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Seasonal time-series modeling and forecasting of monthly
mean temperature for decision making in the Kurdistan
Region of Iraq
Tara Ahmed Chawsheen and Mark Broom

Department of Mathematics, City, University of London, London, United Kingdom

ABSTRACT
A generalized structural time-series modeling framework was used to
analyze the monthly records of mean temperature, one of the most
important environmental parameters, using classical stochastic pro-
cesses. In this article we are using the SARIMA Box–Jenkins model
and obtain a medium-term (10 years) forecast of the mean tempera-
ture in Erbil. A prediction of the monthly mean temperature during
the past 287 months ( ~�24 years) using the SARIMA(0,1,2)(0,1,1)12
model predicts that the average temperature in the governorate of
Erbil, Iraq, will be stable for the next 10 years. The evaluation of
prediction accuracy shows that our model performs equally well
when applying it to different periods of time for which data is
available. The method used here could easily be applied by the
decision makers responsible for providing water and electricity in
the Kurdistan Region.
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1. Introduction

In 2009, the United Nations Environment Programme (UNEP) reported a sudden surge in
global temperature of approximately 0.5°C. However, to this day there is no consensus
among scientists on how to gauge the magnitude of climate change and its effects on a
regional level. It was widely assumed that its effects on surface and ocean temperature
would appear gradually and slowly due to their weak and delayed response to the green-
house gas levels (i.e., carbon dioxide, water vapor, ozone, methane, various nitrous oxides,
and other industrial gases). Since the emission of these gases is coupled to world popula-
tion growth and technological advances, it is hard to predict when (if at all) this
phenomenon will reach a stable equilibrium again (UNEP 2009). Climate variation over
any region has become a topic of interest all over the world, due to its immediate effect on
the daily lives of humans (Ghahraman 2006). The Kurdistan Region of Iraq is affected by
changes in climate conditions in the fields of agriculture, architecture, road construction
etc. Situated in the north of Iraq, Kurdistan has been facing the consequences of severe
drought in the Fertile Crescent since the 1970s (El-Kadi 2001).

In terms of the Koppen classification of climes, Kurdistan exhibits an arid to semi-arid
climate. It is hot and dry in summer and cold and wet in winter, with short spring and
autumn seasons (Turkes 1996c). In winter, the weather is shaped by Mediterranean
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cyclones passing Iraqi Kurdistan on their way to the northeast, and by Arabian Sea
cyclones moving northward across the Persian Gulf, both of which typically carry a
great amount of moisture leading to a large amount of precipitation. Other sources of
rain and snow include occasional European winter low-pressure systems moving eastward
to the southeast part of Turkey and the adjacent Kurdish territories (Turkes 1999). In
summer, the region falls under the influence of subtropical high pressure belts and
Mediterranean anticyclones, which carry sand and dust to the region. Temperatures
may reach up to 50°C in summer and drop as low as −10°C in winter (Keller and
Blodgett 2006). The statistical analysis of the climatological records contributes to the
understanding of the underlying causes of drought and consequently facilitates taking
measures to prepare for (if not prevent altogether) natural disasters such as crop failures
or flooding or dust storms.

As pointed out by Al-Kubaisi and Gardi (2012), who compared mean air temperature,
the number of dust storms, and precipitation figures over a period of 11 years from 1998
to 2009, there is an unmistakable interrelation among the three. While the mean tem-
perature fell from 22.7°C in 1998 to 22.5°C in 2000 and 21.3°C in 2009, annual rainfall at
first decreased from 310.3 mm to 268.5 mm, finally climbing back to 295.6 mm, and the
number of dust storms went from 63 to 94 and back down to 64, respectively (Al-Kubaisi
and Gardi 2012).

Kurdistan has been going through a period of drought over the past few years; as a
result, many of the inhabitants of rural areas left their villages and migrated to the cities
where the water scarcity issue is becoming more pressing due to increasing population
(Zakaria et al. 2013). The situation is complicated further by the political circumstances,
such as mass immigration from southern Iraq and Syria. Another study by Khalid (2014)
and Eklund and Pilesjö (2012) showed that in the last two decades, Erbil, Iraq, had
expanded significantly both in population size and in area, a process in which much of
the natural soil was removed. As a result, the microclimate of this area has changed and
now exhibits the urban heat island (UHI) phenomenon. The temperature records make
this evident: While the average maximum temperature in Erbil city was 14.34°C in
1975–1990, it had reached 14.74°C in 1985–2000 and 15.70°C in 1995–2012 (see Saeed
and Abas 2012).

In order to accurately determine the need for electricity and water and plan their
provision accordingly, a precise quantitative understanding and monitoring of various
climate parameters, such as temperature, precipitation, humidity, and wind, is indispen-
sable. This study aims to examine the time evolution of the mean temperature in Erbil
between January 1992 and November 2015 by separating seasonal effects from long-term
trends and, using the seasonal autoregressive integrated moving average (SARIMA)
method, create a model that accurately predicts the monthly mean temperature until
December 2025, thus enabling the political authorities to make informed decisions on
climate related matters.

To model a time-series event as a function of its past values, analysts identify patterns
in past values and project them into the future. In particular, the Box–Jenkins methodol-
ogy could be applied to any environmental parameters, for example, wind speed, pre-
cipitation, humidity, and evaporation. Box–Jenkins methodology has been used by many
researchers starting with the studies by Intergovernmental Panel on Climate Change
(IPCC 2013), Lee and Ko (2011), Ghil et al. (2002), Mann (2008), and Mann and Park
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(1996), who predicted the variation in temperature in different places in the world by
using different statistical approaches, including bivariate time-series models, and time-
series smoothing both in the univariate and the multivariate setting. The most significant
feature of the univariate time-series model is its ability to determine the trend and random
residuals about the time-series data by using an autoregressive integrated moving average
(ARIMA) (Romilly 2005).

Autoregressive integrated moving average (ARIMA) and seasonal integrated moving
average (SARIMA) techniques have been broadly applied to forecast how variables change
over time. These techniques typically use (seasonal) autoregressive terms and seasonal
moving average terms to forecast the changes of time series. As generally reported, these
forecasting techniques regard both the preceding values of a variable and the corresponding
error terms as essential information in forecasting future values. Given a large time-series
data set, ARIMA and SARIMA methods show high forecast accuracy. Forecasting analysis in
a variety of fields such as air temperature, electricity demand, wheat prices, inflation,
unemployment, reliability, and fishery landings has demonstrated the validity of ARIMA
and/or SARIMA models (Choi, Roberts, and Lee 2015). In other instances, the deterministic
stochastic combined technique has been successfully used by Ye et al. (2013) to predict global
temperature as recorded by the National Climate Data Centre (NCDC), and a time-series
approach has been implemented by Mraoua and Bari (2007) to accurately model weather
derivative pricing in Morocco. SARIMA itself has been applied to local temperature fore-
casting in the Ashanti region of northern Ghana by Asamoah-Boaheng (2014).

