
0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2623564, IEEE
Transactions on Biomedical Engineering

TBME-00563-2016 1

 
Abstract— Objective: Evolution of resistance allows cancer cells 

to adapt and continue proliferating even when therapy is initially 
very effective. Most investigations of treatment resistance focus on 
the adaptive phenotypic properties of individual cells. We propose 
that the resistance of a single cell to therapy may extend beyond its 
own phenotypic and molecular properties and be influenced by the 
phenotypic properties of surrounding cells and variations in cell 
density. Similar variation exists in population densities of animals 
living in groups and can significantly affect the outcome of an 
external threat. Methods: We investigate aggregation effects in 
cancer therapy using Darwinian models that integrate phenotypic 
properties of individual cells and common population effects 
found in nature to simulate the dynamics of resistance and 
sensitivity in the diverse cellular environments within cancers. 
Results:  We demonstrate that the density of cancer cell 
populations can profoundly influence response to chemotherapy 
independent of the properties of individual cells. Most commonly, 
these aggregation effects benefit the tumor allowing cells to survive 
even with phenotypic properties that would render them highly 
vulnerable to therapy in the absence of population effects. 
Conclusion: We demonstrate aggregation effects likely play a 
significant role in conferring resistance to therapy on tumor cells 
that would otherwise be sensitive to treatment. Significance: The 
potential role of aggregation in outcomes from cancer therapy 
have not been previously investigated. Our results demonstrate 
these dynamics may play a key role in resistance to therapy and 
could be used to design evolutionarily-enlightened therapies that 
exploit aggregation effects to improve treatment outcomes.  
 

Index Terms— aggregation effects, cancer therapy, herd 
dynamics in cancer, evolution and ecology of cancer 
 

I. INTRODUCTION 

Most disseminated cancers remain fatal despite the availability 
of a large and growing number of potential treatments [1,2]. 
While first line therapy is frequently successful in reducing the 
tumor burden, the resulting cell death also generates intense 
Darwinian dynamics that select for resistant clones [3, 4]. 
Second, third, and fourth line therapies may be available but are 
typically less effective and tumor progression occurs more 
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quickly as the cellular resistance strategies progressively 
broaden [5, 6]. Thus, the evolutionary dynamics that lead to 
therapy resistance are the proximate cause of death in most 
cancer patients and will likely remain so even as new agents are 
developed and deployed. Interestingly, Atkipis et al [7] recently 
found that despite this critical role of Darwinian Dynamics, 
evolutionary principles were cited in less than 1% of published 
cancer clinical trials and this has changed little in the past 3 
decades. 

Generally, investigations of sensitivity to therapy and 
evolution of resistance focus on the molecular mechanisms that 
produce resistant phenotypes in individual cells (e.g. P-
glycoprotein, apoptosis disruption, and so-called tumor stem 
cells) [8-11]. Other investigations focus on molecular 
polymorphisms within patients as a source of variation [12]. 
More recently, studies have drawn attention to the spatial 
heterogeneity of tumors, though much of the research is focused 
on the subsequent genetic heterogeneity [13,14]. Here we 
propose the response of a cancer cell to therapy is governed 
both by these molecular properties, and by the properties of 
cells within its radius of interaction. We apply concepts from 
the ecology of “herd dynamics” [15,16] to the interactions of 
populations of tumor cells that may be phenotypically and 
environmentally diverse. In our model, individual cancer cells 
form a “herd,” or aggregation within a tumor.  The number of 
neighbors within an aggregation is defined by the density of 
cells, a measure of compactness, and the interaction distance, 
the radius over which cancer cells influence each other.  

The ecological concept of aggregation effects was initially 
described by Allee, who observed how increasing the size or 
density of a population could increase individual survival and 
fecundity rates [17]. While there has been virtually no formal 
experimental investigation of aggregation effects in cancer 
therapy, some observations are suggestive that these dynamics 
are significant. For example, size dependence in response to 
chemotherapy has been observed in multiple studies showing 
cytotoxic effects decreasing with increasing tumor cell density, 
often due to increased number of drug binding sites [18-21]. A 
recent meta-analysis demonstrated that tumor density based on 
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diffusion-weighted MRI is a statistically significant predictor of 
breast cancer response to neo-adjuvant therapy [22].  

