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Abstract

Abstract: The successful invasion of a multi-species resident sys-
tem by mutants has received a great deal of attention in theoretical
ecology but less is known about what happens after the successful in-
vasion. Here, in the framework of Lotka-Volterra (LV) systems, we
consider the general question where there is one resident phenotype in
each species and the evolutionary outcome after invasion remains one
phenotype in each species but these include all the mutant phenotype-
s. In the first case, called evolutionary substitution, a mutant appears
in only one species, the resident phenotype in this species dies out and
the mutant coexists with the original phenotypes of the other species.
In the second case, called evolutionary replacement, a mutant appears
in each species, all resident phenotypes die out and the evolutionary
outcome is coexistence among all the mutant phenotypes. For general
LV systems, we show that dominance of the resident phenotype by
the mutant (i.e. the mutant is always more fit) in each species where
the mutant appears leads to evolutionary substitution/replacement.
However, it is shown by example that, when dominance is weakened
to only assuming the average fitness of the mutants is greater than
the average for the resident phenotype, the residents may not die out.
We also show evolutionary substitution occurs in two-species com-
petitive LV systems when the initial invasion of the resident system
(respectively, of the new coexistence system) is successful (respective-
ly, unsuccessful). Moreover, if sequential evolutionary substitution
occurs for either order that the two mutant phenotypes appear (called
historically independent replacement), then it is shown evolutionary
replacement occurs using a generalization of the dominance argument.

Keywords: resident and mutant phenotypes, successful invasion, evolution-
arily stable strategy, competitive Lotka-Volterra systems
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1 Introduction1

In this paper, we consider a resident system with N species together with2

a set of invaders. In order to motivate this setup, which is rooted in ecol-3

ogy and evolution theory, we provide relevant examples here. In ecological4

succession, after a disturbance (e.g. wildfire, lava flow or landslide), species5

from an existing pool colonize the new habitat. During the succession pro-6

cess, which starts with these pioneering plants and animals and stops when7

a long-term stable community emerges, a number of species replace other8

ones (Pielou 1966; Drake 1990). In ecological invasion theory, the hypothesis9

of “invasional meltdown” proposes that an invasive species in a new envi-10

ronment can facilitate the invasion of other non-native species (Simberloff11

and Von Holle 1999). However, there are also examples when multispecies12

invasion can reduce the negative impact of a single exotic plant species on13

the native (i.e. resident) plant community (Lenda 2019).14

Invasion by multiple species can happen through human activity or by15

natural causes. For instance, the latter occurred during the formation of the16

Isthmus of Panama when the migration between North and South America17

led to the last and most conspicuous wave, the great American interchange,18

around 3 million years ago (O’Dea et al. 2016; Stehli and Webb 2013). Fur-19

thermore, sympatric speciation is the evolution of a new species from a sur-20

viving ancestral species, while both live in the same habitat. An important21

question is: What is the number of mutants in a large ecosystem? The num-22

ber of co-existing mutants depends on the size of the ancestral species and23

the time duration until extinction of non-successful mutants. In particular,24

we cannot rule out the possibility that an already introduced non-successful25

mutant can survive if a new mutant arises in another species, and together26

can successfully invade the ancestral system.27

From the biological perspective, there are two main differences between28

evolutionary and ecological models. Firstly, in evolution, mutation is rare29

in two senses; the mutant occurs with low density, and there is a long time30

duration between two mutation events. In ecological models, more than one31

invasive species can be introduced at (almost) the same time and in large32

numbers either by accident or on purpose through human activities. Second-33

ly, in evolution, the mutant phenotypes are not arbitrary, contrary to ecology34

where the invasive species has arbitrary traits. Usually, during evolution, the35

mutant and the wild phenotypes do not radically differ from each other. Of-36

ten, the interaction parameters in the evolutionary model either come from37
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the same game and the phenotypes are different (see Cressman and Garay38

2003a,b; Garay 2007) or interaction parameters between resident and mutant39

phenotypes are not so different. This contrasts to models in invasion ecology40

where the phenotypic similarity between exotic and native species cannot be41

assumed. One well-known example of dissimilar phenotypes is from Australi-42

a, when the invasive mammals substitute for the native marsupials. However,43

Hutchinson (1965) has already emphasized that biotic evolution cannot be44

separated from ecology, since ecological factors (like competition and feed-45

ing) have a curtailing effect on the evolutionary success of all mutants and/or46

species.47

From the mathematical point of view, the examples mentioned above48

can be modelled by a dynamical system where several invaders appear in49

a resident system (with N species). For simplicity, we concentrate on the50

case when there is maximum of N invaders. In essence: invaders (whether51

they migrate from another ecosystem or are mutants) are introduced into52

any ecosystem, it is the ecological interactions that determine whether the53

new ecotypes die out or replace some resident species in the long run.54

In the short term, one of the fundamental results of theoretical ecology55

that has received a great deal of attention in the literature (e.g. Shigesada56

et al, 1984; van den Driessche and Zeeman, 1998) is the characterization57

of the successful invasion of a stable N−species resident system by mutant58

phenotypes. Less attention has been placed on the question of what happens59

after the successful invasion. Possible outcomes include situations where both60

residents and mutants coexist in all or some species (either by approaching a61

stable coexistence equilibrium or through more complicated dynamics such62

a periodic cycles) (Zeeman, 1993). It is also possible that the ecosystem63

collapses through species extinction (e.g. evolutionary suicide (Gyllenberg64

and Parvinen, 2001)).65

In this paper, we are more interested in the outcome whereby the resident66

phenotype dies out and is replaced by the mutant phenotype. We examine67

necessary conditions and sufficient conditions for two such situations. In the68

first, there is a single mutant phenotype in one of the species. That is, we69

consider the case where mutation is rare so that multiple mutant phenotypes70

either in the same species or in several species cannot occur at the same time.71

If the mutant can invade a stable equilibrium of the monomorphic N−species72

resident system that has all species present and the system evolves to a stable73

equilibrium of the N−species resident-mutant system with all species present74

but the one species has only the mutant phenotype, we say that “evolutionary75
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substitution” has occurred.76

At the other extreme, there are mutant phenotypes in each of the species.77

In this second case, if a stable equilibrium of the monomorphic N−species78

resident system that has all species present can be invaded by the mutants79

and the system evolves to a stable equilibrium of the N−species resident-80

mutant system with all species present but only mutant phenotypes, there81

has been an “evolutionary replacement”.82

Our investigation is based on the dynamics of evolving population sizes for83

the resident and mutant phenotypes of the N−species evolutionary ecology84

system that assumes these dynamics are of Lotka-Volterra (LV) type.1 This85

extends the work of Garay and Varga (2000) and Cressman and Garay86

(2003a) who investigated resident stability/invadability in such LV systems87

rather than substitution/replacement. In particular, the monomorphic model88

of Cressman and Garay (2003a) examines the invadability of the resident89

system when there is a single mutant phenotype in each species. As we90

will see, the methods developed there are also essential to our results on91

evolutionary substitution and replacement.92

In Section 2, we illustrate the problem by summarizing the theory for a93

single species. In Section 3, we investigate evolutionary substitution in the94

N−species LV resident-mutant dynamical system. Theorem 1 shows that,95

if the mutant can invade the N−species resident system but the resident96

phenotype cannot invade the equilibrium with all species present but the one97

species has only the mutant phenotype, then there can be no coexistence98

equilibrium with all phenotypes, an important requirement for evolutionary99

substitution to occur. Theorems 2 and 3 use this result to prove that these100

two invasion criteria combine to imply evolutionary substitution occurs for101

two-species competitive systems and for general N−species LV systems when102

the mutant phenotype dominates the resident.103

In Section 4, we concentrate on evolutionary replacement in two-species104

(i.e. N = 2) since Theorem 1 does not generalize to exclude coexistence105

equilibria when there are mutant phenotypes in both species (see Example 2106

of Section 4). Furthermore, Example 3 shows care must be taken extending107

1Here the resident and mutant phenotypes are fixed. Another approach to phenotype
evolution (that is not pursued in this article) is based on adaptive dynamics (Dercole and
Renaldi, 2008) with continuous phenotype space whereby the resident phenotypes change
continuously in the direction of nearby mutant phenotypes that can successful invade.
Adaptive dynamics also questions whether invasion leads to substitution/replacement (O-
ba and Kigami, 2018).
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the dominance concept of Section 3. However, if the successful invasions oc-108