Regional changes were observed in the mean temperatures in Turkey from 1950 to
1994 over the course of a study conducted by Can and Atimtay (2002) using time-series
analysis of mean temperature data. Their study established a statistically significant cool-
ing trend at 21 stations, as well as a warming trend at one station and no trend at 36
stations. Hansen et al. (2006) in their study focused on global temperature change, while
Rahmstorf et al. (2007) compared recent climate observations to projections. Zakaria et al.
(2012) applied ARIMA models for weekly rainfall data for the period 1990–2011 from four
rainfall stations in the northwest of Iraq: Sinjar, Mosul, Rabeaa, and Talafar. Four
SARIMA models were developed for these stations: (3,0,2)(2,1,1)30, (1,0,1)(1,1,3)30,
(1,1,2)(3,0,1)30, and (1,1,1)(0,0,1)30, respectively.

In this article, Box–Jenkins methodology and in particular the method of the seasonal
autoregressive integrated moving average (SARIMA) model are applied to temperature
data from the Kurdistan Region of Iraq.

2. Methods

2.1. Data

The data covers the 287-month period from January 1992 to November 2015 and was
compiled using measured results made available via the Kurdistan Regional Statistics
Office (KRSO), the Ministry of Planning—Kurdistan Region 2015 Bulletin, and the
Environmental Statistics Bulletin—Iraq (CSOI) 2014.

The maximum and minimum temperature data in degrees centigrade are recorded in
different locations in the Kurdistan Region by the General Directorate of Meteorology and
Seismology office in Erbil. They send the data to the Central Statistical Organization

606 T. A. CHAWSHEEN AND M. BROOM

D
ow

nl
oa

de
d 

by
 [

87
.1

12
.1

54
.1

97
] 

at
 2

3:
08

 0
8 

A
ug

us
t 2

01
7 



branches in Erbil and Baghdad; after that the data are ready for publication. The data can
also be obtained from the United Nations Food and Agriculture Organization
Coordination Office for North Iraq and from the General Directorate of Agriculture in
Erbil at the Agro-Meteorological Sub-sector Department. The data were analyzed using
the Statgraphics Centurion XVII software package.

2.2. Box–Jenkins methods

An integral notion in the Box–Jenkins framework is that of a stationary stochastic process.
A stochastic process is called stationary if its probability distribution is independent of
time. This immediately implies that the mean and variance functions of a stationary
process are time-independent. In particular, stationary processes cannot exhibit any sort
of trend. The basic idea of the Box–Jenkins method is to transform any given stochastic
process into a stationary one by separating the trend from the noise. A stationary process
is completely determined by its mean, variance, and autocorrelation function, that is, the
correlation between two values separated by a lag of k time steps. Comparing the
autocorrelation of a given model to the one obtained from a data set is a crucial step in
identifying accurate and reliable models (Chatfield 2004).

2.2.1. Autoregressive moving average process (ARMA) or mixed process
In order to reproduce autocorrelation patterns, a more general approach is needed. One
option is to use a combination of autoregressive and moving average methods, namely, the
ARMA(p,q) model, which treats a variable as a linear function of the p preceding values
and the statistical errors associated to the q previous values (Jeffrey 1990). The most
general form that this model can take is

yt ¼ μþ ϕ1yt�1 þ ϕ2yt�2 þ :::þ ϕpyt�p þ at � θ1at�1 � θ2at�2 � :::� θqat�q;

which can be more succinctly expressed as in Eq. (1):

yt � φ1yt�1 � φ2yt�2 � :::� φpyt�p ¼ at � θ1at�1 � θ2at�2 � :::� θqat�q þ μ )
ð1� φ1β� φ2β

2 � :::� φpβ
pÞyt ¼ ð1� θ1β� θ2β

2 � :::� θqβ
qÞat þ μ )

φðβÞyt ¼ θðβÞat þ μ

(1)

where β denotes the backward shift operator (βyt ¼ yt�1), φ and θ are polynomials of
degree p and q, respectively, at denotes a purely random process, and μ is a constant.

2.2.2. ARIMA models
The ARMA model can be further refined by passing to the autoregressive integrated
moving average or ARIMA(p,d,q). “Integration” here refers to the process of differencing
in order to turn a nonstationary time series into a stationary one. The parameter p stands
for the number of autoregressive terms, q is the number of statistical errors taken into
account, representing the moving-average approach, and d is the number of nonseasonal
differences (Chatfield 2004). A model of this type can be expressed as in Eq. (2):
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ð1� βÞdð1� φ1β� φ2β
2 � :::� φpβ

pÞyt ¼ ð1� θ1β� θ2β
2 � :::� θqβ

qÞat )
ð1� βÞdφðβÞyt ¼ θðβÞat

(2)

2.2.3. SARIMA models
Lastly, a problem arising in many applications is that of periodicity. In our case, the mean
temperature clearly follows, to some degree, annual cycles, and these patterns need to be
taken into account separately. Box and Jenkins (1970) incorporated seasonality into
existing ARIMA approaches, arriving at the seasonal autoregressive moving average
model or SARIMA(p,d,q)(P,D,Q)S, which can be written as

φpðβÞΦPðβSÞWt ¼ θq ðβÞΘQðβSÞ at (3)

where β again denotes the backward shift operator, and S denotes the number of data

points in a season, so that βSyt ¼ yt�S is a shift of a full season (in our case S = 12
representing 12 months in a year). P and Q are terms equivalent to p and q, except they
are applied to the series in steps of size S to remove seasonality, before the ARMA
transformation with p and q is carried out; φp;ΦP; θq;ΘQ are polynomials of degree

p; P; q;Q, respectively; at denotes a purely random process; and Wt is a differenced series
used if the original process yt is not stationary. The differencing refers to subtracting the
earlier value of the time series observations from the present value and can be written as

Wt ¼ �d�D
S yt ; (4)

with �d ¼ ð1� βÞd being the nonseasonal differencing and �D
S ¼ ð1� βsÞD the seasonal

differencing. The superscripts d and D indicate the order of the nonseasonal and seasonal
differencing, respectively (Chatfield 2004: Ye et al. 2013).

