

)
. (34)
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4.2.2 Case 2

Now, assume that

c1 ≥ (2− γ)γa1V1, (35)

c2 < (2− γ)γa2V2. (36)

Thus, I2 should always invest, but perhaps I1 should not invest. If that is the
case, then I1 should not invest at the beginning; whereas if I1 invests at the
beginning it should always invest. If I1 always invests, it obtains the expected
reward (

a1V1 −
c1

1− (1− γ)2

)
=

(2− γ)γa1V1 − c1
(2− γ)γ

≤ 0. (37)

Consequently, I1 should concede at the beginning.

4.2.3 Case 3

Similarly, if we assume that

c1 < (2− γ)γa1V1, (38)

c2 ≥ (2− γ)γa2V2. (39)

then I2 will have to concede at the beginning.

4.2.4 Case 4

It remains to investigate the case of

c1 ≥ (2− γ)γa1V1, (40)

c2 ≥ (2− γ)γa2V2. (41)

Suppose that I2 does not concede. Then since inequality (40) holds, following
Case 2 we obtain the same expected reward as in inequality (37). Thus I1
should concede. Moreover, if I1 concedes, it will clearly be best for I2 not to
concede. Now suppose that I1 does not concede. Then since inequality (41)
holds, following Case 3 we obtain the expected reward as in the equivalent
inequality to (37). Thus I2 should concede. Similarly, if I2 concedes, it will
clearly be best for I1 not to concede.

So it is clear that one of the individuals must concede, but which should be
the first to do so? In the biological case that underlies this paper, this can be
solved using the idea of roles as previously discussed. If I1 chooses to (always)
invest and I2 to concede immediately, the strategy S∞,1, then this is a strict
NE. Similarly S1,∞, I1 conceding immediately with I2 investing conditional
upon I1 investing, is also a strict NE.
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5 Individuals can choose how to allocate their investments

In this game we again consider fixed total costs Ci, but further develop the
model by allowing individuals to choose how to split their investment, i.e. to
choose ci,j so that

∑
ci,j = Ci. Here we set no maximum number of moves T ,

though there will be an effective maximum as we see below. Should the players
pay a little or a large amount initially?

At first sight it would appear that any individual should simply either
concede, or pay the smallest cost possible to be able to remain in the contest.
What benefit is there in paying more? As we shall see below (see Theorem 6),
however, there are situations where an individual should pay more than this
minimum value.

We again assume that individuals have to invest at least some minimal
ε > 0, unless they have already invested more than Ci − ε, in which case they
have to simply complete their investment up to Ci. Specifically, ci,j have to
satisfy

ci,j ≥ min{ε, Ci − Ci,j−1}, (42)

for some ε > 0 and all i, j. Here the length of the game tree is finite, but as
any investment can be chosen, there are an infinite number of choices at most
vertices, and so we again make no claim about evolutionary stability.

For a moment, assume Ri < Ci, for some i = 1, 2, i.e. at least one indi-
vidual, namely Ii, does not have resources to invest to the end of the game.
So the end of the game will not be reached and thus both individuals should
invest as little as possible, i.e. at any point they should either give up or will
have to invest ε. This turns the game into the game from Section 3 and we
can solve it through the methods presented there.

If Ri < Ci, then Ii cannot make more than ji = int(Ri/ε) investments.
Firstly assume that Ri < Ci for i = 1, 2. If j1 ≤ j2 then I1 must concede
immediately, otherwise I2 must concede immediately. If Ri < Ci for precisely
one of i = 1, 2, following arguments analogous to those of Theorem 2, the
individual with insufficient resources must concede immediately.

So, for the rest of the section, we will assume that

Ri ≥ Ci, i = 1, 2, (43)

and we will also consider only strategies for which ci,j < Vi. This way, we have
a game without blocks.

Theorem 5 a) If aiVi ≤ Ci holds for exactly one individual, then that indi-
vidual must concede at the start of the contest. If I2 will be giving up, I1
will invest c1,1 = ε.

b) If (9) and (10) both hold, then both individuals invest until the end of the
contest.