cur through a sequence of evolutionary substitutions that does not depend on109

whether a rare mutant first appears in species one or in species two (which we110

call “historically independent replacement”), then evolutionary replacement111

ensues (see Theorem 4 there). The biological importance of this concept is112

illustrated at the end of Section 5. This final section also discusses other113

results of the paper from a biological perspective.114

2 Evolutionary Substitution and Replacemen-115

t in Single Species LV Systems116

To illustrate these evolutionary aspects, consider a single species (i.e. N = 1)117

with one resident and one mutant phenotype. In this case, evolutionary118

substitution and evolutionary replacement are equivalent since the question119

in both cases is whether the mutant phenotype becomes established in the120

system and the resident phenotype goes extinct.121

The resident system of Lotka-Volterra type is of the form122

ρ̇1 = ρ1
(
r1 +mRR

11 ρ1
)

(1)

where ρ1 is the resident density, r1 is the intrinsic growth rate and mRR
11 is123

the interaction parameter. Clearly, this system has a stable equilibrium with124

ρ∗1 > 0 (i.e. with the resident species present) if and only if the intrinsic125

growth is positive and the interaction term is negative (in which case, the126

equilibrium is ρ∗1 = −r1/mRR
11 ).2127

We assume that the difference between resident and mutant behavior is128

contained in the interaction parameters (e.g. the parameter mRI
11 models the129

linear effect that the mutant density µ1 has on the growth rate of the resident130

2The notation used here is consistent with the more complicated LV systems in the
remainder of the paper (e.g. (3) below) . It can be considerably simplified in this special
case. For instance, with r1 = r > 0 and mRR

11 = m < 0, (1) is the logistic equation (i.e.
positive intrinsic growth and negative density dependence) in more standard notation.

6



phenotype).3 The corresponding resident-mutant system is then131

ρ̇1 = ρ1
(
r1 +mRR

11 ρ1 +mRI
11 µ1

)
µ̇1 = µ1

(
r1 +mIR

11 ρ1 +mII
11µ1

)
.

(2)

If this models competition (i.e. all four interaction parameters are negative),132

it is well-known (Hofbauer and Sigmund, 1998) that the two-dimensional133

dynamical system evolves to the mutant equilibrium µ∗1 = −r1/mII
11 if and134

only if the mutant can invade the resident equilibrium but the resident cannot135

invade the mutant equilibrium.136

We say that general LV systems of the form (2) exhibit evolutionary sub-137

stitution if (i) the one-dimensional resident system and mutant system respec-138

tively each have a stable equilibrium with positive density; (ii) the resident139

(respectively, mutant) equilibrium is unstable (respectively, stable) since it140

can be invaded by the mutant phenotype (respectively, cannot be invaded141

by the resident phenotype) in the two-dimensional resident-mutant system142

(2); and (iii) after the mutant successfully invades the resident, the system e-143

volves to the mutant equilibrium. In fact, these two-dimensional LV systems144

exhibit evolutionary substitution if and only if r1 > 0,mRR
11 < 0,mII

11 < 0145

(i.e. the resident system and the mutant system each have a globally stable146

equilibrium) and mIR
11 ≥ mRR

11 ,m
II
11 ≥ mRI

11 with strict inequality in at least147

one of these two conditions.148

As interpreted by Cressman and Garay (2003a), r1 > 0,mRR
11 < 0,mII

11 < 0
are the ecological stability conditions and mII

11 ≥ mRI
11 with mIR

11 > mRR
11 if

mII
11 = mRI

11 means that the mutant phenotype is an evolutionarily stable s-
trategy (ESS). That is, in addition to ecological stability, we have evolution-
ary stability of the mutant phenotype since it is an ESS of the evolutionary
game given by the 2× 2 payoff matrix (or interaction matrix)[

mRR
11 mRI

11

mIR
11 mII

11

]
.

In game-theoretic terms (Apaloo, 2006), the final condition for evolutionary149

substitution (i.e. mIR
11 ≥ mRR

11 with mII
11 > mRI

11 if mIR
11 = mRR

11 ) is equivalent150

3That is, the intrinsic growth rate is independent of species phenotype. The discussion
here does not rely on this assumption. In fact, for the N−species systems of Sections 3
and 4, Theorems 1 to 4 do not depend on our assumption that, for each species k, the
resident and mutant phenotypes have the same intrinsic growth rate rk. Moreover, the
proofs of these results do not rely on this assumption either.
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to the mutant phenotype being a neighborhood invader strategy (NIS) of151

the resident phenotype (i.e. the mutant phenotype that is sufficiently rare152

successfully invades the resident phenotype). Strategies that satisfy both the153

ESS and NIS conditions for matrix games such as given by the 2× 2 payoff154

matrix above are known as ESNIS (Apaloo, 2006).155

In summary, there is evolutionary substitution/replacement in a single-156

species LV system if and only if157

(i) there is ecological stability in the resident system and in the mutant158

system159

(ii) the resident phenotype cannot invade the mutant phenotype (i.e. the160

mutant phenotype is an ESS of the interaction matrix for the resident-mutant161

evolutionary game), and162

(iii) the mutant phenotype can invade the resident phenotype (i.e. the163

mutant phenotype is a NIS of the resident phenotype for this interaction164

matrix).165

3 Evolutionary Substitution in N−Species166

In this section, we assume that the N−species resident system has one resi-167

dent phenotype in each species and that there is a single mutant phenotype168

in exactly one species (which, without loss of generality, we take as species169

one). If rk and ρk respectively are the intrinsic growth rate and resident phe-170

notype density of species k and µ1 is the density of the mutant phenotype,171

then the resident-mutant Lotka-Volterra system is172

ρ̇k = ρk

(
rk +

N∑
l=1

mRR
kl ρl +mRI

k1 µ1

)
(3)