Our model allows investigation of four aggregation effects: 
The “dilution” effect occurs when the absorption of 
chemotherapy drugs by one cell creates a reprieve for the 
others. Thus, a high density of cancer cells, each of which is 
absorbing multiple drug molecules, could create an 
intratumoral sink in which the chemotherapy drug 
concentration falls into the non-lethal range.  

In contrast, the dense clustering of tumor cells may result in 
the “danger in numbers” effect as large numbers of cancer cells 
expressing antigenic mutant proteins may attract an increasing 
immune response causing inflammation that negatively affects 
neighboring cells even if they do not express the antigen. 

The “group detoxification” effect allows the collective 
response of the group to an external threat to be greater than 
that of an individual. For example, tumor cells produce an acid 
environment that can confer a group benefit due to reduction in 
efficacy of immune response and multiple chemotherapy drugs 
[23-27]. 

Alternatively, while individual adaptations to therapy are 
beneficial to each cell, they may also initiate a detrimental 
“group sellout” effect. For example, an increased expression of 
membrane extrusion pumps – a common and well-studied 
resistance strategy in cancer [28, 29], is greatly beneficial to the 
individual cell, but the extrusion of drug back into the 
interstitial space will tend to increase the local concentration of 
drug for adjacent cells. In this way, large numbers of 
individuals essentially “sell out” their neighbors.  

These four aggregation effects, dynamics that are well 
recognized in the evolution and ecology of herds of animals, 
could account for some of the complexity of tumor response 
and resistance to therapy. Acknowledging these aggregation 
effects may improve current efforts to explain evolution of 
resistance but more importantly could be used to design 
evolutionarily enlightened therapies exploiting the detrimental 
effects that neighboring cells may have on each other. 

II. METHODS 

Our model includes both the ecological dynamics of tumor cell 
numbers and the evolutionary dynamics of therapy resistance 
[30, 31]. To construct the model, we assume a population of 
tumor cells growing logistically and subjected to treatment-
induced mortality:  
 

ݔ߲
ݐ߲

= ݔݎ ൬
ܭ − ݔ

ܭ
൰ −  ݔߤ 

 
where r is the cell's growth rate in the absence of limitations, K 
is the carrying capacity or maximum sustainable tumor cell 
density, μ is cell mortality rate from the treatment, and x is the 
population density of tumor cells (individuals per unit tumor 
volume, or per area if measured from the histology of a two 
dimensional biopsy slice).  

Cell death, μ, due to a chemotherapy regimen is a function of 
the drug dose, m, the lethality of the drug concentration in the 
absence of any resistance, 1/k, and the effectiveness of the 
tumor cells’ resistance strategy, b. 
 

ߤ =
݉

݇ + ݒܾ
 

 
where v is a given tumor cell’s degree of resistance to the 
treatment, known as its resistance strategy or resistance 
phenotype. Under this expression, cell death declines as the 
cell’s resistance strategy value increases. The rate of decline is 
scaled by the effectiveness of resistance, b.  
 For consistency across all analyses, the initial population 
density is set to x = 100 corresponding to a maximum carrying 
capacity of ܭ௠௔௫ = 100. The values of r, m, and k have been 
chosen to model a situation where treatment would be 
successful in the absence of the evolution of resistance; a 
moderate growth rate r = 0.1 and a very effective drug in the 
absence of resistance k = 0.1 given at a dosage m = 0.1. 

The cost of increasing this resistance strategy value in our 
model comes as a penalty to the tumor population's carrying 
capacity; K. Resources used for therapy resistance are diverted 
away from maintenance and proliferation, thus reducing the 
carrying capacity. This is perhaps best illustrated in the 
phenotypic cost of membrane extrusion pumps, such as P-
glycoprotein described above.  Prior investigations have 
demonstrated that up to 50% of the cell’s energy budget may be 
diverted to support the fixed (proteins synthesis and 
maintenance) and operational (pumping drugs) cost of P-
glycoprotein [28,29]. For other mechanisms of resistance, the 
cost can be inferred by inverse reasoning.  This is based on the 
evolutionary link between fitness and proliferation, which 
governs population size for each cell type. Thus, if the resistant 
phenotype is uncommon in the tumor population prior to 
therapy, we can assume that the cost of the resistance 
mechanism is correspondingly high and renders that population 
less fit than the non-resistant phenotype in the absence of 
therapy. 
 