Proof a) follows from Theorem 3, and b) follows from Theorem 4. ut
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Theorem 6 Assume aiVi ≤ Ci for both i. Let ji be such that

Ci − jiVi < aiVi ≤ Ci − (ji − 1)Vi i = 1, 2. (44)

Then, I1 should concede immediately if and only if j1 > j2. Otherwise I2
should concede immediately. More specifically, if j1 < j2, then I1 should invest
c1,1 = ε and I2 should concede immediately. If j1 = j2, then I1 invests (slightly
more than) C1 − (j1 − 1)V1 − a1V1 which may be close to V1, and then I2 will
concede immediately.

Proof Assume that, during its first j moves, an individual Ii has already in-
vested Ci,j =

∑j
k=1 ci,j such that

Ci,j > Ci − aiVi. (45)

Then, no matter what the other individual does, Ii now has to invest Ci−Ci,j <
aiVi in order to get to the end of the contest and at the end it expects to win
either aiVi (when the other individual continues to the end of the contest) or
Vi (if the other individual gives up before the end of the contest). In other
words, when the condition (45) is satisfied for an individual Ii after j moves,
then the individual Ii will continue to the end of the contest since the expected
future reward is positive.

Also, note that if (45) is not satisfied for an individual Ii, then it has to
invest at least aiVi to get to the end of the contest.

Now, assume that for some j,

C1,j > C1 − a1V1, (46)

C2,j−1 ≤ C2 − a2V2, (47)

and I2 is currently deciding whether and how much to invest. It follows that
(a) I1 will stay in the contest to its end, (b) I2 would have to invest at least
a2V2 in order to stay to the end of the contest, and (c) I2’s expected reward
at the end of the contest is a2V2, i.e. I2’s future reward at the jth decision is
not positive. Consequently, I2 has to give up. Similarly, if

C1,j ≤ C1 − a1V1, (48)

C2,j > C2 − a2V2, (49)

and I1 is currently deciding whether and how much to invest, then I1 should
give up.

Note that (44) means that Ii can achieve (45) in ji but not in ji − 1
investments (each investment would have to be almost Vi). So, if j1 > j2, then
I2 can get to (45) faster than I1 and at that point I1 will be forced to concede,
following an inductive argument analogous to that from the proof of Theorem
3. It follows that I1 should concede at the beginning. Consequently, I2 will
never have to invest over V2 unless I1 invests over V1 first. Since I1 is not
going to do that, I1 should concede at the beginning of the game.

By a similar argument, if j1 ≤ j2, then I1 can get to (45) faster than I2 and
at that point I2 should concede. Thus, I2 should concede at the beginning. It
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remains to identify how much I1 should invest before I2 gives up. Note that
after an investment of c1,1 by I1, the game can be seen as the game with
changed roles, I2 starts first and has to invest C2, I1 plays second and has to
invest C1 − c1,1. Consequently, if j1 < j2, I1 just needs to invest ε (because
even after I2 invests V2 in the first round, I1 can get to (45) faster than I2).
However, when j1 = j2, then I1 needs to invest just over C1−(j1−1)V1−a1V1,
to make sure that when I2 invests close to V2, I1 still gets to (45) faster then
I2. ut
Remark 1 If, within the setting of Theorem 6, j1 = j2, the exact amount of
how much I1 should invest at the beginning may vary. If ai = 1/2, Ci ≈ Vi,
then I1 need to invest a bit over V1/2. When ai = 1/2 and Ci = 3/2∗Vi−δ (for
some small δ > 0), then I1 needs to invest almost V1, but when Ci = 3/2∗Vi+δ,
then I1 just needs to invest “a little bit” over δ.

Remark 2 Consider the case when aiVi ≤ Ci for i = 1, 2, C1 = C2, a1 = a2 =
1/2 and V1 > V2. Then the resource is more valuable to individual I1 and ac-
cording to Theorem 6, I2 should concede immediately. Similarly, if aiVi ≤ Ci

for i = 1, 2, C1 = C2, V1 = V2 and a1 > a2, then I1 is more likely to win
the resource at the end of the game than I2 and according to Theorem 6, I2
should concede immediately.

Remark 3 The advantage of a significant early investment can be clearly seen
from the following example. Suppose that a1 = a2 = 1/2, C1 = 0.7V,C2 =
0.6V, ε = 0.11V .