µ̇1 = µ1

(
r1 +

N∑
l=1

mIR
1l ρl +mII

11µ1

)
where k = 1, ..., N . In particular, for LV systems, the individual growth rate173

of a given phenotype (e.g. ρ̇k/ρk) are linear functions of the densities of all174

phenotypes present in the system.175

One interpretation of the interaction parameters mRR
kl ,m

RI
k1 ,m

IR
1l and mII

11176

adopts the payoff terminology of evolutionary game theory (Cressman and177
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Garay, 2003a). Then mRR
kl (respectively, mRI

k1 ) is the payoff to a resident178

phenotype (or strategy) in species k when interacting with a resident pheno-179

type in species l (respectively, the intruder or mutant phenotype).4 Similarly,180

mIR
1l and mII

11 are payoffs to the mutant phenotype. That is, the superscripts181

denote the phenotypes and the subscripts are the species in the interaction182

where the first superscript and subscript specify the phenotype and species183

of the individual receiving the payoff, respectively184

The first requirement for evolutionary substitution is that this resident185

system is stable in the absence of mutants. In particular, from the biological186

perspective, this means that there is species coexistence in the residence187

system. Mathematically, there is a locally asymptotically stable equilibrium188

ρ∗ = (ρ∗1, ..., ρ
∗
N) with all components positive (i.e. ρ∗ ∈ RN

>0) for the resident189

system190

ρ̇k = ρk

(
rk +

N∑
l=1

mRR
kl ρl

)
k = 1, ..., N. (4)

To avoid technical complications, we assume that this stability is determined191

through the linearization of (4) about ρ∗. That is, we assume that the resi-192

dent system is hyperbolic (i.e. all eigenvalues of the N ×N Jacobian matrix193

of this linearization, which has kl entry ρ∗km
RR
kl , have nonzero real parts).5194

Thus this hyperbolic resident system is stable if and only if all eigenvalues195

of the Jacobian matrix have negative real parts. Let MRR be the N × N196

matrix whose entries are the payoffs mRR
kl for interactions between residents197

(similarly, M IR denotes the 1 × N matrix of payoffs to mutants interacting198

with residents etc.). Then, in particular, MRR is invertible since its deter-199

minant is non-zero and so ρ∗ = −
(
MRR

)−1
r where r is the column vector200

whose kth component is the intrinsic growth rate rk of species k.201

The next requirement is that the mutant phenotype can invade. That202

is, (ρ∗, 0) is not a locally asymptotically stable equilibrium of the resident-203

mutant system (3). (ρ∗, 0) will be unstable in the resident-mutant system204

if the invasion fitness λI1 ≡ r1 +
∑N

l=1m
IR
1l ρ

∗
l of the mutant phenotype at205

4In evolutionary game theory, it is usually assumed that each individual has one random
pairwise interaction per unit time. Here, the number of such interactions for an individual
is proportional to the density in each species.

5The Jacobian matrix at the resident equilibrium ρ∗ is

 ρ∗1 0 0

0
. . . 0

0 ρ∗N

MRR.
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this equilibrium is greater than the fitness of the resident phenotype r1 +206 ∑N
l=1m

RR
1l ρ

∗
l = 0 (i.e. if λI1 > 0). On the other hand, (ρ∗, 0) is locally207

asymptotically stable if λI1 < 0. In the intermediate case where λI1 = 0, the208

mutant phenotype is initially selectively neutral when invading the resident209

equilibrium. This case was analyzed by Cressman and Garay (2003a, 2003b)210

who showed that, for Lotka-Volterra systems, (ρ∗, 0) is invadable if and only211

if M II −M IR
(
MRR

)−1
MRI ≥ 0.212

Finally, after successful invasion by the mutant, evolutionary substitution213

requires that the resident-mutant system must evolve to a locally asymptot-214

ically stable equilibrium (0, ρ̂2, ..., ρ̂N , µ̂1) with all species present but species215

one has only mutant phenotypes. In particular, this equilibrium cannot be216

invaded by the resident phenotype of species one. That is, the invasion fit-217

ness of the resident phenotype of species one, λR1 ≡ r1+
∑N

l=2m
RR
1l ρ̂l+mRI

11 µ̂1218

cannot be positive at (0, ρ̂2, ..., ρ̂N , µ̂1).
6

219

The question arises whether hyperbolic stability of ρ∗ and (ρ̂2, ..., ρ̂N , µ̂1)220

in their respective N− dimensional Lotka-Volterra systems (which we as-221

sume from now on) implies evolutionary substitution if the mutant phenotype222

can invade (ρ∗, 0) but the resident phenotype of species one cannot invade223

(0, ρ̂2, ..., ρ̂N , µ̂1). Such an implication would generalize the evolutionary sub-224

stitution in a single species discussed in Section 2. Our first result (Theorem225

1) implies that a unique coexistence equilibrium is impossible in this case.226

Theorem 1 Suppose that E1 ≡ (ρ∗, 0) and E2 ≡ (0, ρ̂2, ..., ρ̂N , µ̂1) are equi-227

libria of the N-species resident-mutant LV system (3) with all species present228

(i.e. ρ∗i > 0 for i = 1, 2, ..., N and ρ̂j > 0 for j = 2, ..., N and µ̂1 > 0). Also229

assume that E1 and E2 are locally asymptotically stable equilibria for system230

(3) restricted to their respective N−dimensional boundary face and that the231

mutant phenotype can invade E1 but the resident phenotype of species one232

cannot invade E2.
7 Then there is no isolated interior equilibrium8 for the233

N + 1 dimensional LV system.234

Proof. Let x∗ = (x∗1, x
∗
2, ..., x

∗
N , x

∗
N+1) be an isolated interior equilibrium

6In the threshold case when the resident phenotype is initially selectively neutral (i.e.

λR1 = 0), the analogue of M II − M IR
(
MRR

)−1
MRI must now be negative (see the

B-matrix method of Cressman and Garay (2003a)).
7Under these assumptions, we say that the invasion conditions are satisfied.
8That is, every neigborhood of an equilibrium with all N + 1 components positive

contains another equilibrium.
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for (3), which for convenience, we rewrite as

ẋi = xi

(
ri +

N+1∑
j=1

aijxj

)
for i = 1, 2, ..., N + 1.

The isolatedness assumption implies that the (N + 1)× (N + 1) interaction235

matrix A with entries aij is invertible. An application of Cramer’s Rule (see,236

for instance the proof of Theorem 13.5.7 in Hofbauer and Sigmund (1998))237

shows that238

x∗i = −| A
i |

| A |
(
ri + (Axi)i

)
(5)

whenever the principal submatrix Ai of A formed by deleting the ith row and239

column is nonsingular and, apart from the i-th coordinate which is then taken240

as xii = 0, the remaining coordinates of xi = (xi1, . . . , x
i
i−1, 0, x

i
i+1, . . . , x

i
N+1)241

are defined as the coordinates of the unique solution to the linear system242

rj + (Ax)j = 0 for all j 6= i.243

From the assumptions in the statement of the theorem, x1 (respectively,
xN+1) is the equilibrium E2 (respectively, E1). Since x1 and xN+1 are locally
asymptotically stable in their respective N−dimensional boundary faces, A1

and AN+1 are both nonsingular N×N matrices and their determinants | A1 |
and | AN+1 | have the same sign. Moreover, since the mutant phenotype
can invade the resident equilibrium, rN+1 + (AxN+1)N+1 ≥ 0 and since the
resident phenotype cannot invade the mutant equilibrium, r1 + (Ax1)1 ≤ 0.
Thus

x∗1x
∗
N+1 =

| A1 || AN+1 |
| A |2

(
r1 + (Ax1)1

) (
rN+1 + (AxN+1)N+1

)
≤ 0

which contradicts that x∗ is an interior equilibrium. �244

Remark 1. The proof of Theorem 1 above relies on the nonsingularity245

of A. For general A, (5) can be rewritten as246

| A | x∗i = − | Ai |
(
ri + (Axi)i

)
. (6)

