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Abstract 

For over 100 years it has been recognized that insect pests evolve resistance to chemical 

pesticides.  More recently, managers have advocated restrained use of pesticides, crop rotation, 

the use of multiple pesticides, and pesticide-free sanctuaries as resistance management practices.  

Game theory provides a conceptual framework for combining the resistance strategies of the 

insects and the control strategies of the pest manager into a unified conceptual and modelling 

framework.  Game theory can contrast an ecologically enlightened application of pesticides with 

an evolutionarily enlightened one. In the former case the manager only considers ecological 

consequences whereas the latter anticipates the evolutionary response of the pests.  Broader 

applications of this game theory approach include anti-biotic resistance, fisheries management 

and therapy resistance in cancer.       

 

   



Introduction 

Game theory is the field of mathematics devoted to solving conflicts of interest between two or 

more players.  It solves problems where your best action (strategy) depends upon the strategies 

of others.  In nature, game theory is particularly suited for understanding adaptations emerging 

from evolution by natural selection [1].  “The deer flees and the wolf pursues” [2] succinctly 

describes games between predators and prey.  The evolution of pesticide resistance represents a 

special and economically crucial case of predator-prey games.  Here, we illustrate how classical 

game theory and evolutionary game theory can be conjoined to produce bioeconomic games of 

pesticide resistance.  Game theory and pest management thus become part of integrated pest 

management [3, 4]. 

The evolution of biocide resistance marks the most dramatic, damaging and rapid manifestations 

of natural selection. Examples of rapid evolution in response to humans attempts to chemically 

control pests include herbicide resistance [5-8], antiobiotic resistance (e.g., MRSA [9]), drug 

resistance by parasites (e.g., malaria, [10, 11]), and at the most personal level, the evolution of 

therapy resistance in human cancers [12, 13].  Here we shall focus on the use of pesticides to 

control insect damage to agricultural crops, but the concepts and models can be extended to these 

other examples of disease and pest control. 

We shall review the problem of pesticide resistance as a bio-economic game.  The game has 

insect players that may evolve pesticide resistance, and the farmers in addition to the 

manufacturers and regulators represent players with economic and social interests.  Such games 

can consider human health and environmental consequences of pesticides, and they can be added 

as costs and externalities.  With the aim of sharing the contexts of pesticide games, we shall 

introduce a simple model for illustrating concepts.  We shall emphasize the comparison between 

ecologically versus evolutionarily enlightened [14] approaches to pesticide applications [15].  

Throughout, we shall discuss parallels in such systems as fisheries management [16], anti-biotic 

resistance in infectious diseases [17], and therapy resistance in cancer [18].  In conclusion, we 

advocate greater use of game theory in developing resistance management practices [19]. 

Pesticide Management as Game 

The interacting players in the game can be diverse and include society at large, regulators, 

biocide manufacturers, seed companies breeders, the birds or spiders that consume the pest, and 

of course, the farmers and the insect pest [20].  The insects and other species within the 

ecosystem find themselves in an eco-evolutionary game where ecological dynamics occur 

through changes in population size and evolutionary dynamics involve heritable changes in the 

species.  In an evolutionary game the individuals (players come and go through births and 

deaths), their strategies are inherited, and their payoffs take the form of increased survivorship 

and breeding [21].  The solution to such games are often evolutionarily stable strategies (ESS) 

[22].  An ESS is a strategy (or coexisting set of strategies) that when common cannot be invaded 

by any rare alternative strategies. 

The farmers or other human players engage in a more traditional, classical game.  They choose 

rather than inherit their strategies, and payoffs take the form of monetary and/or utility rewards.  



Furthermore, the human players can anticipate and plan for the responses of other players [23].  

Players in evolutionary games can never evolve a response to something that has not yet 

happened.  The solution to classical games can be the Nash Solution [24]. This is a no regret 

strategy.  When all players are at a Nash solution no individual player can benefit from 

unilaterally changing his/her strategy.   

As humans we can anticipate the evolutionary consequence of our actions on nature.  Yet in 

managing, we often do not anticipate but merely respond to the evolutionary changes we cause.  