2.3. Fitting Box–Jenkins models

Following Box and Jenkins (1970), forecasts can be derived from the preceding model in
four steps: (1) model identification, (2) estimation of model parameters, (3) diagnostic
checking, and (4) application of the model forecasting (Box, Jenkins, and Reinsel 1994).
The standard approach to model identification is to match both the autocorrelation
function (ACF) and the partial autocorrelation function (PACF), which serves to isolate
particularly strong self-correlations, for example, due to seasonality effects, to the ones
exhibited by a given data set (Pankratz 1983); this procedure not only allows for model
identification but also gives a first estimate of the model parameters. This estimate is then
refined by other statistical methods, such as a mean-squares or maximum likelihood fit.

In the next step, the chosen model is checked against the time series by analyzing the
series of residuals, sample correlations, and the residual histogram and performing a
diagnosis test (Chatfield 2004). One such test is the Ljung–Box lack-of-fit test, which
amounts to computing the following quantity:

Q ¼ nðnþ 2Þ
Xh

k¼1

r2k
n� k

(5)
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where h is the maximum considered lag, n is the number of observations in the series, and
rk is the autocorrelation at lag k. Denote by m the number of model parameters fitted to
the data, and under the null hypothesis the statistic Q is assumed to have a chi-squared
distribution with (h – m) degrees of freedom. This hypothesis, and thus the model, is then
rejected or accepted accordingly.

In general, among the models that pass this test, the ones with fewer parameters yield
more accurate forecasts. Different models are compared by using either Akaike’s informa-
tion criterion (AIC) (Zakaria et al. 2012) or the Schwarz Bayesian information criterion
(SBIC) (Schwarz 1978). When we add parameters to the fitted models, the value of the
likelihood will rise and cause the problem of overfitting. AIC and SBIC are used to deal
with this problem, by initiating a penalty term for the number of parameters in the model,
with this value being greater in SBIC than in AIC (Schwarz 1978).

The AIC amounts to minimizing the following quantity:

AIC ¼ �2logeðLÞ þ 2ðpþ qþ P þ Qþ CÞ (6)

where L is the maximum likelihood, p the nonseasonal autoregressive order, q the non-
seasonal moving average order, P the seasonal autoregressive order, Q the seasonal mov-
ing average order, and C the constant of the model.

The SBIC is computed as

SBIC ¼ �2 logeðLÞ þ 2ðpþ qþ P þ Qþ CÞ loge nð Þ (7)

where n is the sample size.

2.3.1. Fitting Box–Jenkins models for a seasonal model
A seasonal model is identified using the following steps:

Step 1: Examine the time-series plots for seasonality and trend (i.e., check for
stationarity).

Step 2: Carry out the necessary transformation of the data according to whether or not
the data exhibit trend and seasonality effects, turn the data into a stationary series
using both seasonal and nonseasonal differencing, and apply, for example, a natural
log normal transformation.

Step 3: Examine the ACF and PACF of the new data, transformed data, and (if
necessary) differenced data as they are the principal tools used to identify the AR
and MA terms. Generally, to select nonseasonal terms we check the early lags of
estimated ACF and PACF coefficients. Spikes in the ACF indicate nonseasonal MA
terms, while spikes in the PACF are a sign of nonseasonal AR terms. For the seasonal
terms, we study the patterns across lags that are multiples of S. For example, for
monthly data, we look at lags 12, 24, 36, 48, and so on. The ACF and PACF may then
be examined for spikes at the seasonal lags in the same way as for the earlier lags.

Step 4: When the model is selected, its parameters can be estimated using statistical
techniques, such as the maximum likelihood, least-squares, or Yule–Walker method.
The selected model or models should be those that might be reasonable on the basis
of step 3, including the transformation and any differencing we made on the original
data before looking at the ACF and PACF.
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Step 5: Perform tests on the residuals in order to determine whether the model is
adequate for the data. It is sensible to use a p-value threshold of 0.05 (and equiva-
lently a confidence level of 95%), since this is the most widely used value and allows
comparison to other studies. Test for the model’s in-sample fitting performance,
which is measured by the stationary R-squared and R-squared model fit, as well as
AIC and SBIC. Test for the model’s out-of-sample forecasting accuracy, the magni-
tude of error, which is measured by the root mean squared error (RMSE), the mean
absolute error (MAE), and the mean absolute percentage error (MAPE). Also check
for bias in the estimators, for instance the mean error (ME) and mean percentage
error (MPE) are used as measures of biased estimators. It is necessary to check for
the assumptions of normality and homoscedasticity, and also to check for autocor-
relations (using the Ljung–Box test), in addition to plotting ACF. It is essential to
compare AIC or SBIC values if several models have been tried (Ye et al. 2013). We
recommend this procedure, with the full range of diagnostic tests, for SARIMA
model selection for similar data in general.

If the results are unsatisfactory, we must go back to step 3 or maybe even step 2
(Chatfield 2004), and try a different set of parameters. At this stage we can select different
models if any individual coefficients fall outside some specific interval around zero. In that
case we can depend on the estimated ACF and PACF coefficient values to be more
accurate and compare them with the appropriate confidence interval, which can be
found by referring to the cumulative distribution function (cdf) for a normal distribution.
For example, the 0.975 probability point of the standard normal is 1.96. The 95%
confidence interval for ACF and PACF coefficients is therefore � 1:96=

ffiffiffi
n

p
, where n is

the number of observations in the series. Any coefficients outside this critical interval are
evidence that the coefficients are significantly different from zero at the 95% confidence
level and this interval is called the Bartlett range (Box, Jenkins, and Reinsel 1994).

3. Results

3.1. Pattern of the Erbil mean temperature

The most common patterns in time-series data are increasing or decreasing overall trend,
cycles, seasonality, and irregular fluctuations. These are identified by plotting the original
mean temperature data versus monthly recorded data over 32 years, as in Figure 1a. It appears
from Figures 1a–1f, that there is a seasonality effect on the mean temperature data. The overall
mean temperature during the studied period January 1992–November 2015 appears to exhibit
a slight trend. In addition, there is a regular cycle with a period of 12 months, rising to a peak
in July or August during the summer months and falling off in December (Figure 1d). Thus,
the seasonal time-series decomposition method is suitable for our data.