In fact, this reformulation holds whenever Ai is nonsingular for any solution247

x∗ of Ax + r = 0 (see the proof in Appendix A1).9 Thus, if A is singular,248

9The first and fourth authors refer to this general result as the Calgary Lemma, the
location where they obtained its proof that has as yet been unpublished as far as they are
aware.
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then (ri + (Axi)i) = 0 whenever Ai is nonsingular (in particular, for i = 1249

and i = N +1). That is, λI1 = 0 = λR1 . In this case, Ax1 +r = 0 = AxN+1 +r250

and so the line segment joining E2 = x1 and E1 = xN+1 are all equilibria251

of the system (3). In particular, E2 is not locally asymptotically stable in252

the extended, (N + 1)−dimensional phase space since there are arbitrarily253

close initial points on this line segment that do not evolve to it (i.e. it can be254

invaded by the resident phenotype of species one). Thus, the conclusion of255

Theorem 1 can be strengthened to show that there is no interior equilibrium256

for the N + 1 dimensional LV system when the invasion conditions hold.257

For evolutionary substitution to occur, it is necessary that no interior258

equilibrium exists. However, the converse is not true. That is, evolutionary259

substitution is not guaranteed when there is no interior equilibrium as the260

following two-species example illustrates. In particular, ecological stability261

together with the invasion conditions of Theorem 1 do not imply evolutionary262

substitution unlike the single-species result of Section 2.263

Example 1 Consider the resident-mutant three-dimensional LV system264

ρ̇1 = ρ1(−4− 3ρ1 + 7ρ2 − 4µ1)

ρ̇2 = ρ2(−1− ρ1 + 2ρ2 − µ1) (7)

µ̇1 = µ1(−4 + 7ρ2 − 3µ1) .

It is readily checked that the conditions of Theorem 1 are satisfied for265

N = 2, equilibria E1 = (ρ∗1, ρ
∗
2, 0) = (1, 1, 0), E2 = (0, ρ̂2, µ̂1) = (0, 1, 1) and266

λI1 = −4 + 7 = 3 > 0, λR1 = −4 + 7− 4 = −1 < 0. The equilibria of (7) are267

the origin O = (0, 0, 0), P+ = E2 (which are asymptotically stable10) and the268

saddle points P− = E1 and S = (0, 1
2
, 0).269

The global dynamics of (7) as well as the dynamics of the resident sub-270

system271

ρ̇1 = ρ1(−4− 3ρ1 + 7ρ2)
ρ̇2 = ρ2(−1− ρ1 + 2ρ2)

(8)

10Since 0 < ρ2 <
1
2 implies ρ̇2 < 0 and thus ρ̇2 < − 1

2ρ2 < 0 as well as µ̇1 < − 1
2µ1 < 0 ,

the origin attracts all points of the open, unbounded 3D rectangle 0 < ρ1 <∞, 0 < ρ2 <
1
2 ,

0 < µ1 <∞. The region of attraction of the origin is separated from the rest of the phase
portrait by (the non-negative part of) the two-dimensional, unbounded stable manifold of
the saddle point S.
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and of the mutant subsystem272

µ̇1 = µ1(−4− 3µ1 + 7ρ2)
ρ̇2 = ρ2(−1− µ1 + 2ρ2):,

(9)

are presented in Figure 1. The three thick gray curves portray nonplanar273

trajectories, including the outgoing trajectory of P−. Due to lack of space,274

ingoing and outgoing trajectories of the saddle point S are not shown but275

clearly indicated by trajectories nearby. All black trajectory curves are planar.276

Orientation of the trajectories is determined by the stability properties of the277

equilibria. The behavior of the trajectories far from the origin is nontrivial278

and presented in Figure 2 of Appendix A2.279

When ρ1 in (8) is changed to µ1 in (9), it is immediate that the dynamics280

in the µ1-ρ2 plane is exactly the same as in the ρ1-ρ2 plane. Please observe281

this symmetry in both Figures.282

Figure 1: Phase portrait of the replicator system (7).

[ROSS: Please check that footnote 10 is placed where Barnabas intended283

it and that the figure is okay. The difference between the gray and black284

curves is not that great. Maybe the gray ones could be some other color285
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(red?) instead? I have inserted the sentence on orientation into the text286

since figure 1 does not have arrows on the trajectories.]287

By Example 1, the invasion criteria of Theorem 1 do not imply evolution-288

ary substitution for two-species LV systems. On the other hand, if the LV289

system has more structure, the invasion criteria of Theorem 1 can be equiv-290

alent to evolutionary substitution. The following discusses two such systems291

of biological importance.292

First, for two-species competitive LV systems, evolutionary substitution293

is equivalent to the invasion criteria. These resident-mutant systems have294

the form295

ẋi = xi

(
ri +

3∑
j=1

aijxj

)
for : i = 1, 2, 3 (10)

where r1 = r3 and r2 are all positive and aij < 0 for i, j = 1, 2, 3. By the296

discussion above, the invasion criteria are necessary for evolutionary substi-297

tution. The following theorem proves the converse. In fact, for such systems,298

the invasion criteria imply that E2 = (0, ρ̂2, µ̂1) is globally asymptotically299

stable.300

Theorem 2 Suppose that E1 ≡ (ρ∗1, ρ
∗
2, 0) and E2 ≡ (0, ρ̂2, µ̂1) are equilib-301

ria of the two-species resident-mutant competitive LV system (10) with both302

species present (i.e. ρ∗i > 0 for i = 1, 2, ρ̂2 > 0 and µ̂1 > 0) and satisfying303

r1 = r3 > 0, r2 > 0 and aij < 0 for i, j = 1, 2, 3. Also assume that E1304

and E2 are locally asymptotically stable equilibria for system (10) restricted305

to their respective two-dimensional boundary face. If the mutant phenotype306

can invade E1 but the resident phenotype of species one cannot invade E2,307

then E2 is globally asymptotically stable.11308

Proof. It is well-known (e.g. Zeeman, 1993) that the dynamic behavior of309

an N+1−dimensional competitive LV system is determined by its restriction310

to an invariant N−dimensional hypersurface called the carrying simplex (van311

den Driessche and Zeeman, 1998). For the three-dimensional system (10),312

the two-dimensional carrying simplex in the first octant is homeomorphic to313

a triangle whose three edges correspond to boundary invariant curves of (10)314

11Here, and everywhere else in the present paper, both for LV and replicator systems,
global asymptotic stability (gas) of an equilibrium means that it is locally asymptotically
stable (las) and attracts all interior trajectories. Similarly, “gas restricted to a face” means
“las restricted to this face and attracts all interior trajectories on this face”.
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whose endpoints are the carrying capacities −ri/aii of the logistic equation315

for each species i on its own.316

By Theorem 1 and Remark 1, (10) has no interior equilibria. Moreover,317

E1 ≡ (ρ∗1, ρ
∗
2, 0) corresponds to a saddle point on the x1x2 edge whose stable318

manifold is this edge and E2 ≡ (0, ρ̂2, µ̂1) corresponds to a stable equilibrium319