The expected reward for reaching the end of the contest is V/2. Thus
any individual whose remaining investment falls below V/2 should continue to
invest rather than concede. Further, if an individual to choose has a remaining
investment of greater than V/2 whilst its opponent has less than this, it knows
its opponent will continue to the end, and so must concede.

Thus how should our first playing individual above proceed?

– If it concedes, it of course receives 0.
– If it invests less than 0.2V it will still have more than 0.5V to invest.

Thus player 2 should keep investing, its minimum investment would take
it within 0.5V so the first player would then have to concede. Thus this
choice yields player 1 a negative return.

– If it invests more than 0.2V , it will then have remaining investment under
0.5V , so that player 2 will then have to concede, thus the expected return
for player 1 will be V minus this initial investment.

Thus the best investment level is “just over” 0.2V , i.e. almost twice the mini-
mal required level ε.

6 The dollar auction

The classical dollar auction was introduced by Shubik (1971). In this game a
number of players are invited by an auctioneer to bid for a dollar. In Shubik’s



18 Mark Broom, Jan Rychtář

game there were potentially many players, and any bids were allowed (although
these had to be in a multiple of 5 cents). The person who won the auction got
the dollar minus the value of their winning bid, but crucially the second highest
bidder also had to pay the value of that bid. If bids jump in small amounts,
at any stage a player has the potential of winning the “large” prize of a dollar
for a small extra outlay. If a player was convinced that their next bid would
be the last, then any bid up to (but not including) a dollar is worthwhile.
An initial dollar bid is clearly a bad idea, as 0 is obtained if the other player
does not bid, and less than 0 otherwise (this would be a non-optimal further
bid, but we can assume this will happen with a very small probability, using
the classical idea of the “trembling hand” Selten (1975); Myerson (1978)). If
any player is convinced that their next bid would be the last, then any bid
up to (but not including) a dollar is worthwhile; however, for a player that
is currently second highest bidder, any bid, including a bid of up to (but not
including) a dollar above their previous bid is worthwhile (if their bid will be
the last one). If a player was convinced that the other player will keep bidding
then it is not worth bidding themselves. There seems no sensible solution to
such a game, at first sight.

We shall consider a variant of the dollar auction, where there are only
two players, who bid alternately (with one nominated to start), and are only
allowed to raise the previous bid by one cent (or bid one cent if it is the
start of the auction). We thus have the game as described in Section 4 with
c11 = 1, ci,j = 2 otherwise, γi,j = 0, V1 = V2 = 100. We shall first consider
two cases a) with infinite resources, Ri = ∞ for i = 1, 2, and b) with finite
resources. Then, we will consider the dollar auction with no memory.

6.1 A dollar auction with full memory and infinite resource

We start with the infinite resources case; this corresponds to the original idea
from Shubik (1971). As we have discussed previously, for a biological popula-
tion, we can consider this as a game with two distinct roles, where a strategy is
a combination of what to do as the first player, and what to do as the second.
The strategy Sj1,j2 represents invest in the first j1−1 (j2−1) rounds and then
concede as player I1 (I2). It is clear that S1,j2 is a Nash equilibrium for any
strategy j2 where j2 > 50 and Sj1,1 is a Nash equilibrium for any j1 where
j1 > 51, since in each case one player concedes immediately, but would need
to invest over a dollar to “win” if it changed its strategy. Within a population
comprised of individuals of this type, in Shubik’s terminology we would have
a (credible) threat, which is enough to force an opponent to concede. This is
very similar to the situation from Theorem 4, Section 4.2.4. See also Dekel
et al (2007) for a generalisation of this scenario.

6.2 A dollar auction with full memory and finite resource

Now consider the case with finite resources, Ri <∞ for i = 1, 2.
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Clearly here the game cannot carry on indefinitely, and must be terminated
by the concession of one of the players. We can reformulate this game in the
form of a game with a fixed contest end from Section 3, but where the end
time is such that Ri < Ci for i = 1, 2, which can never be reached. Thus,
following Theorem 2, the first player to run out of resources must concede
immediately (and since we have applied Theorem 2, this is a strict NE/ESS).
Unless both players have identical wealth, this will be the poorer of the two
players. In the unlikely case that the players are equally rich, the first to play
must concede immediately if they possess an even number of cents, otherwise
the second to play must concede immediately. Note that for any two players
with given wealth, swapping their positions in the game does not affect the
result, unless their wealth is the same; this thus emphasises the symmetry of
the game. As in the previous section, see Dekel et al (2007) for a generalisation
of this scenario.