ܭ = ௠௔௫exp ቆܭ
ଶݒ−

௄ߪ2
ଶ ቇ 

 
Under this formulation, carrying capacity is maximized at ܭ௠௔௫  
when the focal cell exhibits no resistance v = 0, and declines 
according to a Gaussian curve as the cell’s resistance strategy 
increases. The rate of decline is determined by ߪ௄

ଶ. All models 
use ߪ௄

ଶ = 1 to study a significant, but not severe cost of 
resistance.  

We now incorporate the aggregation effects: 
 

ߤ =

݉ܰ∝

ܰ
݇ + (ܰ − ݑߚ(1 + ݒܾ

 

 
where N is the number of cells comprising the “neighborhood” 
that contributes to the aggregation effect experienced by a focal 
cancer cell. We explore two scenarios for considering 
neighborhood effects via the neighborhood size, N. First, we 
simply let N be a fixed number of neighboring cells that 
influence each other irrespective of total tumor size. This allows 
for an explicit exploration of the effects of N on population and 
evolutionary dynamics. As cells must presumably be in 
relatively close proximity for aggregation effects to occur, we 
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chose N=5 to represent a neighborhood of only immediately 
adjacent cells and N=10 to study how the doubling of the 
interactions will affect dynamics. Second, we let N increase 
linearly with x. In this way N represents the tumor size and 
reflects the compression of cells resulting directly from overall 
tumor cell density, x. We also let N increase proportional to x 
where N = x/10 + 1. In this way a focal cell does not experience 
the full density of tumor’s cells, but only a percentage.  
 Two final parameters describe the aggregation effects fully; 
α and β. The term ܰ∝ represents an “attraction” effect that 
renders the therapy more effective as the number of cells 
forming a neighborhood increases (α > 0), or less effective 

through collective blockage (α < 0). The term 
ଵ

ே
 in the 

numerator describes a full dilution effect where one cell 
absorbing the treatment reduces the treatment threat to all of the 
neighboring cells. 

In the denominator, the term ܰݑߚ represents the value 
of the resistance strategies of others, u, on a focal tumor cell. 
The term b scales the value of an individual tumor cell’s 
resistance strategy, v, to itself, while β scales the value of 
others’ resistance. Generally, it would be expected that the 
resistance strategy of others is less effective than the focal cell’s 
own resistance strategy so that ܾ >  In this way we have set .ߚ
a high effectiveness of the focal cell’s resistance strategy, b = 
5, to allow for exploration of reasonable values of ߚ. If the 
resistance strategy of a neighbor is in fact more valuable to a 
focal cell than its own this would indicate that β > b. Regardless 
of magnitude, β>0 models the group detoxification effect. We 
can model the group sell-out effect by setting β<0. With β<0, 
the resistance strategy of others is detrimental to the individual. 
Evolving resistance can make things worse for the tumor 
overall providing an attractive scenario for long-term therapy 
efficacy. 

We used a total of eight combinations of α and β to explore 
the parameter space (Fig 1, Table 1).  

The fitness generating function (G-function), or combined 
eco-evolutionary model [32], gives the per capita growth rate 
of a focal tumor cell using strategy ν within a population of 
tumor cells described by strategy u and population density x. 
This yields an evolutionary game among the tumor cells as each 
cell's fitness is determined by its own strategy and the strategies 
and population sizes of other cells. Our model of tumor growth 
and therapy produces the following G-function: 
 

,ݒ)ܩ ,ݑ (ݔ = ݎ ൬
(ݒ)ܭ − ݔ

(ݒ)ܭ
൰ − ,ݒ൫ߤ  ,ݑ  ൯(ݔ)ܰ

 
The Darwinian dynamics described by this G-function are 
utilized to build simulations that examine the short and long 
term efficacy of a therapy regimen. Initial conditions are set 
using values from Table 1, depending on the aggregation effect 
under study. All simulations were run in MATLAB.  For each 
subsequent step of simulated time, the neighborhood size (if a 
function of population size) and the carrying capacity are first 
calculated using the current population size x, and current 
resistance strategy v, respectively. Then, the tumor cell 
population dynamics [∂x/∂t = G] and resistance strategy 
dynamics [∂u/∂t = σg

2∂G/∂v] are calculated where σg
2 represents 

additive genetic variance and scales the speed of evolution. This 

process repeats until the ecological and evolutionary dynamics 
converge on an “evolutionarily stable strategy” (ESS). At this 
ESS, the system is both ecologically [(∂x/∂t) = 0] and 
evolutionarily stable [(∂G/∂ν) = 0] at v=u* and x=x*. 
Comparing the values of u* and x* while varying the 
parameters N, α, and β allows us to investigate the 
consequences of different aggregation effects on therapy 
outcome. 
 