on the x2x3 edge of the triangle. Thus, of the 33 possible classes of dynamic320

behavior classified by Zeeman (1993), the dynamics on the triangle is given321

by one of classes 9 to 12 depending on the behavior on the x1x3 edge. In all322

four classes, the equilibrium corresponding to E2 is globally asymptotically323

stable. �324

Evolutionary substitution also occurs when the mutant phenotype “dom-325

inates” the resident phenotype it substitutes for according to the following326

theorem. Here, dominance is used in the game-theoretic sense in that the327

expected payoff (or fitness) of an individual using the mutant phenotype is328

greater than that of the resident phenotype (i.e. the mutant is more fit)329

whenever some phenotypes are present (see (11) below).330

Theorem 3 As in Theorem 1, let E1 ≡ (ρ∗, 0) and E2 ≡ (0, ρ̂2, ..., ρ̂N , µ̂1)331

be equilibria of the N-species resident-mutant LV system (3) with all species332

present (i.e. ρ∗i > 0 for i = 1, 2, ..., N and ρ̂j > 0 for j = 2, ..., N and333

µ̂1 > 0). Furthermore, assume that all forward trajectories of (3) are bound-334

ed12 and that E2 is globally asymptotically stable equilibrium for system (3)335

restricted to its N−dimensional boundary face. If the mutant phenotype is336

always more fit than the resident phenotype of species one, then there is no337

interior equilibrium, the resident phenotype of species one goes extinct and338

E2 is a locally asymptotically stable equilibrium for system (3). Moreover,339

if no interior trajectories converge to the boundary of the N−dimensional340

boundary face containing E2, then evolutionary substitution occurs.341

Proof. Since the mutant phenotype is always more fit than the resident342

phenotype of species one343

r1 +
N∑
l=1

mIR
1l ρl +mII

11µ1 > r1 +
N∑
l=1

mRR
1l ρl +mRI

11 µ1 (11)

12That is, each trajectory is defined for all t ≥ 0 and all its components are less that D
for some D > 0 that may depend on the trajectory.
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for all (ρ1, ρ2, ..., ρN , µ1) with nonnegative components and at least one com-344

ponent positive. In particular, this inequality holds at E1 and E2 (i.e. λI1 > 0345

and λR1 < 0). Since λR1 < 0 and E2 is globally asymptotically stable equilib-346

rium for system (3) restricted to its N−dimensional boundary face, E2 is a347

locally asymptotically stable equilibrium for system (3).348

The resident phenotype of species one goes extinct if every interior tra-349

jectory of (3) converges to the N−dimensional boundary face with ρ1 = 0.350

Actually, this convergence holds for every trajectory with ρ1 and µ1 initially351

both positive. To see this, consider a given trajectory with ρ1 and µ1 initial-352

ly positive. The first and the last equation of system (3) yield that d
dt

(
ρ1
µ1

)
353

equals354

ρ1µ1

(
r1 +

∑N
l=1m

RR
1l ρl +mRI

11 µ1

)
− ρ1µ1

(
r1 +

∑N
l=1m

IR
1l ρl +mII

11µ1

)
µ2
1

= −ρ1
µ1

((
r1 +

N∑
l=1

mIR
1l ρl +mII

11µ1

)
−
(
r1 +

N∑
l=1

mRR
1l ρl +mRI

11 µ1

))
< 0

for all (ρ1, ρ2, ..., ρN , µ1) where ρ1 and µ1 are both positive. The final in-355

equality follows from (11). Thus, ρ1
µ1

is a strictly decreasing function a-356

long every trajectory where ρ1 and µ1 are initially both positive. For the357

given interior trajectory, define limt→∞
ρ1(t)
µ1(t)

= C ≥ 0. If C = 0, then358

limt→∞ ρ1(t) = 0 since µ1(t) is bounded. Suppose that ρ1 does not converge359

to 0 (i.e. lim supt→∞ ρ1(t) > 0). Thus, C > 0 and there exists a limit point360

of the given trajectory with ρ1 and µ1 both positive. Any trajectory that361

is initially at this limit point is also in the limit set of the given trajectory.362

Since ρ1
µ1

is a strictly decreasing at this initial point, limt→∞
ρ1(t)
µ1(t)

< C, a363

contradiction. Since the resident phenotype ρ1 goes extinct, there can be no364

interior equilibrium.365

As a by-product of the previous considerations, we see that interior trajec-366

tories converge to nonempty compact subsets of the N−dimensional bound-367

ary face ρ1 = 0 of the non-negative (N+1)−dimensional orthant. This is the368

boundary face that contains equilibrium E2. By the last assumption of the369

theorem, interior trajectories have a limit point with the properties ρ1 = 0370

and ρ2ρ3 . . . ρNµ1 > 0. Since E2 is globally asymptotically stable for system371

(3) restricted to the face ρ1 = 0 and locally asymptotically stable for the full372

resident-intruder system (3) on RN+1
≥0 , E2 is the only limit point of any given373

interior trajectory. That is, interior trajectories converge to E2. In other374
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words, evolutionary substitution occurs. �375

Remark 2. The condition in Theorem 3 that E2 is globally asymptotical-376

ly stable equilibria for system (3) restricted to its N−dimensional boundary377

face is necessary for the conclusion that evolutionary substitution occurs. To378

see this, consider Example 1 again. In it, we have that the mutant fitness379

−4 + 7ρ2 − 3µ1 is always greater than the fitness −4 − 3ρ1 + 7ρ2 − 4µ1 of380

the resident phenotype of species one when ρ1 and µ1 are positive. However,381

evolutionary substitution does not occur in Example 1 since (0, 0, 0) is local-382

ly asymptotically stable. Note that Theorem 3 also makes the biologically383

reasonable assumption that the density of each species must be bounded.384

4 Evolutionary Replacement385

In this section, we assume that the N−species system has one resident phe-386

notype and one mutant phenotype in each species. Then the resident-mutant387

Lotka-Volterra system is388

ρ̇k = ρk

(
rk +

N∑
l=1

(
mRR
kl ρl +mRI

kl µl
))

(12)

µ̇k = µk

(
rk +

N∑
l=1

(
mIR
kl ρl +mII

klµl
))

where M II ,MRI ,M IR,MRR are now all N ×N interaction matrices.389

The first requirement of evolutionary replacement is that the invasion390

criteria for system (12) be satisfied. That is, the N−dimensional resident391

system has a locally asymptotically stable interior equilibrium E1 ≡ (ρ∗, 0)392

(where ρ∗i > 0 for i = 1, 2, ..., N) that can be invaded by the mutant pheno-393

types and the N−dimensional mutant system has a locally asymptotically394

stable interior equilibrium E2 ≡ (0, µ∗) (where µ∗i > 0 for i = 1, 2, ..., N) that395

cannot be invaded by the resident phenotypes. The following example shows396

that these invasion conditions do not rule out the existence of a stable interior397

equilibrium of the resident-mutant system. Thus, the obvious generalization398

of Theorem 1 is not valid for evolutionary replacement.399
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We then examine extensions of the domination concept of Theorem 3 to400

replacement systems. In this section, we concentrate on examples with two401

species (i.e. N = 2) since Example 1 shows that care must already be taken402

when there are two species and a single mutant phenotype.403

Example 2 Consider the resident-mutant system404

ρ̇1 = ρ1(2− ρ1 − µ1)

ρ̇2 = ρ2(3− ρ2 − 2µ1)

µ̇1 = µ1(2− 2ρ1 + ρ2 − µ1)

µ̇2 = µ2(3− 3ρ1 + ρ2 − µ2).