And so it is with much of pest management.  We respond to the ecological costs and benefits of 

our biocides without regard to their evolutionary consequences.  We shall call this ecologically 

enlightened management.  Game theory explains the temptation to simply be ecologically 

enlightened stewards.  Game theory is also ideal for anticipating and incorporating the eco-

evolutionary dynamics that we cause.  When both the population and evolutionary dynamics of 

the species of interest are incorporated into human decision making we shall refer to this as 

evolutionarily enlightened management (sensu [25]). 

To keep things simple, we will view pesticides as a game of the farmers versus the insect pests.  

The game may take a general form of: 

𝐺(𝑢, 𝑚, 𝑁)  =  𝐹(𝑢, 𝑁) –  𝜇(𝑢, 𝑚) ( 1 ) 

𝛱(𝑢, 𝑚, 𝑁)  =  𝑌(𝑢, 𝑁) –  𝑐𝑚 ( 2 ) 

where 𝐺 is the per capita growth rate of the insect pest and 𝛱 is the net profit to the farmers.  The 

per capita growth rate of the insects is the difference between their growth rate in the absence of 

pesticides, 𝐹, and the mortality rate induced by the application of pesticides, 𝜇.  The farmers’ net 

profit is the difference between the crop harvest, 𝑌, and the cost of the pesticides.  Each of these 

are functions of the resistance strategy of the insects, 𝑢, the rate at which pesticides are applied, 

𝑚, and the density of insects, 𝑁.   

We can assume that the insect’s per capita growth rate, 𝐹, in the absence of pesticide declines 

with insect density, 𝑁, and that their resistance strategy, 𝑢:  𝜕𝐹/𝜕𝑁 <  0 and 𝜕𝐹/𝜕𝑢 <  0 

represent negative density-dependence from competition and the cost of resistance, respectively.  

The insect’s mortality rate from the pesticide declines with their resistance strategy (𝜕𝜇/𝜕𝑢 <

 0) and increases with the dosage of pesticide (𝜕𝜇/𝜕𝑚 >  0).  In this formulation the population 

growth rate of the insects is given by  
𝑑𝑁

𝑑𝑡
= 𝑁𝐺(𝑢, 𝑚, 𝑁). See Table 1 for more details regarding 

the model assumptions. 

Crop yield will decline with the density of insects (𝜕𝑌/𝜕𝑁 <  0) and it may decline directly 

with the resistance strategy of the insects if this renders the insects less efficient foragers (an 

additional cost of resistance; 𝜕𝑌/𝜕𝑢 >  0).  The cost of pesticides is simply the product of their 

cost, 𝑐, and the rate at which pesticides are applied, 𝑚.   

In the absence of pesticide, or under some critical level of pesticide, the optimal level of 

pesticide resistance for the insects will be 𝑢∗ = 0.  As applications of pesticide increase, the 

optimal level of resistance will also increase.  This can be represented as a best response curve in 



the state space of 𝑚 versus 𝑢 (Fig. 1).  The best response curve shows how the optimal resistance 

strategy of the insects, 𝑢∗, increases with the amount of pesticide applied.  It can be thought of as 

the functional relationship between 𝑢∗ and 𝑚: 𝑢∗(𝑚). 

There may also be some equilibrium abundance of insects, 𝑁∗, where G = 0 when evaluated at 

N*.  For a fixed level of resistance, the equilibrium abundance of insects will decline with the 

pesticide (𝜕𝑁∗/𝜕𝑚 <  0).  The equilibrium will also be influenced by the insect’s resistance 

strategy.  The ESS level of resistance is a level of resistance which, if adopted by the insect 

population, cannot be invaded by any alternative level of resistance that is initially rare.  

Ecologically Enlightened Management   

Ecologically enlightened farmers anticipate the consequences of their actions on the population 

size of pests, 𝑁∗, but they do not consider the evolutionary consequences of their actions.  They 

simply respond to the insects’ current value of resistance.  Hence, the farmers also have a best 

response curve.  Given a certain resistance strategy among the insects, the farmers can select 

their optimal level of pesticides that maximizes their net profit.  This 𝑚∗ considers the effects of 

the pesticide on the residual abundance of insects, 𝑁∗.  The farmer’s optimal value for 𝑚∗ 

becomes a function of the insect’s resistance strategy: 𝑚∗(𝑢).  The first order necessary 

condition for 𝑚∗ requires that 
𝜕𝛱

𝜕𝑚
= 0 which yields:  