6.3 A dollar auction with no memory

The idea of the original dollar auction was that the players kept returning to
the identical situation but with positions reversed. We interpret this as a game
with no memory, where a player sees only the choice ahead of them. Thus the
roles I1 and I2 can no longer be distinguished, and we obtain a different kind
of solution. Here we do not have a truly symmetric game, and so the result
of Cressman (2003) cannot be applied, and so again we seek Nash equilibria
only. In this case there are effectively three positions, two of which require the
player to make a decision:

1. S: A player (either I1 or I2 selected at random) is about to start the game
by potentially investing a cent, or conceding;

2. D: A player (either I1 or I2) is about to make an investment after the game
has started, which must be of two cents, given it must go from one down
to one up, or to concede;

3. U: A player (either I1 or I2) is a cent up, and waiting to see if its opponent
keeps investing.

We denote the expected future rewards for a player Ii in the three positions
as Bi,S , Bi,D and Bi,U respectively, measured in cents.

We need to consider the best choice for a player in either of the two possible
situations that it can make a choice, namely in the initial position S or in the
D position, when considering the possible choices of the other player from the
same positions. An individual’s optimal choices depend only upon the choices
that will be made subsequently, and so clearly they cannot depend upon what
the other player might do in the initial position. Thus they depend only upon
the choice of the other player in position D. Without loss of generality, we can
thus restrict ourselves to considering the two choices of I1 against the possible
choice of I2.

Now, assume that player I2 employs a strategy p2,D, i.e. concedes at posi-
tion D with probability p2,D. We are looking for an optimal response of player
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I1, i.e. we are looking for optimal values of probabilities to concede at stage
S, p1,S , and at stage D, p1,D.

Assume that at S a player I1 concedes with probability p1,S . If it invests,
it is in the U position, so that

B1,S = p1,S0 + (1− p1,S)(B1,U − 1). (50)

Similarly at D a player Ii concedes with probability pi,D. If they invest they
are again in the U position, so that

B1,D = p1,D0 + (1− p1,D)(B1,U − 2). (51)

At U players wait upon the decision of the other player, and it either receives
100 if the other one concedes, or it moves to D if the other player continues.
Thus,

B1,U = p2,D100 + (1− p2,D)B1,D. (52)

First, observe that if we assume B1,U ≤ 2, we get, by (51), B1,D = 0. Thus,
by (52), B1,U = 100p2,D. Consequently p2,D ≤ 1

50 .
Similarly, if we assume that B1,U ≥ 2, we get, by (51), B1,D = B1,U − 2 and
thus, by (52), B1,U = 102− 2

p2,D
. Consequently p2,D ≥ 1

50 .

Also, it follows from (51) that whenever B1,U < 2, it is optimal to pick p1,D = 1
(i.e. always concede), (b) whenever B1,U > 2, it is optimal to pick p1,D = 0
(i.e. always invest), and (c) if B1,U = 2, then any value of p1,D yields B1,D = 0
(and, from (50), it is optimal to have p1,S = 0).

Putting the above observations together, we find that

– if p2,D < 1
50 , then the optimal response is p1,D = 1,

– if p2,D > 1
50 , then the optimal response is p1,D = 0,

– if p2,D = 1
50 , then the optimal response is any value for p1,D.

Consequently, pD(= p1,D = p2,D) = 1
50 is the unique Nash equilibrium value.

This then gives B1,U = 2 and from 50 it follows that pS = 1.
Thus an individual should invest at the first step, and then invest at each

subsequent step with probability 49/50. Thus after the first step, each indi-
vidual concedes following a geometric distribution with parameter p = 1/50.
Note that this solution is similar to that of the war of attrition (Bishop and
Cannings, 1976, 1978; Maynard Smith, 1982) where the solution follows an
exponential distribution (in each case the stopping time follows a distribution
with the lack of memory property, discrete in our case, continuous for the war
of attrition, with a mean that yields an expected reward of zero).