Generally, it is difficult to detect any pure cycle and trend in Figure 1a, but the spectral density
of the data in the periodogram (Figure 1b) shows a sharp spike at exactly the right frequency,
thus indicating a hidden cycle. Although we are certain of a cyclical effect in the mean
temperature data, we still used a periodogram based on Fourier decomposition; this fits the
data to a sum of sine waves of different frequencies (Gottman 1981). For strongly seasonal data,
for example, one cycle every 12 months, there will be a large spike at 1/12. The multiplicative
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seasonal decomposition has been applied on Kurdistan temperature data. Figure 1c displays the
trend and cyclical effects in the original data set; a moving average of length equal to the seasonal
order has been added. The moving average estimates the combined trend and cycle compo-
nents, which are not usually separated (Dagum 2010; Grieser, Tromel, and Schonwiese 2002),
and the seasonal indices estimate the seasonal component.

When using amultiplicativemodel, the indices are expressed as percentages. Figure 1d shows
the seasonal indices for each season, scaled such that an average season corresponds to 100. The
indices range from a low of 40.504 in January to a high of 160.589 in July. This indicates that
there is a seasonal swing from 40.504% of the average to 160.589% of the average throughout
12months. For example the index 0.91 in April indicates that the mean temperature is at 91% of
the baseline. Note the strong seasonal effect for the temperature data, rising from a low in
January to a peak in July or August and then falling off again. Finally the irregular component is
displayed in Figure 1e. For the multiplicative model, this component is also expressed on a
percentage basis, with the average value scaled to equal 100. In January 1993, the irregular
component rose to approximately 133%, implying that temperature during that month was 33%
more than expected, while in January 2008 the figure shows that the irregular component has
declined to approximately 65% less than expected. The region has faced the same situation when
in December 1994 the temperature was 64% below the average.

Figure 1. Time sequence and the decomposed plot of monthly Erbil mean temperature: (a) time-series
plot of the original data; (b) temperature periodogram; (c) plot of trend cycle component; (d) plot of
seasonal indices; (e) plot of irregular or residual component; (f) seasonally adjusted data.
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Once the decomposition has been performed, we can take the original data and divide
it by the estimated seasonal indices to obtain the seasonally adjusted data Y 0

t (Chatfield
2004), defined by

Y 0
t ¼

Yt

St
; (8)

where Yt is the seasonal component. The seasonally adjusted data is plotted in Figure 1f.
Appendix A shows the mean temperature seasonal adjusted time series data in centigrade
together with the other components. Table 5 in Appendix A explains each step of the
seasonal decomposition. The trend-cycle column shows the results of a centered moving
average of length 12 applied to temperature. The seasonality column shows the data
divided by the moving average and multiplied by 100. Seasonal indices are then computed
for each season by averaging the ratios across all observations in that season, and scaling
the indices so that an average season equals 100. The data are then divided by the trend-
cycle and seasonal estimates to give the irregular or residual component. This component
is then multiplied by 100 (see Yi-Hui 2011; Theodosiou 2011).

3.2. Fitting a SARIMA model

The model development process begins by studying the original plot, autocorrelation
function (ACF), partial autocorrelation function (PACF), and objective test of the raw
data to ensure that the assumption of stationarity is met. In Figures 2a and 2b from the
correlogram, most of the spikes in both the ACF and the PACF were found to be outside
the confidence limits. Also, the ACF and PACF show a cyclic or seasonal variation of the
correlations in the form of sinusoidal waves. Furthermore, both the ACF and the PACF

Figure 2. Correlogram plots: (a) Estimated autocorrelations for mean temperature (ACF), showing the
correlogram for the original mean temperature data. Here the 12, 24, 36, and 48 autocorrelation
coefficients are statistically significant at the 95.0% confidence level. (b) Estimated partial autocorrela-
tion (PACF). (c) Estimated autocorrelation for adjusted mean temperature (ACF). (d) Estimated partial
autocorrelation function for adjusted mean temperature (PACF).
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show decay of the spikes indicating that the series has component problems. This is a clear
indication of a seasonality of order 12.

The next step is to difference the series, by taking one regular difference to remove the
seasonal trend in the data and then one seasonal differencing to take out a seasonal
random walk type of nonstationarity. In order to make the series stationary around its
variance, we applied a natural log transformation. Following the Box–Jenkins technique
we depend on ACF or PACF plots to fit the order of the seasonal model (Chatfield 2004).

From Figures 2c and 2d we can choose our model, depending on the ACF and PACF
spikes at low lags. To determine the nonseasonal AR terms, we look at the PACF, which
shows clear spikes at lags 1, 2 and 3. Thus, the nonseasonal AR terms are determined to be
of order 3. There are three spikes at lags 1, 11, and 12 in ACF, so we have three terms for
nonseasonal MA. Now for the seasonal part of the model, in this case we look at lags 12,
24, 36, and 48 for both ACF and PACF. From the PACF we indicate that there are three
significant spikes at lags 12, 24, and 36; thus, the order of the seasonal AR is three. In the
ACF, there are two spikes at lags 12 and 48; this means that the order of the seasonal MA
is two. Therefore, our base model is SARIMA(3,1,3)(3,1,2)12. The model coefficient
summary is given in Tables 1a–1i.

SARIMA model coefficient summary, (a)–(i): Starting from SARIMA(3,1,3)(3,1,2)12, we
arrive at our final model SARIMA(0,1,2)(0,1,1)12 by, at each step, dropping the term with
the highest p value associated to it and reestimating the remaining parameters until all
p values for all estimated parameters are below 0.05.

Table 6 in Appendix B shows the estimated autocorrelations (partial autocorrelations)
between values of adjusted mean temperature in degrees centigrade at various lags. We get
two alternative models from it depending on the 95% confidence interval for ACF and
PACF coefficients. For the Bartlett range, where n = 287, they are significantly different
from zero at the 95% confidence level. The models are SARIMA(3,1,3)(3,1,3)12 and
SARIMA(2,1,3)(3,1,3)12 when we select first and second spikes in the PACF instead of
three (the PACF accounts for the correlations at all lower lags). Steps of estimating
SARIMA(3,1,3)(3,1,3)12 and SARIMA(2,1,3)(3,1,3)12 parameters are shown in Tables 7A
and 7B of Appendix C. The main conclusion between these models is that all three reduce
to the same SARIMA(0,1,2)(0,1,1)12 model, which is the model that we select. This model
is appropriate for predicting future values from 2015(Dec) to 2025(Jan–Dec). It is stable
when we delete from or add years to the original period from 1992(Jan–Dec) to 2015(Jan–
Nov) and attempt to predict the given data, for example, selecting the 1993(Jan–Dec) to
2010(Jan–Dec) period to predict year 2011, and so on. This model is a final model that
works under all conditions for various periods.