𝜕𝑌

𝜕𝑁

𝜕𝑁

𝜕𝑚
= 𝑐 ( 3 ) 

The left hand side of the equality considers how reducing the density of pests will improve yields 

and this is multiplied by the marginal reduction in insects caused by a marginal increase in 

pesticides.  The farmers are ecologically enlightened.  They base their decision on the pesticide’s 

effect on the insect’s population, 𝑁∗.  The right hand side of the expression gives the marginal 

costs of the pesticides. The value of 𝑚∗ that satisfies equation (3) will vary with the resistance 

strategies of the insects, 𝑢.  This function, 𝑚∗(𝑢) represents the best response curve of the 

farmer’s (Fig. 1).  

It can take on a variety of shapes.  The value of 𝑚∗ may continually increase with the level of 

resistance (𝜕𝑚∗/𝜕𝑢 >  0) if greater amounts of pesticide can compensate for the higher levels 

of resistance.  The relationship between 𝑚∗ and 𝑢 might be humped shaped.  At first, more 

pesticide compensates for increased resistance, but beyond some point, the level of resistance 

renders the pesticide ineffective and so applying more is no longer worth the cost.  For the model 

illustrated in Figure 1, 𝑚∗ declines with 𝑢.   

Possible solutions to this bioeconomic game occur at the intersection of the insects’ and farmers’ 

best response curves (Fig. 1).  This point is a Nash equilibrium for the farmers and an ESS for 

the insects.  The farmers can do no better given the strategy of the insects and the current 

resistance strategy of the insects cannot be invaded by an alternative rare mutant strategy.   

Even in this general form several results emerge.  Increasing the cost of resistance to the insects 

will shift their best response curve downwards resulting in a lower level of resistance, an 

https://en.wikipedia.org/wiki/Strategy_(game_theory)
https://en.wikipedia.org/wiki/Population_genetics


increase in the application of pesticides, a large decrease in the population of insects, 𝑁∗, and an 

increase in profit to the farmers.  Increasing the cost of pesticides to the famers shifts their best 

response curve (towards the left) resulting in a reduction of pesticide, a reduction in the 

resistance strategy of the insects, a large increase in their population size, and a reduction in net 

profit to the farmers. 

But is this Nash equilibrium the best the farmers can do?  Interestingly, if one fixes the resistance 

strategy of the insects to their Nash equilibrium, then the farmers’ maximize their net profit by 

using their Nash equilibrium of pesticide (Fig. 2).  So at first glance it seem the farmers can do 

no better.  In fact, the farmers can do better if they anticipate the evolutionary response of the 

insects.   

Evolutionarily Enlightened Management  

What if the farmers’ also anticipate their evolutionary consequences.  An evolutionarily 

enlightened manager would incorporate both the ecological, 𝑁∗(𝑚), and the evolutionary, 

𝑢∗(𝑚), components into their net profit function.  The farmers know that in time the insects will 

evolve a resistance strategy that lies on their best response curve.  It now behooves the farmers to 

select their 𝑚∗∗ so as to find the value of 𝑚 along 𝑢∗(𝑚) that maximizes their profits.  The first 

order necessary condition for this 𝑚∗∗ is: 

𝜕𝑌

𝜕𝑁
(

𝜕𝑁

𝜕𝑚
+

𝜕𝑁

𝜕𝑢

𝜕𝑢∗

𝜕𝑚
) = 𝑐 ( 4 ) 

For most assumptions regarding the functional forms of these relationships, the value of 𝑚∗∗  

will be less than 𝑚∗.  The evolutionarily enlightened managers will be more restrained in their 

use of pesticides than the ecologically enlightened ones.    

Figure 2 illustrates both types of management strategies with curves of net profit as functions of 

pesticide use.  The evolutionarily enlightened curve reaches a higher peak at a lower value of 

pesticide use than the ecologically enlightened curve.  As it must, the evolutionarily enlightened 

curve intersects the ecologically enlightened from above and at the peak of the ecologically 

enlightened curve.  While the solution of (𝑚∗∗, 𝑢∗(𝑚∗∗)) is unavailable to the ecologically 

enlightened farmers, the Nash solution (𝑚∗(𝑢), 𝑢∗(𝑚)) of the ecologically enlightened farmers 

is available to the evolutionarily enlightened ones. 