7 Discussion

7.1 Our model and its conclusions

In this paper we have considered an extension to the modelling of evolution-
ary contests where contests follow a sequence of decisions, rather that a single



Evolutionary games with sequential decisions and dollar auctions 21

instantaneous decision made by each protagonist. This is a natural extension
of previous models such as the Hawk-Dove game or the Owner-Intruder game,
which can be regarded as overly simplistic, and not allowing for dynamic in-
teraction between the contestants.

An important conclusion of our work is that, under many circumstances,
individuals should fight to the end of the contest, or one should concede im-
mediately. These are thus no more complex than the solutions of the original
simple games from e.g. Maynard Smith (1982), and provides in our view a
strong justification for employing these simple models as approximations of
more complex situations.

The exception to the above in our model is when the contest lasts a vari-
able time, governed by random events as well as by strategic decisions of the
players, and so an individual may continue to invest in the hope of a short
contest, but when it becomes clear that the contest will not be stopped by
some early random occurrence and be protracted, it may then concede. We
note that in the model of Mesterton-Gibbons et al (2016) there was also a
similar possibility of random events terminating the contest. In their model,
if termination probability was low, then the classical Bourgeois solution to
the owner-intruder model where the intruder always concedes was stable, but
other solutions were possible for higher termination probabilities.

An interesting prediction is that if individuals have a choice of how much
they invest at a given stage, they should often choose to invest heavily early on,
even if this does not immediately help them gain the reward, but means that
their remaining investment is sufficiently small that it demonstrates to their
opponent that they will fight to the end of the contest, thus forcing that oppo-
nent to concede. This at first sight appears to fall foul of the concorde fallacy
(Weatherhead, 1979); namely the error of making decisions based upon past
already lost investments, when only future returns should matter. However, it
works in this case precisely because there is a direct correlation between past
investments and required future investments, and choices are made by both
players based upon the future values rather than the past ones.

The one example in our paper where there was a stochastic solution,
was in a special case of the classical dollar auction game discussed in Shu-
bik (1971), see also Greenberg (1990) Colman (2014), O’Neill (1986), O’Neill
(1986), Leininger (1989) and for an overview see Stark and Rothkopf (1979).
This is a game in economics with sequential investment which occurs in a
similar way to our model, and we obtain the stochastic solution by making
the individuals have no memories of past events, introduced as being in the
spirit of the original problem. As soon as individuals remember the sequence
of bids, with a fixed starting point, then the familiar solution of one individual
conceding immediately appears.
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7.2 Related models

The main differences between our model and previous works can be sum-
marised as follows. Firstly we introduce sequential games to a repeated evolu-
tionary game scenario. This is different to standard time-based evolutionary
contests such as the war of attrition in either continuous or discrete time
Bishop and Cannings (1976, 1978); Cannings and Whittaker (1995) (also see
Axelrod (1981) and the vast related literature for discrete simultaneous games
more generally). Sequential evolutionary games with repeated stages have been
relatively underexplored (but see Cressman (2003) for important general the-
oretical work), although they are more common when each player has just a
single decision (Houston and McNamara, 1999). These models have been ex-
tended to consider a whole population where there are many decisions, carried
out simultaneously, but where only a subset of the individuals get to make a
decision at any given time point, whether any given individual gets to make
the choice depends upon its previous play (see e.g. McNamara et al, 2000).
Such sequential games are more common in classical game theory, for example
with the dollar auction Shubik (1971), which is the closest example to the type
of game that we have considered. Below we explore some of the models most
similar to ours.

The extended contests considered in our model are of a particular kind;
namely contests where each individual has a set of potential exit points, and
at each point it decides whether to continue, making a suitable investment, or
concede the resource to its opponent. This is thus reminiscent of the classical
war of attrition (Bishop and Cannings, 1976, 1978), but with discrete stages
which are sequential, and so our game does not have this aspect of symmetry of
the war of attrition. This leads to a completely different character of solution,
where the war of attrition has a probability density function over the stopping
times, our individuals either concede with probability 1 or do not concede
(although in the contests with an uncertain finish time, the time of the contest
follows a probability distribution due to a natural random contest duration).
We note that when other asymmetries e.g. of reward values or costs, or even of
simple of perceived role(Maynard Smith and Parker, 1976; Hammerstein and
Parker, 1982) are considered, mixed strategies similarly disappear (they are
only maintained through, for example, uncertainty of role).