3.2.1. Model estimation and evaluation
Table 2 shows summarized results of seven tests run on the residuals to determine
whether the model is adequate for predicting the mean temperature in Erbil and on the
basis of historical data from 1992(Jan–Dec) to 2015(Jan–Nov).The magnitudes of error in
the model are 1.696°C, 1.294°C, and 7.796% for RMSE, MAE, and MAPE, respectively,
relative to the average of the predicted temperature at 21.028°C. The model shows no sign
of biased estimations across the entire duration of the prediction period (10 years), based
on the values of both ME and MPE as they are too close to zero. The fitted model is
supported by the small value of AIC and SBIC. Since no tests are statistically significant at
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the 95% or higher confidence level, the proposed model, SARIMA(0,1,2)(0,1,1)12, passes
all tests. Therefore, it is considered a good model for forecasting.

In model selection and validity model testing criteria for mean temperature forecasting,
RMSE is the root mean squared error, MAE mean absolute error, MAPE mean absolute
percentage error, ME mean error, MPE mean percentage error, AIC Akaike’s information
criterion, and SBIC Schwarz Bayesian information criterion.

The model parameters (autoregressive, moving average, seasonal autoregressive, and
seasonal moving average) are estimated using maximum likelihood estimation. The esti-
mates of the parameters are shown in Tables 1a–1i. Based on the 95% confidence level, we
conclude that all the coefficients of the SARIMA(0,1,2)(0,1,1)12 model are significantly
different from zero. Furthermore, the model reproduces the data under study very well, as
indicated by the stationary R-squared (0.514) and R-squared (0.96).

The mathematical equation for the SARIMA(0,1,2)(0,1,1)12 model’s estimated coeffi-
cients is

ð1� βÞð1� β12Þyt ¼ ð1þ θ1βþ θ2β
2Þð1þ Θ1β

12Þat )
ð1� β� β12 þ β13Þyt ¼ ð1þ θ1βþ θ2β

2 þ Θ1β
12 þ Θ1θ1β

13 þ Θ1θ2β
14Þat )

yt ¼ yt�1 þ yt�12 � yt�13 þ at þ θ1at�1 þ θ2at�2 þ Θ1at�12 þ Θ1θ1at�13 þ Θ1θ2at�14

(9)

Using the parameters we estimate from the data, this gives

yt ¼ yt�1 þ yt�12 � yt�13 þ at þ 0:588at�1 þ 0:237at�2 þ 0:933at�12 þ 0:549at�13

þ 0:221at�14 )
ŷ288 ¼ y288�1 þ y288�12 � y288�13 þ â288 þ 0:588a288�1 þ 0:237a288�2 þ 0:933a288�12

þ 0:549a288�13 þ 0:221a288�14 )
ŷ288 ¼ y287 þ y276 � y275 þ 0þ 0:588a287 þ 0:237a286 þ 0:933a276 þ 0:549a275 þ 0:221a274

(10)

Equation (10) may now be used to forecast the Erbil future mean temperature value for
the coming 10 years (121 months) starting from December 2015, ŷ288, where ŷ is the
predicted value and 288 is the number of months that have passed since January 1992
(see Appendix D).

3.2.2. Model diagnostics
In time-series modeling, the selection of a best model fit to the data is directly related to
whether the residual analysis is performed well. One of the assumptions of the SARIMA
(seasonal ARIMA) model is that, for a good model, the residuals must follow a white noise
process; that is, the residuals have zero mean, have constant variance (homoscedasticity),
and also are uncorrelated with past values. A special case of this process is when the

Table 2. Model testing.
Model RMSE MAE MAPE ME MPE AIC SBIC

SARIMA(0,1,2)(0,1,1)12 1.696 1.294 7.796 0.143 −0.294 1.078 1.116
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residuals are normally distributed, when they are said to follow a Gaussian white noise
process. It is such a process that we test for here.

For our selected SARIMA(0,1,2)(0,1,1)12 model, normality is tested by a normal prob-
ability plot as shown in Figure 3a, the standardized residual in Figure 3b, the periodogram
in Figure 3c, and in Figure 3d the histogram of residuals. The four figures of residuals for
mean temperature data shows that the residuals of the model are consistent with a normal
distribution assumption. Table 3 indicates that the SARIMA(0,1,2)(0,1,1)12 model resi-
duals are uncorrelated as well as independent for all three tests indicated.

In the residual autocorrelation and independence test for the selected model, RUNS is
the test for excessive runs up and down, RUNM the test for excessive runs above and
below median, and AUTO the Ljung–Box test for excessive autocorrelation.

In order to determine whether the residuals are randomly distributed, three tests have
been performed. In the first step, we counted how often the sequence exceeded the
median, finding 143 as opposed to 138, which is expected for a random sequence. In
the second test, we determined how often the sequence increased, finding 187 steps as
compared to the expected 182.3. Both of these tests result in a p value that is larger than
0.05, which indicates that there is no reason to reject the hypothesis of randomness at a
95% confidence level. Third, the p value (0.819) for the Ljung–Box statistic exceeds 5% as
well, indicating that there is no significant departure from white noise for the residuals;
that is, there is no indication of autocorrelation in residuals of the selected model. Thus,
the selected model SARIMA (0,1,2)(0,1,1)12 satisfies all the model assumptions.

Figure 3. Residual plot for SARIMA(0,1,2)(0,1,1)12 model: (a) normal probability plot for the residual, (b)
the standardized plot for residuals, (c) periodogram for residuals, and (d) histogram for residuals.

Table 3. Test for autocorrelation and independence.
Tests Test statistic value p value

RUNS: Runs above and below median 0.545 0.586
RUNM: Runs up and down 0.599 0.549
AUTO: Ljung–Box test 15.067 0.819

616 T. A. CHAWSHEEN AND M. BROOM

D
ow

nl
oa

de
d 

by
 [

87
.1

12
.1

54
.1

97
] 

at
 2

3:
08

 0
8 

A
ug

us
t 2

01
7 



The estimated white noise variance at 271 degrees of freedom was 0.014 and the
estimated white noise standard deviation was 0.119; also, the difference in variance and
difference in mean test were “OK,” which indicate that our selected model residuals are
homogeneous, that is, that there are no significant departures from white noise for the
residuals at 95%. The current model is adequate for the data as the selected model
SARIMA(0,1,2)(0,1,1)12 satisfies all our model assumptions (normality, uncorrelated resi-
duals, and homoscedasticity). Therefore, the selected model is considered a good model to
forecast future values.