The intrinsic growth rates of species one and two are r1 = 2 and r2 = 3405

respectively. This has an interior equilibrium at (ρ1, ρ2, µ1, µ2) = (1, 1, 1, 1)406

that is locally asymptotically stable since the only eigenvalue of the corre-407

sponding 4 × 4 Jacobian matrix is −1 (with multiplicity 4). The resident408

system has a globally asymptotically stable equilibrium at (ρ∗1, ρ
∗
2) = (2, 3)409

and the mutant system also has a globally asymptotically stable equilibrium410

at (µ∗1, µ
∗
2) = (2, 3). Moreover, to analyze whether (ρ∗1, ρ

∗
2) can be invaded, we411

calculate λI1 = 2− 2ρ∗1 + ρ∗2 = 1 > 0 and λI2 = 3− 3ρ∗1 + ρ∗2 = 0. Similarly, to412

analyze whether (µ∗1, µ
∗
1) can be invaded, we calculate λR1 = 2 − µ∗1 = 0 and413

λR2 = 3− 2µ∗1 = −1 < 0.414

Since the eigenvalue λI2 is zero (respectively, λR1 = 0), it is not imme-415

diately clear whether (ρ∗1, ρ
∗
2, 0, 0) = (2, 3, 0, 0) (respectively, (0, 0, µ∗1, µ

∗
2) =416

(0, 0, 2, 3)) can be invaded. To avoid the use of B-matrix methods for these417

neutral invasion coefficients (Cressman and Garay, 2003a), we consider in-418

stead the slightly perturbed system419

ρ̇1 = ρ1(2− ρ1 − (1 + ε)µ1)

ρ̇2 = ρ2(3− ρ2 − 2µ1) (13)

µ̇1 = µ1(2− 2ρ1 + ρ2 − µ1)

µ̇2 = µ2(3− 3ρ1 + (1 + ε)ρ2 − µ2)

with some ε > 0. The new interior equilibrium
(

1−5ε
1−2ε ,

1−6ε
1−2ε ,

1
1−2ε ,

1+4ε−6ε2
1−2ε

)
420

will still be locally asymptotically stable when ε is sufficiently small. More-421

over, the equilibrium of the resident system remains unchanged at (ρ∗1, ρ
∗
2, 0, 0) =422

(2, 3, 0, 0) as does the equilibrium for the mutant system (0, 0, µ∗1, µ
∗
2) = (0, 0, 2, 3).423
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However, it is now clear that both invader phenotypes can invade (ρ∗1, ρ
∗
2, 0, 0),424

since λI1 = 2−2ρ∗1+ρ∗2 = 1 > 0 and λI2 = 3−3ρ∗1+(1+ε)ρ∗2 = 3ε > 0. Also, at425

(0, 0, µ∗1, µ
∗
2), neither resident phenotype can invade since λR1 = 2−(1+ε)µ∗1 =426

−2ε < 0 and λR2 = 3− 2µ∗1 = −1 < 0.427

By Example 2, it is clear that more conditions are needed besides our inva-428

sion criteria in order to guarantee evolutionary replacement. One possibility429

is to assume that the mutant phenotype “dominates” the resident phenotype430

in each species as in Theorem 3 (i.e. the mutant phenotype is always more431

fit than the resident phenotype in each species). Keeping the boundedness432

assumption on forward trajectories, we see that all interior trajectories of433

the 2N−dimensional resident-mutant system converge to nonempty compact434

subsets of the N−dimensional mutant system. In particular, there are no in-435

terior equilibria. Moreover, the proof of Theorem 3 easily extends to show436

that there will be evolutionary replacement when the N−dimensional mutant437

system has a globally asymptotically stable equilibrium (µ∗1, µ
∗
2, ..., µ

∗
N) with438

all species present if interior trajectories do not converge to the boundary of439

the N−dimensional mutant system.13440

The dominance concept discussed in the previous paragraph is very strong.441

A weaker form of dominance borrowed from game theory (Hofbauer and442

Sigmund, 1998) is that some weighted average of the mutant phenotypes443

is always more fit than some weighted average of the resident phenotypes.444

This also guarantees there is no interior equilibrium of the resident-mutant445

system.14446

Unfortunately, the following example based on Akin and Hofbauer (1982)447

shows this dominance does not guarantee interior trajectories converge to the448

13Specifically, by the dominance assumption, ρi/µi for i = 1, 2, ..., N are all strictly
decreasing when ρi and µi are initially positive. Since all forward trajectories are bounded,
the proof of Theorem 3 shows that limt→∞ ρi(t) = 0 for all i (i.e. all resident phenotypes
go extinct). Moreover, since no interior trajectories converge to the boundary of the
N−dimensional mutant system, each such trajectory has a limit point in the interior of
the N−dimensional mutant face. Global asymptotic stability of (µ∗1, µ

∗
2, ..., µ

∗
N ) on this face

combined with its local asymptotic stability in the full resident-mutant system guarantees
that it is the only limit point of each interior trajectory.

14To see this, consider

(
N∏
i=1

ρwi
i

)
/

(
N∏
i=1

µvi
i

)
where wi > 0 are the weights for the

residents and vi > 0 are the weights for the mutants. These weights satisfy
∑
wi = 1 =∑

vi. In view of (12), this expression is strictly decreasing at all interior points and so
there is no interior equilibrium.
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N−dimensional mutant system.449

Example 3 Consider the two-species resident-mutant competitive system450

ρ̇1 = ρ1(1− 2ρ1 − 5ρ2 − µ1 − 5µ2)

ρ̇2 = ρ2(1− 5ρ1 − 2ρ2 − 5µ1 − µ2) (14)

µ̇1 = µ1(1− 3ρ1 − ρ2 − 2µ1 − 3µ2)

µ̇2 = µ2(1− ρ1 − 3ρ2 − 3µ1 − 2µ2).

There is no interior equilibrium since the average fitness of the mutants dom-
inates the average of the residents (i.e. 1−2ρ1−2ρ2− 5

2
µ1− 5

2
µ2 > 1− 7

2
ρ1−

7
2
ρ2−3µ1−3µ2). Since the intrinsic growth rates for both species are the same,

the frequencies xi of the four phenotypes
(
e.g. x1 = ρ1/(ρ1 + ρ2 + µ1 + µ2)

)
evolve according to the replicator equation with payoff matrix

A =


−2 −5 −1 −5
−5 −2 −5 −1
−3 −1 −2 −3
−1 −3 −3 −2


given by the interaction coefficients (Hofbauer and Sigmund, Exercise 7.5.2,
1998). If each entry of A is increased by 2 (which does not change the
replicator equation) and the variables in (14) are reordered by interchanging
ρ1 with µ2, the payoff matrix becomes

A′ =


0 −1 −1 1
1 0 −3 −3
−1 1 0 −1
−3 −3 1 0


which is the example analyzed by Akin and Hofbauer (1982). They prove that451

all interior trajectories approach a heteroclinic cycle that follows the edges of452

the three-dimensional strategy simplex (i.e. the tetrahedron) in the order of453

vertices ρ1 → µ2 → ρ2 → µ1 → ρ1. In particular, the resident phenotypes do454

not go extinct even though ρ1ρ2
µ1µ2

evolves to 0.455

In Example 3, notice that the equilibrium of the resident system (1/7, 1/7)456

for (14) can be invaded by both mutant phenotypes since λI1 = λI2 = 1−3/7−457

1/7 > 0 whereas the equilibrium of the mutant system (1/5, 1/5) cannot be458
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invaded by either resident phenotype since λR1 = λR2 = 1 − 2/5 − 5/5 < 0.459