 
Figure 1: State space of Aggregation Effects. The parameters α 
(x-axis) and β (y-axis) define the aggregation effect state space. 
No cumulative aggregation effects occur at α=1 and β=0. The 
parameter α sweeps from beneficial dilution effects to 
detrimental danger in numbers while the parameter β sweeps 
from beneficial detoxification to detrimental group sell-out. 
Examples of these four pure aggregation effects are shown in 
models A, B, C, and D. Combinations of these aggregation 
effects are modeled in E, F, and G.  Best and Worse Case is 
from the vantage point of the tumor cells, and opposite in terms 
of long-term treatment efficacy. 
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Table 1: Model parameters. A full discussion of parameter 
selection is available in supplemental information. 

III. RESULTS 

We begin with a baseline model in which no aggregation 
effects occur by setting N = 1 for all values of α and β. Without 
aggregation effects, the therapy has an initial effectiveness of 
99%, namely resulting in a maximal drop in tumor cell density 
to ݔᇱ < 1. Thereafter, individual cells evolve resistance to the 
drug reaching an ESS resistance strategy of ݑ∗ = 0.62 and an 
ESS population density ݔ∗ = 56.7. This represents the 
conventional clinical paradigm.  

Figure 2 shows the values for ݑ∗ (panel a) and ݔ∗ (panel b) 
for all models.  These two metrics describe the evolutionary and 
ecological consequences of therapy, respectively. Panel a 
shows the resistance strategy u* for each neighborhood size for 
all seven aggregation effects. The value of ݑ∗ when N=1 is 
constant (ݑ∗ = 0.62). Increases or decreases in u* from this 
baseline value shows whether the aggregation effect selected 
for more or less resistance in an individual cell, respectively. 
Panel b shows the population density ݔ∗ for each neighborhood 
size for all seven aggregation effects. Again we see the value of 
∗ݔ) when N=1 is constant ∗ݔ = 56.7). The increase or decrease 
of ݔ∗ from the baseline shows whether the aggregation effect 
allowed the tumor population density to recover more or less 
from the treatment, respectively.  

Table 2 shows the exact values for ݑ∗ and ݔ∗ shown in figure 
2 and include the minimum population density reached during 
therapy, ݔᇱ, as an indicator of maximal therapy effectiveness.  

 
 
Figure 2: Post-therapy Evolutionary Stable Strategies and 

Population Densities. 
 

A. Dilution Effects  

The dilution effect is modeled by setting ߙ = 0 and ߚ = 0 
(model A) resulting in: 
 

ߤ =

݉
ܰ

݇ + ݒܾ
. 

 
Here the effective per tumor cell dose m of chemotherapy is 

divided by the neighborhood size, N. A possible example is 
seen in pancreatic cancer cells where gemcitabine is 
metabolized by deoxcytidine kinase [33] resulting in the local 
removal of the drug by individual cell resistance mechanisms. 
In this way, each cancer cell absorbs and eliminates some of the 
therapy treatment while still experiencing toxic effects.  

As the neighborhood size increases through the four 
formulations for N, the required resistance strategy of the cells, 
 recovers ,∗ݔ ,declines and the tumor population density ,∗ݑ
more completely. In other words, because of aggregation 
effects, each cell needs to invest fewer resources in drug 
resistance permitting greater substrate availability for 
proliferation and survival. The dilution effects seen in our 
model are consistent with measured inoculum effects that have 
been observed in cancer treatment (34-36). 

Interestingly, as compared to a fixed neighborhood size N, 
when neighborhood size is related to population density, the 
model predicts a more precipitous drop in tumor cell density 
and a more rapid increase in cell densities as the ESS level of 
resistance evolves. This is because with initial population loss, 
the neighborhood size is smaller, and therefore the tumor 
cannot benefit from the dilution effects as readily during this 
time. These intermediate population size and resistance 
dynamics leading up to the ESS are shown in the supplemental 
information.  
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Table 2: Shows the exact values for u* and x* values in Figure 
2 and the minimum population reached during therapy. 