Looking at Figure 4, the autocorrelation checks of the residuals indicate that the model
is good because they resemble a white noise process; that is, the residuals have zero mean,
constant variance, and are also uncorrelated. Since the model diagnostic tests show that all
the parameter estimates are significant and the residual series for the model are random, it
can then be concluded that a SARIMA(0,1,2)(0,1,1)12 model is adequate for the Erbil
mean temperature series. Therefore, SARIMA(0,1,2)(0,1,1)12 is used to forecast the future
mean temperature series of the Kurdistan Region.

3.3. Forecasting using SARIMA (0,1,2)(0,1,1)12

The performance of SARIMA(0,1,2)(0,1,1)12 model for the Erbil mean temperature is now
evaluated by forecasting the data one step prediction for years 2014(Jan–Dec)–2015(Jan–
Nov) to indicate the model’s adequacy and performance and for comparison purposes.
Using the selected model, the 23 months of forecast are shown in Table 4 and Figure 5.

Checking the SARIMA(0,1,2)(0,1,1)12 model by predicting the existing mean tempera-
ture data in January 2014 through November 2015, we find the following.

It appears from Figure 5 that the selected model is very well suited for predicting the
future development of the Erbil mean temperature, as the differences between the actual
data (solid line) and forecast data (dashed line) are very small; the lower line represents
their residual values as tabulated in Table 4.

Figure 6 shows the forecast values for the mean temperatures for 121 months from
December 2015 to December 2025. The forecast mean temperatures are represented by the
solid line, and the dashed lines indicate the 95% confidence band. In fact, this figure does
not give us a clear trend of future mean temperature, as it may both increase or decrease

Lag

Residual Autocorrelations for adjusted Mean Temperature in ºC

ARIMA(0,1,2)x(0,1,1)12
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Figure 4. ACF of residuals for SARIMA(0,1,2)(0,1,1)12 model.
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within the confidence limits. We therefore decided to plot the future value for the same
period using the data from January 1992 to November 2015 as a base for our forecast
instead of just using the last month of the existing data, November 2015, in order to show
the more striking graph shown in Figure 7. Table 8 in Appendix D shows the 121 months
of forecast. The forecast mean temperature in Erbil for the next 10 years looks flattened
when compared to previous values in Figure 7, meaning that the temperature is predicted
to be stable with the same pattern in the future.

Table 4. Forecast mean temperatures value (°C) for January 2014 to November 2015.
Period Actual data Forecast data Residual Period Actual data Forecast data Residual

Jan-14 9.40 8.35 1.05 Jan-15 8.07 8.56 −0.49
Feb-14 10.40 10.71 −0.31 Feb-15 9.98 9.90 0.08
Mar-14 15.10 14.12 0.98 Mar-15 13.44 13.88 −0.44
Apr-14 20.10 20.42 −0.32 Apr-15 20.47 19.04 1.43
May-14 26.05 27.20 −1.15 May-15 25.78 26.83 −1.05
Jun-14 30.30 32.19 −1.89 Jun-15 31.42 31.07 0.35
Jul-14 33.70 34.83 −1.13 Jul-15 34.34 34.63 −0.29
Aug-14 33.50 34.51 −1.01 Aug-15 34.06 34.09 −0.03
Sep-14 28.90 29.78 −0.88 Sep-15 29.60 29.58 0.02
Oct-14 24.85 23.89 0.96 Oct-15 21.50 23.97 −2.47
Nov-14 16.30 16.11 0.19 Nov-15 14.50 15.10 −0.60
Dec-14 10.00 10.61 −0.61
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Figure 5. The forecast mean temperatures values (°C) for January 2014 to November 2015.

Forecast Plot for Mean Temperature in ºC
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Figure 6. The Erbil mean temperature forecast from December 2015 to December 2025.
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The change in temperature is clear in Erbil, where the lowest temperature recorded was
5.80°C in January 2008 while the highest temperature recorded was 37.25°C in July 2000. A
change in temperature happened in August 1992, when 20.15°C degrees was recorded. The
temperatures in January, February, March, April, November, and December were below the
temperature mean of 21°C, while the other months were above the mean. From Figure 7 it
appears that the predicted mean temperature in January has decreased from 9.4°C in 2014 to
8.1°C in 2015 but is projected to rise in 2016 until 2025, while the average temperatures in
July, August, and December for the same period will be generally around 34°C, 33.4°C, and
10°C.

4. Conclusions

The temperature in the Kurdistan Region has changed similarly to many other areas in the
world, due to climate change. Many researchers have studied these phenomena in
different places by using various methods and statistical tools, among them the seasonal
time-series method. In the Kurdistan Region, studies on rainfall and on electricity demand
in both Sinjar district and Sulaymaniyah Governorate have been carried out using ARIMA
and SARIMA, respectively. Although Erbil is the capital of Iraqi Kurdistan and it shows a
significant shift in temperature over the last decades, until now no time-series-based
studies in that direction have been undertaken.

In general, the pattern of mean temperatures in the Erbil Kurdistan Region from
January 1992 to November 2015 was observed to be not stationary and increasing over
time. The nonstationarity of the mean temperature series was verified by the plot of the
sample ACF and PACFs. The data cover 287 time periods. Currently, a seasonal
autoregressive integrated moving average (SARIMA) model has been selected by fol-
lowing the procedures of the Box–Jenkins SARIMA model building. The underlying
assumption is that the best forecast for future data is given by a parametric model
relating the most recent data value to previous data values and previous noise. Each
value of mean temperature has been adjusted in the following way before the model
was fitted: (1) Seasonal and nonseasonal differences are applied to remove the effect of
trend and take out a seasonal random walk type of nonstationarity, that is, to make the
series stationary around its mean, (2) a natural log transformation was applied to make

Time Sequence Plot for Mean Temperature in ºC
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Figure 7. The Erbil mean temperature forecast from December 2015 to December 2025.
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the series stationary around its variance, and (3) a multiplicative seasonal adjustment
was applied.

Using the ACF and PACF estimated coefficient plots in Figures 2c and 2d, as well as
Tables 7A and 7B (Appendix C), three models were developed, namely, SARIMA(3,1,3)
(3,1,2)12, SARIMA(3,1,3)(3,1,3)12, and SARIMA(2,1,3)(3,1,3)12; each of them leads to the
same model, SARIMA (0,1,2)(0,1,1)12. We get this particular model based on the sig-
nificance terms in the model. Terms with p values less than 0.05 are considered statistically
significantly different from zero at the 95.0% confidence level. Starting with the base
model, SARIMA(3,1,3)(3,1,2)12, the p values for AR(3), MA(3), SAR(3), and SMA(2)
terms in the model are greater than 0.05, so they are not statistically significant. We
should therefore consider reducing the order of the terms depending on the maximum p
values among them; this is illustrated in Tables 1a–1i. Here at each step, we are dropping
the term with the highest p value associated to it and reestimating the remaining para-
meters until all p values for all estimated parameters are below 0.05.