When viewing pesticide resistance as games between the managers and the insect pest, the 

managers’ best long-term strategy considers the consequences of their actions on the evolution of 

resistance.  The application of pesticides will likely result in some resistance and the insects will 

evolve towards their ESS.  But now, their ESS is no longer in response to the Nash equilibrium 

of the managers.  Instead the mangers have changed to a Stackelberg game defined as a leader-

follower game [26, 27].  As leaders in the Stackelberg game, the farmers can steer the pest’s 

evolution.  As followers, the insects simply react along their best response curve.  To maintain a 

less resistant pest population,  the managers moderate their pesticide use below that which would 

maximize economic gain given the current level of resistance in the pest population.  This may 

become a triple win.  The manufacturer maintains a viable product, the farmers experience insect 

pests that can be managed at acceptable levels with less pesticide, and society has reduced 



exposure to negative externalities of toxic biocides.  This line of reasoning has and is being 

applied within a game theoretic context to other systems. 

Other Systems 

Pesticide resistance of problem plants and weeds represents a parallel scenario to pesticide 

resistance in insects [28].  Most of the ideas presented above also apply to herbicide resistant 

weeds, but the models might involve the competition between the weeds and the crop, or 

problems arising from the weeds contaminating the seed crop or the quality of say alfalfa or 

timothy grass hay.  While these problems have not generally been approached as explicitly game 

theoretic, suggestions for reducing the spread of herbicide resistant weeds include reduced 

herbicide applications [29], crop rotation, and varied forms of weeding [19].  

Fisheries management provides some of the earliest game theory models for managing evolving 

resources [30-33].  While long debated, it is now known that size selective harvesting of fish 

selects for fish that evolve to mature and maintain a smaller size and fish that breed earlier in life 

[34].  The fishing industry and society lose twice.  The fishing itself reduces fish stocks and the 

remaining fish stocks may be less profitable and valuable by virtue of their smaller size.  Cod 

and herring represent two striking examples of evolving much smaller mature fish [35, 36].  In 

Australia, New England (USA) and the Canadian maritime provinces, lobster fisheries have 

thrived under evolutionarily enlightened management [37] that involves, among other things, 

releasing the very small and the very large lobsters.  Ecologically this maintains a stock of 

breeding individuals, and evolutionarily this reduces the evolution of smaller lobster. 

Over-use of antibiotics in livestock and humans has been advocated as a means of forestalling 

the evolution of antibiotic resistant pathogens.  A tragedy of the commons encourages each 

patient and physician to maximize success by using high doses of drugs.  But, this action spread 

over literally millions of patients insures the rapid evolution and spread of resistant bacteria.  

Evolutionarily enlightened management suggests minimal short-term losses to individuals for 

ultimate long-term gains [38, 39]. 

Finally, clonal evolution by cancer cells [40] and therapy resistance in cancer is what makes 

cancers lethal [41].  Standard of care advocates maximum tolerable doses of drugs, radiation 

and/or immunotherapy.  If the therapies kill all of the cancer cells, then success has been 

achieved.  But, if residual populations of cancer cells survive they will evolve resistance, 

proliferate and ultimately result in patient death.  Game theory models are being used to model 

cancer therapy [42] and how reduced doses of drugs can be used to maintain acceptably low 

populations of cancer cells that retain drug sensitivity (e.g. adaptive therapy [43, 44]).  If treating 

to kill results in the lethal evolution of resistance, then treating to contain becomes an attractive 

alternative.  

Broader Context of Integrated Pest Management as a Game 

In principle a game theoretic approach to pest management seems straightforward.  Yet, there are 

social, scientific and modeling challenges to achieving evolutionarily enlightened management.  

For instance, an ecologically enlightened approach may result because: 1) evolution is thought to 



be too slow or negligible, 2) insufficient data or knowledge exists to anticipate the resistance 

responses of the pest, 3) as a group the individuals may desire an evolutionary approach but 

some individuals may “cheat” and create a tragedy of the commons [45, 46], and 4) even best 

practice may result in pests that evolve high resistance resulting in unacceptable levels of crop 

damage.  The optimal strategy for fighting the pest may require the joint and cooperative actions 

of many managers and farmers.  But, in reality, a farmer’s decision may be based on guidance 

from the commercial advisors, and perceptions of the immediate and local threat of the pest.  In 

some cases, farmers may be tempted to over-use pesticides on their own farm while advocating 

restraint by all of the others, or if pesticides are proving effective over a large scale a famer may 

be tempted to forgo applying pesticides and free-load from the actions of others [47].   