 

B. Group Detoxification 

In nature, the “many eyes” aggregation effect occurs when 
group vigilance increases the protection of the individual to 
attacks by predators. In response to therapy, individual tumor 
cells can produce substances that diffuse into the tumor and 
benefit the entire group. We name this “group detoxification” 
as the beneficial “eyes” of neighboring tumor cells occur 
through their resistance strategy of neutralizing the therapy. For 
example, most cells in prostate cancer are dependent on 
exogenous testosterone for survival and growth. Thus, initial 
therapy removes testosterone from the circulation through 
“chemical castration.” However, a common adaptation is 
upregulation of CYP 17 hydroxylase, which allows the cell to 
produce testosterone [37, 38]. As a result of testosterone release 
into the tumor interstitium, the initial testosterone-dependent 
population can re-emerge and contribute to tumor progression. 
Similarly, the efflux of protons seen in many tumor cells to 

create an acidic microenvironment can globally benefit the 
tumor population by decreasing the immune response and/or 
decreasing the efficacy of some chemotherapy drugs [39-42]. 

This group detoxification effect to overcome the “predatory” 
effect of therapy can be modeled by setting ߙ = 1 and ߚ = 6 
(model B) so that: 
 

ߤ =
݉

݇ + (ܰ − ݑ6(1 + ݒܾ
. 

 
In this case where ߚ > ܾ (ܾ = 5), the resistance strategies of 

other members of the population are more beneficial than that 
of the individual cell. Similar to the dilution effect, we find that 
as the neighborhood size increases, cells will survive even when 
they possess a level of resistance that would ordinarily (i.e. in 
the absence of group effects) not protect them against the lethal 
effects of therapy. As demonstrated in Fig 4, a resistance level 
∗ݑ = 0.62 evolves when each individual operates in isolation 
(N=1), but in the presence of a group cells with much lower 
levels of resistance (e.g. ݑ∗ = 0.19 when N=5) will survive.  

With group detoxification, as the neighborhood size 
increases, the initial effectiveness of the therapy declines (x’ 
increases) and the ESS level of resistance, u*, declines, while 
the new equilibrium population density, x*, increases. For a 
given neighborhood size of N > 2, increasing the magnitude of 
group detoxification, β, will result in an increase in x’ and x*, 
and a decrease in u*.  
 

C. Danger in Numbers  

The above examples show how aggregation effects benefit 
the tumor cells, but of more importance, our model can also 
show when aggregation or group size effects actually enhance 
the effectiveness of therapy. For instance, if high cell density is 
associated with higher blood vascularity, then drug delivery 
will be positively associated with cell density, or neighborhood 
size. Similarly, death of a neighboring cancer cell within a 
tumor might enhance antigen presentation thus rendering tumor 
cells with larger numbers of neighbors more prone to attack by 
immune cells [43]. This aggregation effect results in “danger in 
numbers” to the tumor cells and enhances therapy effectiveness. 
To model a danger in numbers effect, we set ߙ = 1.5 and ߚ =
0 (model C) resulting in: 
 

ߤ =
݉ܰ଴.ହ

݇ + ݒܾ
. 

 
Here we see the opposite of the dilution effect. The effective 

per tumor cell dose m of chemotherapy becomes multiplied by 
the neighborhood size, ܰ଴.ହ. This requires each focal cell to 
evolve higher levels of resistance to the same dosage of drug m, 
as shown with increasing ESS values of ݑ∗. The ESS 
equilibrium population density, x*, decreases due to the cells 
diverting more resources from proliferation to cope with the 
therapy. 
 Interestingly, as compared to a fixed neighborhood size N, 
when neighborhood size is related to population density, the 
model predicts a less precipitous drop in tumor cell density in 
early treatment. This may seem paradoxical.  But, because 
therapy efficacy declines with neighborhood size, as the 
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population falls the tumor cells gain a reprieve from the 
detrimental aggregation effect.  Low population sizes actually 
protects the tumor cells from danger in numbers. When N = x, 
this reprieve is not possible as the neighborhood size is always 
relatively large. 
 