The model diagnostics were performed through careful examination of the model
residuals. The model residuals were found to be following a white-noise process with a
mean of zero and a constant variance, hence uncorrelated. The comparison for choosing
the best model to represent the data is based on the RMSE, MAE, and MAPE values of
1.696°C, 1.294°C, and 7.796%, respectively. No bias was detected in the model, based on
the values of both ME and MPE (0.143 and −0.294, respectively), as they are close to zero.
The fitted model is supported by the small values of AIC and SBIC of 1.07 and 1.116,
respectively.

As no tests are statistically significant at the 95% or higher confidence level, the existing
model is sufficient for the data. Furthermore, the model residuals satisfy our assumptions
of normality, homoscedasticity, and being uncorrelated with past values, through a normal
probability plot, standardized residual plot, periodogram, and histogram (see Figures 3
and 4) and the Ljung–Box test. The statistical analysis leads us to conclude that there is no
reason to reject the hypothesis that the residuals follow a white-noise process at the 95%
confidence level. In addition, the value of R-squared at the 95% confidence level was 0.96,
which means that our model explains the data well. Perhaps good indicators that our
SARIMA(0,1,2)(0,1,1)12 model represents this region well are the small values of the
estimated variance and standard deviation for the model input white noise 0.014 and
0.119.

The selected model is further validated by predicting the mean temperature of January
2014 to November 2015 and reproducing the known seasonal patterns in its forecasts. This
shows that the estimated forecast mean temperature was identical or very close to the
actual real data. The pattern of mean temperatures in Erbil from December 2015 to
December 2025 was observed to be stationary, and hence does not follow any particular
pattern (neither increasing nor decreasing).

Similar investigations have been carried out in the wider region by other researchers.
Tektas (2010) used an ARIMA(2,1,1) model to predict the weather of the Göztepe Region
in İstanbul, Turkey. This involved data from 2000 to 2008 collected on a daily basis. We
note that the model fits their data less well than our SARIMA model fits ours (assessed
through the standard criteria). A SARIMA(0,0,1)(0,1,1)12 model was adopted by Sarraf,
Vahdat, and Behbahaninia (2011) to forecast average monthly temperature at Ahwaz
synoptic station in Iran, using average monthly temperature data from 1990 to 2010.
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This model was a good fit to their data, and they used it to predict the average temperature
for 2010–2011, with a particular applications for agriculture within the region that year.

Air temperature of the southern Caspian Sea region (Anzali, Ramsar, and Babolsar
synoptic stations) was modeled by Khajavi et al. (2012) in Iran. A SARIMA(1,0,0)(0,1,1)12
model was chosen to forecast future mean monthly temperature at the Anzali and
Babolsar stations, while a SARIMA(0,0,2)(0,1,1)12 model was used for the Ramsar mean
monthly temperature. They compared forecast temperature at all stations with real data
for the year 2005–2006, with good predictability.

The monthly mean temperature at the Shiraz Synoptic Station in the south of Iran was
used in a study by Babazadeh and Shamsnia (2014). They used a SARIMA(2,1,0)(2,1,0)12
model to forecast the future mean temperature in the region, using the historical mean
temperature data in the region from 21 years. Their chosen model again produced reliable
forecasts for future mean temperature in the Shiraz Region, and was also used to forecast
crop productions in the years 2008–2009 and 2009–2010.

The fitted SARIMA models that we have discussed are all quite similar in character, and
it appears that this is a good general model for fitting temperature data, providing a good
fit in the cases considered. We note, however, that in fitting the preceding models, none of
the named studies carried out the full range of tests and procedures that we outline in
section 2.3.1, which we believe should be followed (see, e.g., Chatfield 2004). We would
recommend the procedure carried out in our article for the selection of SARIMA models
for equivalent data elsewhere. Based upon our results and the model diagnostics per-
formed, the identified model was found to be a good model for predicting future mean
temperatures in the Kurdistan Region. Potential applications include the forecasting of
crop yields as in Babazadeh and Shamsnia (2014) or the prediction of power requirements
for temperature-sensitive energy usage such as heating and refrigeration, or of adverse
weather events.
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Appendix B

Table 6. Estimated autocorrelations function (ACF) and partial autocorrelations
function (PACF) for Erbil adjusted mean temperature (°C)
Lag ACF Lag PACF

1 −0.38* 1 −0.38*
2 −0.07 2 −0.25*
3 −0.07 3 −0.25
4 0.08 4 −0.11
5 −0.03 5 −0.11
6 −0.02 6 −0.11
7 0.02 7 −0.06
8 −0.02 8 −0.08
9 0.00 9 −0.07
10 0.00 10 −0.05
11 0.32* 11 0.40
12 −0.49*** 12 −0.22**
13 0.12 13 −0.10
14 0.00 14 −0.10
15 0.03 15 −0.16
16 −0.07 16 −0.16
17 0.06 17 −0.09
18 0.04 18 −0.04
19 −0.02 19 −0.03
20 −0.05 20 −0.09
21 0.02 21 −0.09
22 0.08 22 −0.02
23 −0.13 23 0.17
24 0.04 24 −0.12**
25 −0.05 25 −0.16
26 0.07 26 −0.10
27 0.04 27 −0.02
28 0.04 28 −0.01
29 −0.08 29 −0.07
30 −0.01 30 −0.04
31 0.03 31 0.02
32 0.04 32 0.00
33 −0.01 33 −0.02
34 −0.11 34 −0.10
35 0.15 35 0.22
36 −0.12** 36 −0.13**
37 0.16 37 0.02
38 −0.08 38 −0.02
39 −0.06 39 −0.08
40 −0.01 40 −0.01
41 0.05 41 −0.04
42 0.01 42 0.01
43 −0.03 43 0.02
44 0.00 44 0.02
45 0.00 45 0.01
46 0.11 46 0.06
47 −0.26 47 −0.06
48 0.20** 48 −0.10

Note. Table 6 shows the estimated autocorrelations (partial autocorrelations) between values of
adjusted mean temperature (°C) at various lags. The lag k autocorrelation (partial autocorrela-
tions) coefficient measures the correlation between values of adjusted mean temperature at
time t and time t – k (t + k).