Whilst simultaneous choices are perhaps natural for the passive waiting
game that is assumed in the war of attrition, more active contests might
be better modelled using a sequential game as we consider here. We would
contend that in many circumstances, such contests would indeed involve a se-
quence of moves and counter moves, and so often this asymmetry will be more
representative of the real situation. This could happen in the fast timescale of
actual fights, such as those involved in food stealing (Broom et al, 2004; Iyen-
gar, 2008; Broom et al, 2015), but can also be seen in contests over a longer
timescale, for example in the classical owner intruder type games, where the
dispossessed animal may subsequently rechallenge the resident; in these cases
it is the previous loser that has the first move (Mesterton-Gibbons et al, 2016).
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An alternative type of contest where sequential moves would also be appro-
priate is the modelling of brood care and desertion, as modelled in Houston
and McNamara (1999). Maynard Smith and Harper (2003) argued that the
standard constant cost situation of the war of attrition is rarely satisfied in bi-
ology, and more complex strategies than the simple memoryless “sit and wait”
type as in the war of attrition would be more appropriate. This provides some
justification for our type of model, where a sequence of distinct choices are
made. Note that such complex animals interactions are demonstrated in Hack
(1997), who considers many tactics of crickets in an “active” war of attrition
type fight. Even the classical real example of the war of attrition, between
dung flies Parker and Thompson (1980), involved an active contest between
the participants, rather than mere waiting.

In the economic literature, the concept of an all pay auction is discussed,
which is equivalent to the war of attrition (the dollar auction with two players
is an all play auction). Dekel et al (2007) considered an all pay auction with
alternating moves, which featured a minimum investment level of ε, as in our
game. They considered different values of the reward V1 and V2, including
version with finite and infinite budgets. This paper is actually a generalization
of our game in Sections 6.1 and 6.2 (our simplified versions was actually rela-
tively straightforward, so we only discussed these briefly). Their work includes
results which have similarities to our Theorem 6 for this different case. An
alternative model of an all pay auction/ war of attrition is given in Hörner
and Sahuguet (2011), who consider a game with incomplete information where
individuals can choose effort levels, and need to match efforts in sequence. In-
complete information. Their model yields similar results to some of ours; one
player immediately concedes, so that the stronger player wins at no cost. Note
that this is also similar to the standard asymmetric war of attrition which this
can be considered a version of, as we have alluded to above (e.g. see Ham-
merstein and Parker, 1982). The original modelling work on choosing resource
levels to invest in a contest was carried out by Tullock (1980) (see Broom et al
(2015) for a biological model of this type).

Maskin and Tirole (1988) consider an alternating move scenario, again of
dollar auction type; in particular related to dollar auction with no memory.
They consider a specific competition game, where payoffs are similar to as
in a Cournot competition game (see also Fudenberg and Tirole, 1991). The
alternating move system of the above games (and ours) are a special case of
that in Libich and Stehĺık (2008), who considers a specific game (the “time
inconsistency game”) but in a general move setting with a series of move points,
not necessary alternating between the players (see also Leininger, 1991; Libich
and Stehĺık, 2010).

7.3 Future work

We note, finally, that a number of other generalisations of the single stage game
are possible, not just a sequence of choices of “continue to invest or concede”.
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It may be that individuals can adjust their level of aggression at any time in
a contest, and this may directly affect the time of the end of the contest, and
also the costs of both players to remain in the contest in terms of energy usage
or risk of injury. More generally individuals might have a range of strategies
and they might employ any given sequence of them, as in iterated games such
as the iterated prisoner’s dilemma Axelrod (1981) or in the ownership games
of Mesterton-Gibbons et al (2014, 2016), with some reward received at every
potential decision point. The game we have considered here is thus just one
example (albeit, we would argue, an important one) of a game of this type,
and there are a number of other interesting cases which can and should be
considered as the subject of future research.
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