D. Group Sellout.  

Another example of when aggregation or group size effects 
actually enhance the effectiveness of therapy relative to no 
aggregation effects may occur when cancer cells evade therapy 
by extruding drugs through membrane pumps [44]. Individual 
cells with high levels of membrane pump activity return the 
drug into the interstitial space where it can “attack” neighboring 
cells. This leads to a game of “hot potato” in which energy must 
be expended by the tumor cells to constantly bat the drug 
molecule from its immediate vicinity into that of a neighbor. 
While this resistance strategy may ultimately be destructive to 
the whole population of tumor cells, it can be favored by natural 
selection. The eco-evolutionary dynamics will strongly favor 
maximal expression of membrane transporter and, counter-
intuitively, rapid evolution of high levels of drug resistance 
within the population.   

The group sellout effect can be modeled by setting ߙ = 1 and 
ߚ = −0.5 (model D) resulting in 

 

ߤ  =
݉

݇ + (ܰ − ݑ (0.5−)(1 + ݒܾ
. 

 
In this case where ߚ < 0, the evolution of resistance of other 

members of the population increases the cell death term ߤ. This 
effect is two-fold because this negative term only grows as 
population size increases, making ߤ even larger. With group 
sell-out, as the neighborhood size increases, the initial 
effectiveness of the therapy increases (x’ declines) and the ESS 
level of resistance, u*, increases, while the new equilibrium 
population density, x*, decreases.  

Group sellout results in the first successful therapy outcome 
of this model when ܰ ≥ 10 as seen with x* going to zero 
(complete elimination of the tumor). The decline in x with 
therapy provides the tumor cells minimal reprieve when ܰ =
௫

ଵ଴
+ 1. When the relationship between N and x is particularly 

strong (N = x) the tumor population is rapidly eradicated under 
a group sellout. 
 

E. Mixed aggregation effects 

The aggregation effects resulting directly from the 
neighborhood size (dilution and danger in number effects) or 
from spillover effects from the neighbors’ resistance strategy 
(group detoxification and group sellout) are not mutually 
exclusive and may operate simultaneously within a tumor or 
perhaps differently in different regions of the same tumor 
because of spatial heterogeneity in blood flow and cell density. 
Furthermore, cancer therapy increasingly combines different 
drugs and different treatment regimens to maximize tumor 
response. Our model can be used to examine combinations 
resulting from crossing the dilution or danger in number effects 
effect with the group detoxification or group sellout effects. 

Consider a therapy in which both dilution and group sellout 
effects occur. This might consist of a mixed tumor population 
in which some phenotypes are highly vulnerable to therapy 
(producing a dilution effect) while other phenotypes are 
resistant because of membrane extrusion pumps that efflux the 
drug back into the environment so that it can adversely affect 
other cells (the group sell-out effect). This can be modeled by 
setting ߙ = 0 and ߚ = −0.5 (model E) resulting in 
 

ߤ  =

݉
ܰ

݇ + (ܰ − ݑ(0.5−)(1 + ݒܾ
. 

 
When the neighborhood is relatively small, increasing tumor 

cell density renders therapy less effective because the dilution 
effect predominates. This is seen when N = 5 and ܰ =

௫

ଵ଴
+ 1 

where the neighborhood effects are still sufficiently small that 
the beneficial dilution effect exceeds the detrimental (ߚ =
−0.5) group sell-out effects. However, as neighborhood size 
increases further, ܰ ≥ 10, therapy is increasingly effective 
because group sell-out dynamics exceed the dilution effect. So 
with a dilution and group sellout effect, increasing 
neighborhood sizes results in an increase and then decrease in 
x’ and x*, and a decrease and then increase in u*.  

Next we consider a combination of dilution effect and group 
detoxification effect by setting ߙ = −0.5 and ߚ = 6 (model F) 
resulting in 
 

ߤ =

݉
ܰଵ.ହ

݇ + (ܰ − ݑ6(1 + ݒܾ
. 

 
Clinically, this combination might be observed in, for 

example, pancreatic cancer cells that both metabolize 
gemcitabine [37] (the usual first line therapy) and excrete acid 
[45, 46] that can detoxify other chemotherapeutic drugs. This 
combination causes the interests of the group and the interests 
of individual tumor cells to align creating conditions ripe for a 
growing tumor and ultimate loss of therapy efficacy. Even with 
the small neighborhood size of N = 5 the drug results only in a 
4% reduction in cell density and a remarkably low required 
resistance strategy. Further increase in neighborhood size only 
results in more drastic decreases in therapy efficacy.  