*Nonseasonal terms.
**Seasonal terms.
***Nonseasonal and seasonal terms.
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Appendix D

Table 8. Forecast value of Erbil mean from December 2015 to December 2025.
Number of
the month Period Forecast

Lower
95% limit

Upper
95% limit

Number of
the month Period Forecast

Lower
95% limit

Upper
95% limit

288 Dec-15 10.03 7.93 12.69 333 Sep-19 29.06 19.47 43.39
289 Jan-16 8.38 6.50 10.80 334 Oct-19 23.37 15.60 34.99
290 Feb-16 9.83 7.60 12.72 335 Nov-19 15.42 10.26 23.16
291 Mar-16 13.52 10.41 17.55 336 Dec-19 10.18 6.74 15.38
292 Apr-16 18.94 14.54 24.67 337 Jan-20 8.43 5.56 12.78
293 May-16 25.58 19.58 33.43 338 Feb-20 9.89 6.50 15.04
294 Jun-16 30.67 23.41 40.20 339 Mar-20 13.60 8.92 20.75
295 Jul-16 33.70 25.63 44.30 340 Apr-20 19.06 12.45 29.17
296 Aug-16 33.38 25.31 44.02 341 May-20 25.75 16.77 39.53
297 Sep-16 28.93 21.87 38.26 342 Jun-20 30.87 20.04 47.55
298 Oct-16 23.26 17.53 30.85 343 Jul-20 33.91 21.95 52.40
299 Nov-16 15.35 11.53 20.42 344 Aug-20 33.59 21.67 52.07
300 Dec-16 10.14 7.57 13.56 345 Sep-20 29.11 18.72 45.26
301 Jan-17 8.39 6.25 11.27 346 Oct-20 23.40 15.00 36.50
302 Feb-17 9.84 7.30 13.27 347 Nov-20 15.44 9.87 24.16
303 Mar-17 13.54 10.01 18.31 348 Dec-20 10.20 6.49 16.04
304 Apr-17 18.97 13.98 25.73 349 Jan-21 8.44 5.35 13.33
305 May-17 25.62 18.83 34.87 350 Feb-21 9.91 6.25 15.69
306 Jun-17 30.72 22.51 41.93 351 Mar-21 13.62 8.57 21.65
307 Jul-17 33.75 24.65 46.21 352 Apr-21 19.09 11.97 30.43
308 Aug-17 33.43 24.35 45.92 353 May-21 25.79 16.12 41.24
309 Sep-17 28.97 21.03 39.91 354 Jun-21 30.92 19.27 49.60
310 Oct-17 23.29 16.86 32.18 355 Jul-21 33.96 21.10 54.66
311 Nov-17 15.37 11.09 21.30 356 Aug-21 33.64 20.84 54.32
312 Dec-17 10.15 7.29 14.14 357 Sep-21 29.15 18.00 47.22
313 Jan-18 8.40 6.01 11.75 358 Oct-21 23.44 14.43 38.08
314 Feb-18 9.86 7.03 13.83 359 Nov-21 15.47 9.49 25.21
315 Mar-18 13.56 9.63 19.09 360 Dec-21 10.22 6.24 16.73
316 Apr-18 19.00 13.45 26.83 361 Jan-22 8.46 5.14 13.91
317 May-18 25.66 18.12 36.36 362 Feb-22 9.92 6.01 16.37
318 Jun-18 30.77 21.65 43.73 363 Mar-22 13.65 8.24 22.59
319 Jul-18 33.80 23.72 48.19 364 Apr-22 19.12 11.51 31.75
320 Aug-18 33.49 23.42 47.88 365 May-22 25.83 15.50 43.03
321 Sep-18 29.02 20.23 41.62 366 Jun-22 30.96 18.52 51.77
322 Oct-18 23.33 16.22 33.56 367 Jul-22 34.02 20.28 57.05
323 Nov-18 15.39 10.67 22.21 368 Aug-22 33.70 20.03 56.70
324 Dec-18 10.17 7.01 14.75 369 Sep-22 29.20 17.30 49.29
325 Jan-19 8.42 5.78 12.25 370 Oct-22 23.47 13.86 39.75
326 Feb-19 9.87 6.76 14.42 371 Nov-22 15.49 9.12 26.31
327 Mar-19 13.58 9.27 19.90 372 Dec-22 10.23 5.99 17.47
328 Apr-19 19.03 12.94 27.97 373 Jan-23 8.47 4.94 14.52
329 May-19 25.70 17.43 37.91 374 Feb-23 9.94 5.78 17.09
330 Jun-19 30.82 20.83 45.59 375 Mar-23 13.67 7.92 23.58
331 Jul-19 33.86 22.82 50.24 376 Apr-23 19.15 11.06 33.15
332 Aug-19 33.54 22.53 49.92 376 May-23 25.87 14.89 44.93

Number of the month Period Forecast Lower 95% limit Upper 95% limit

378 Jun-23 31.01 17.79 54.05
379 Jul-23 34.07 19.48 59.58
380 Aug-23 33.75 19.24 59.21
381 Sep-23 29.25 16.62 51.48
382 Oct-23 23.51 13.31 41.52
383 Nov-23 15.51 8.76 27.48
384 Dec-23 10.25 5.76 18.25
385 Jan-24 8.48 4.75 15.16
386 Feb-24 9.95 5.55 17.85
387 Mar-24 13.69 7.61 24.64

(Continued )
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Table 8. (Continued).

Number of the month Period Forecast Lower 95% limit Upper 95% limit

388 Apr-24 19.18 10.62 34.63
389 May-24 25.91 14.30 46.94
390 Jun-24 31.06 17.08 56.47
391 Jul-24 34.12 18.71 62.25
392 Aug-24 33.80 18.47 61.87
393 Sep-24 29.29 15.95 53.79
394 Oct-24 23.55 12.78 43.39
395 Nov-24 15.54 8.41 28.72
396 Dec-24 10.26 5.52 19.07
397 Jan-25 8.50 4.56 15.85
398 Feb-25 9.97 5.33 18.66
399 Mar-25 13.71 7.30 25.75
400 Apr-25 19.21 10.19 36.20
401 May-25 25.95 13.72 49.07
402 Jun-25 31.11 16.39 59.03
403 Jul-25 34.18 17.95 65.08
404 Aug-25 33.85 17.72 64.68
405 Sep-25 29.34 15.30 56.24
406 Oct-25 23.59 12.26 45.36
407 Nov-25 15.56 8.06 30.03
408 Dec-25 10.28 5.30 19.94

Note. Table 8 shows the forecast values for mean temperature (°C) from December 2015 to December 2025.
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