On the other hand, these equilibria are unstable in their respective two-460

dimensional system since the determinant of the linearization is negative in461

both cases. This leaves open the possibility that combining dominance with462

conditions that these boundary equilibria are locally asymptotically stable463

in their respective two-dimensional system implies evolutionary replacement.464

As we will see in the following section, this is indeed the case for two-species465

competitive systems in biologically significant scenarios where dominance466

must occur.467

Remark 3. Before leaving this section, notice that the time-reversed
dynamics for the replicator equation of Example 3 given by the payoff matrix
−A provides an excellent illustration of evolutionary replacement. Indeed,
since the average payoff of the first two strategies dominates the average
payoff of the last two strategies, we also reverse the order of the four strategies
and analyze the payoff matrix

A′′ =


−8 −7 −7 −9
−7 −8 −9 −7
−9 −5 −8 −5
−5 −9 −5 −8


formed by subtracting 10 from each entry of −A with reordered strategies.468

The analysis of Akin and Hofbauer (1982) shows that the equilibrium of469

the replicator equation corresponding to (0, 0, 1/13, 1/13) (i.e. the frequency470

vector (0, 0, 1/2, 1/2)) is globally asymptotically stable.471

For the resident-mutant competitive system corresponding to A′′,472

ρ̇1 = ρ1(1− 8ρ1 − 7ρ2 − 7µ1 − 9µ2)

ρ̇2 = ρ2(1− 7ρ1 − 8ρ2 − 9µ1 − 7µ2) (15)

µ̇1 = µ1(1− 9ρ1 − 5ρ2 − 8µ1 − 5µ2)

µ̇2 = µ2(1− 5ρ1 − 9ρ2 − 5µ1 − 8µ2)

the residents have equilibrium 1
15

(1, 1) which is globally asymptotically stable473

on this face and invadable by the mutants since λI1,2 = 1−(9+5)/15 > 0. The474

mutants have equilibrium 1
13

(1, 1) (which is globally asymptotically stable on475

this face) and this is not invadable since λR1,2 = 1− (7 + 9)/13 < 0.476

The mutant phenotypes invade the resident system but the residents can-477

not invade the mutants. Furthermore, all interior trajectories of (15) that478

21



start close to the resident equilibrium evolve to the equilibrium of the mutant479

system. That is, the mutant phenotypes have replaced the residents.480

4.1 Historically independent replacement481

As mentioned in the Introduction (see also Section 5), if the successful inva-482

sions occur through a sequence of evolutionary substitutions that does not483

depend on whether a rare mutant first appears in species one or in species484

two, then evolutionary replacement ensues. This is shown for two-species485

competitive LV systems in Theorem 4 below.486

For two-species competitive LV systems, the invasion conditions com-487

pletely characterize evolutionary substitution by Section 3. Since we are not488

concerned about the order that mutants appear for historically independent489

replacement, we assume that the stable two-dimensional systems consisting490

of one phenotype from each species satisfy491

(i) ρ1ρ2 can be invaded by both µ1 and µ2

(ii) µ1ρ2 can be invaded by µ2 but not by ρ1 (16)

(iii) ρ1µ2 can be invaded by µ1 but not by ρ2

(iv) µ1µ2 cannot be invaded by ρ1 or by ρ2.

By Theorem 2, each subsystem consisting of three phenotypes has a globally492

asymptotically stable equilibrium where exactly one of the resident pheno-493

types goes extinct.494

The sequence of evolutionary substitutions given by rare mutations can495

then serve as a model of punctuated equilibrium based on the fossil record496

in paleontology, a concept suggested by Eldredge and Gould (1972). This497

theory claims that during a short geological time, new species arrive in rapid498

succession and contribute revolutionary morphological changes. Following499

these speciation events, an evolutionary stable ecosystem rapidly evolves,500

where lineages are in stasis. We have previously demonstrated that, in a501

two-species coevolutionary model, successful invasion is quickly followed by502

evolutionary changes in behavior, leading to a sequence of punctuated equi-503

librium (Cressman and Garay 2006). Historically independent replacement504

implies that the final outcome for the ecosystem can be predicted without505

knowing the sequence of mutations and their intermediate stasis events.506
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Theorem 4 Suppose a two-species competitive system exhibits historically507

independent replacement. In other words, the four two-dimensional faces508

ρ1ρ2, ρ2µ1, ρ1µ2 and µ1µ2 have globally asymptotically stable interior equi-509

libria that satisfy (16). Then there is no interior equilibrium where mutants510

and residents coexist. Moreover, the equilibrium (0, 0, µ∗1, µ
∗
2) with both mu-511

tants present is globally asymptotically stable for the resident-mutant system512

(12) with N = 2. That is, evolutionary replacement occurs.513

Proof. The general two-species competitive resident-mutant system has514

the form515

ρ̇1 = ρ1(r1 − a11ρ1 − a12ρ2 − a13µ1 − a14µ2)

ρ̇2 = ρ2(r2 − a21ρ1 − a22ρ2 − a23µ1 − a24µ2) (17)

µ̇1 = µ1(r1 − a31ρ1 − a32ρ2 − a33µ1 − a34µ2)

µ̇2 = µ2(r2 − a41ρ1 − a42ρ2 − a43µ1 − a44µ2)

where r1 > 0, r2 > 0 and aij > 0 for all i, j correspond to the entries of the516

interaction matrix −A. Consider the associated system517

ρ̇1 = ρ1
(
1− a11

r1
ρ1 −

a12
r1
ρ2 −

a13
r1
µ1 −

a14
r1
µ2

)
ρ̇2 = ρ2

(
1− a21

r2
ρ1 −

a22
r2
ρ2 −

a23
r2
µ1 −

a24
r2
µ2

)
(18)

µ̇1 = µ1

(
1− a31

r1
ρ1 −

a32
r1
ρ2 −

a33
r1
µ1 −

a34
r1
µ2

)
µ̇2 = µ2

(
1− a41

r2
ρ1 −

a42
r2
ρ2 −

a43
r2
µ1 −

a44
r2
µ2

)
.

This is also a competitive system where the interaction matrix −Â is given
by

âij =

{ aij
ri

if i = 1, 2
aij
ri−2

if i = 3, 4
.

System (18) has the same interior equilibria as well as the same equilibria on518

each boundary face as the original system (17).519

In general, the stability of the same equilibrium for systems (17) and520

(18) can be different. However, for each equilibrium on a two-dimensional521

boundary face, their stability properties for both systems are the same. For522

example, (0, 0, µ∗1, µ
∗
2) is an equilibrium in the interior of the mutant system523
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(17) if and only if it is for system (18). Also, (0, 0, µ∗1, µ
∗
2) is locally asymp-524

totically stable on its two-dimensional face for system (17) if and only if the525

determinant a33a44 − a34a43 of

[
−a33 −a34
−a43 −a44

]
is positive if and only if the526

determinant of

[
−a33

r1
−a34

r1

−a43
r2
−a44

r2

]
is positive if and only if (0, 0, µ∗1, µ

∗
2) is locally527

asymptotically stable on its two-dimensional face for system (18). Finally,528

(0, 0, µ∗1, µ
∗
2) can by invaded by the resident phenotype of species 1 for system529

(17) if and only if r1−a13µ∗1−a14µ∗2 > 0 if and only if 1− a13
r1
µ∗1− a14

r1
µ∗2 > 0 if530

and only if (0, 0, µ∗1, µ
∗
2) can by invaded by the resident phenotype of species531