Finally, consider a combination of danger in numbers and 
group sell-out by setting ߙ = 1.5 and ߚ = −0.5 (model G) 
resulting in 
 

ߤ  =
݉ܰ଴.ହ

݇ + (ܰ − ݑ (0.5−)(1 + ݒܾ
. 

 
In this case, the interests of an individual run doubly against 

the interests of the group. This is the most favorable scenario 
for short-term and long-term therapy efficacy (worst-case for 
the tumor). Natural selection operating on individual tumor 
cells to evolve resistance can work towards the ruin of the 
tumor. As a kind of Prisoner’s Dilemma, the individual tumor 
cells at their ESS are primarily “defending” themselves against 
the resistance strategies of their neighbors (an indirect effect of 
therapy) rather than to the therapy directly. Once N reaches 10 
the therapy eradicates the tumor.  
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Again we see that ܰ =
௫

ଵ଴
+ 1 gives the most reprieve from 

the combination of detrimental aggregation effects because the 
population density can minimize the neighborhood size during 
early treatment. In this way, when ܰ =

௫

ଵ଴
+ 1, the tumor can 

survive even though the final population density is <1% and the 
required resistance is extremely high. 

IV. CONCLUSION 

It has long been recognized that the therapeutic response of 
mouse xenografts and human cancer (the former being much 
smaller than the latter) can differ significantly. Furthermore, 
clinical observations find that larger and acidic tumors respond 
less well than smaller ones [44-47]. While there are 
undoubtedly many factors that govern these dynamics, we 
propose that aggregation effects may be among them. 
Specifically, we hypothesize that the high density of individual 
cancer cells, may produce “herd effects” in which the 
interaction among the members of the group alter the outcomes 
of an applied perturbation. That is, the response of an individual 
cancer cell to an externally applied therapy may be altered by 
its interactions with neighboring cells. Because of this, the 
outcome of the perturbation may be substantially different than 
expected based on the phenotypic properties of the cell alone. 

A number of potential aggregation effects may occur in a 
cancer population. The dilution and group detoxification effects 
permitted individual tumor cells to survive therapy with lower 
levels of resistance than would be necessary in the absence of 
group effects. The resulting decrease in phenotypic cost of 
resistance permitted more rapid proliferation and diminished 
both the amplitude and time of tumor response to treatment. 
This would manifest clinically as reduced response (based on 
change of tumor size) and faster time to progression. Danger in 
numbers and group sell-out aggregation effects were 
deleterious to the cancer cells.  In this case group effects 
enhanced therapy efficacy and resulted in tumors that appear 
non-resistant, even though the actual resistance level of an 
individual cell will be remarkably high.  Group-sellout effects 
resulted in the most successful therapy outcomes.  

Mixes of the aggregation effects can result in group size 
effects where therapy is either most effective or least effective 
at intermediate neighborhood sizes. Finally, combinations of 
aggregation effects can result in the best-case scenario for a 
growing tumor where dilution and group detoxification protect 
the tumor from therapy but also can result in the worst-case 
scenario for growing tumors where danger in numbers and 
group-sellout effects cause the cells to defend themselves 
against the resistance strategies of their neighbors. Danger in 
numbers and group sell-out aggregation effects have the 
potential to enhance the efficacy of therapy and represent 
dynamics that could be exploited in cancer treatment strategies. 
 While the evolutionary unit of selection is the individual 
cancer cell, the interactions among the cells can affect the 
response of these individuals to a global external perturbation 
such as therapy. Such density-dependent dynamics, or 
aggregation effects, are well recognized in the evolution and 
ecology of groups of animals and we examined their potential 
effects in cancer.  

The incorporation of aggregation effects into tumor response 
to therapy may improve current efforts to explain evolution of 
resistance and more importantly could be used, as outlined 
above, to design evolutionarily-enlightened treatment strategies 
exploiting the detrimental effects of large groups of cancer 
cells. We conclude that experimental investigation to test model 
predictions and develop more accurate parameter estimates is 
warranted. 
 

DATA AND SOFTWARE 

All software, data, and supplemental figures can be found at 
the following location:  

https://github.com/cunninghamjj/Aggregation-Effects-in-
Cancer 
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