Even an enlightened strategy may simply delay complete resistance rather than achieving a more 

or less static and sustainable equilibrium.  In this case the dynamic path to equilibrium may be of 

the most interest, and such paths could be framed as evolutionary games.  Such economic 

processes do not progress steadily toward some pre-determined and unique equilibrium [48].  

The outcome of these path-dependent process will not always converge on a unique equilibrium.  

There may even be several equilibria (sometimes known as absorbing states) [49]. With path 

dependence, both the starting point and accidental events (noise) can have irreversible 

consequences for the ongoing trajectory and outcomes [50]. 

The interplay between data, management options, and modelling become essential [51].  What 

are the resistance strategies and mechanisms of the pests?  What are the available options?  Who 

are the players, and what are the consequences of their actions [52]?  In constructing the model, 

all of these need to be measured, estimated or assumed.  More sophisticated management 

strategies may include the application of several pesticides, and temporal or spatial variability in 

their application [53].  For instance, a double-bind strategy would be ideal if the resistance 

strategy of the pest to one chemical makes it more susceptible to another and vice-versa [54]. 

Depending upon the pest’s life history and dispersal tendencies, leaving some fields or areas 

pesticide free may create temporal and spatial refugia that favor non-resistant pests.  The 

opportunity for more realistic and sophisticated models is manifold.      

Aside from the evolution of resistance, pests have other ways to escape control.  They may 

undertake otherwise risky migrations to establish a population elsewhere [552] or they may 

move into a refuge, give up reproduction and enter a state of physiological dormancy [56, 57].  

Resistance may simply involve avoiding contact with or ingestion of the chemical agent.  Life 

history strategies may adjust to create temporal avoidance.  Hence, effective pesticide 

management may include the use of multiple chemicals, crop rotation, and other forms of 

deterrence in a highly dynamics manner that adapts to changing circumstances and that 

formulates the best sequence of pest control actions [58, 59].  Regardless of the simplicity or 

complexity of the system, the control of pests and the management of their resistance responses 

invites the application of game theory and game theoretic thinking.  In the eco-evolutionary 

dynamics of crop pests and the countermeasures we take to maintain yields its game on!   
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Table 1:  Model basics  



 

 

 

 

 

Figure 1.  The ESS-Nash solution for ecologically enlightened management.  The insect’s best 

response curves u*(m) have positive slope and show the level of resistance that will evolve as a 

function of the amount of pesticide.  The farmers’ best response curves m*(u) have negative 

slope and show the optimal level of pesticide that should be used in response to a particular level 

of resistance by the insects.  The intersection of the insect’s and farmers’ curves shows the ESS-

Nash solution u*, m*.  The different intersections show the consequence of changing the cost of 

resistance to the insects or changing the cost of the pesticide to the farmer.  The model is shown 

in Table 1. 

 

 

 

 

 

 

  



 

 

 

 

Figure 2.  The effect on the farmers’ profits, 𝛱, of changing the level of pesticides, m.  The profit 

curve for ecologically enlightened management has the farmer reacting to the level of pesticide resistance 

that evolves in the insects.  It is constructed by fixing the resistance level of insects to their ESS value 

shown in Figure 1 from the intersection of the insect’s and farmers’ best response curves.  The profit 

curve takes on a maximum with respect to m at the value m* that is at that intersection.  The 

evolutionarily enlightened manager anticipates the evolution of the insects.  All along this profit curve the 

resistance strategy of the insects are changing according to their best response curve.  The evolutionarily 

enlightened profit curve reaches a higher profit at a lower level of pesticides, m**, than the ecologically 

enlightened one.  The curve labelled “tragedy of the commons” shows the profit that farmers could 

achieve in the short-term by changing their pesticide usage while the insects still have the resistance 

strategy based on m**.  While the peaks of the evolutionarily and ecologically enlightened profit curves 

are sustainable, the peak of the tragedy of the commons curve is not.  At a pesticide use of m > m** the 

insects will over time evolve higher resistance.  As the farmers react to these higher levels of resistance 

they will eventually drive the system to the lower peak of the ecologically enlightened profit curve. 