1 for system (18).532

By Hofbauer and Sigmund (1998, Exercise 7.5.2), the dynamics of system533

(18) is the “same” as the replicator equation on the three-dimensional strat-534

egy simplex ∆4 ≡ {(x1, x2, x3, x4) | xi ≥ 0,
∑
xi = 1} with payoff matrix535

−Â. Moreover, this replicator equation is also given by a payoff matrix of536

the form B where537

B ≡


0 b12 b13 b14
b21 0 b23 b24

b31 b32 0 b34
b41 b42 b43 0

 (19)

by subtracting the diagonal entry of −Â from all entries in its column. We538

want to show the assumptions that the four two-dimensional faces ρ1ρ2, ρ2µ1,539

ρ1µ2 and µ1µ2 have globally asymptotically stable interior equilibria that540

satisfy (16) imply that this matrix game has no equilibrium in the interior541

of ∆4.542

First, globally asymptotic stability of interior equilibria on the four two-543

dimensional faces implies that b12, b14, b21, b23, b32, b34, b41, b43 are all positive.544

The other entries in B, indicated by boldface in (19), may be positive or nega-545

tive. The invasion assumptions correspond to the following eight inequalities546

in (20). For instance, the interior resident equilibrium for the replicator e-547

quation is (ρ∗1, ρ
∗
2) =

(
b12

b12+b21
, b21
b12+b21

)
. This is invadable by mutant strategy548

of species 1 if b31ρ
∗
1+b32ρ

∗
2−ρ∗1b12ρ∗2−ρ∗2b21ρ∗1 > 0, which is the first inequality549
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listed
(
i.e. b31b12 + b32b21 > b12b21

)
.550

(a) b31b12 + b32b21 > b12b21

(b) b41b12 + b42b21 > b12b21

(c) b12b23 + b13b32 < b23b32 ⇒ (c0) b23 > b13

(d) b42b23 + b43b32 > b23b32 (20)

(e) b21b14 + b24b41 < b14b41 ⇒ (e0) b14 > b24

(f) b31b14 + b34b41 > b14b41

(g) b13b34 + b14b43 < b34b43 ⇒ (g0) b43 > b13

(h) b23b34 + b24b43 < b34b43 ⇒ (h0) b34 > b24

By Akin (1980), there is no equilibrium in the interior of ∆4 if and only if551

there is some dominance relation among the four strategies. In fact, we show552

in Appendix A3 that a convex combination of the two mutant strategies553

dominates a convex combination of the two resident strategies. That is,554

for matrix B, we show dominance of the form y(row1) + (1 − y)(row2) <555

x(row3) + (1− x)(row4) for some x, y ∈ [0, 1]. Thus, the replicator equation556

has no interior equilibrium and so neither does (17).557

Given an interior trajectory of (17), the dominance in matrix B means558

that
ρ
x/r1
1 ρ

(1−x)/r2
2

µ
y/r1
1 µ

(1−y)/r2
2

is strictly decreasing. Moreover, since the trajectory con-559

verges to the carrying simplex of the competitive system (and so is bounded560

as well as bounded away from the origin), the method of proof of Theorem 3561

generalizes to show that limt→∞ ρ1ρ2 = 0. Thus, there can be no limit point562

in the interior of a three-dimensional face since this face must include the563

µ1µ2 plane in which case the only limit point is (0, 0, µ∗1, µ
∗
2). That is, if the564

trajectory does not converge to (0, 0, µ∗1, µ
∗
2), then all its limit points must be565

in the four curves of the carrying simplex contained in the ρ1µ1, ρ1µ2, ρ2µ1,566

ρ2µ2 planes. The trajectory cannot converge to an equilibrium point on any567

of these four curves since all such points have an unstable manifold of at568

least one-dimension. That is, either the trajectory converges to (0, 0, µ∗1, µ
∗
2)569

or else to a heteroclinic cycle around these four curves (in analogy to Exam-570

ple 3). This latter scenario is impossible due to the locally asymptotically571

stable equilibrium for the curve in the ρ1µ2 plane (or the ρ2µ1 plane). In572

summary, every interior trajectory converges to (0, 0, µ∗1, µ
∗
2), which is then573

globally asymptotically stable. �574
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5 Conclusion575

Our motivation is rooted in evolutionary game theory. Specifically, the ap-576

proach we adopt has parallels with invasion and stability concepts used in577

frequency-dependent selection theory modelled by evolutionary game theory.578

There, the concept of an evolutionarily stable strategy (ESS) was introduced579

by Maynard Smith and Price (1973) as a population state that cannot be in-580

vaded by any mutant strategy that is sufficiently rare. Later, Apaloo (1997)581

defined a neighborhood invader strategy (NIS) as a strategy that can success-582

fully invade all nearby strategies. The combination of these two concepts for583

matrix games yields an ESNIS (Apaloo, 2006) that exhibits the frequency-584

dependent version of evolutionary substitution. On the other hand, evolution585

works on the ecological system too, where the interactions are also density-586

dependent. As we saw in Section 2, ecological stability together with the587

mutant phenotype being an ESNIS is equivalent to evolutionary substitution588

for single-species LV systems (that also includes population density effects).589

This answers one of the questions posed by Garay (2007) (i.e. what kind of590

mutant is able to substitute for or replace the resident clone) who was also591

interested in circumstances when stable coexistence of resident and mutant592

phenotypes arises. In the present paper, we extend these concepts of sub-593

stitution and replacement to N−species LV systems, relying as well on the594

notion of evolutionary stability introduced earlier for these systems (Garay595

and Varga, 2000; Cressman and Garay, 2003a). From this perspective, the596

paper can be viewed as extending the theory of ecological and evolutionary597

stability to N−species LV systems.598

Simultaneous invasion by two species occurs naturally as the following599

example shows. When an invasive species appears, it is usually introduced600

at a low density. An important question is whether the invasive species can or601

cannot substitute for the native species. For instance, Grey squirrels (Sciurus602

carolinensis) originated in North America and are a vector for a smallpox603

virus that evolved there. Grey squirrels (and this virus) have been introduced604

in many places throughout the world (e.g. England and continental Europe)605

where they do not need large numbers to start a new population. In Great606

Britain, grey squirrels have been able to spread 17-25 times faster through607

competitive exclusion (Bertolino et al. 2008) of the red squirrel (Sciurus608

vulgaris) due to increased mortality of reds from the squirrelpox virus which609

was not resident in Europe (Sandro, 2008; Strauss, 2012). Grey squirrels do610

not die from this virus but the virus can spread from them and infect red611
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squirrels, causing death. Clearly, in this case, two species (i.e. grey squirrels612

and its virus) simultaneously invade into the European ecosystems, and the613

interactions in the whole ecosystem determine the success of grey squirrels.614

In the evolutionary process, past historical events play a crucial role in ex-615

plaining structural and functional features (Herrera 1992) in the ecosystem.616

For instance, nectarivory and pollination by birds is common in southern617

Australia, while in Europe social bees play these roles (Ford 1985). However,618

ecosytem convergence has been considered by ecologists as evidence not only619

in the present (Ojeda et al 2001) but also between the Pleistocene period620

and the present (Cowling at al. 1994, 1999). This means that under similar621

conditions (e.g. climate, soils), similar ecosystems evolve. Since mutation622

is a random process, the histories of evolution of these ecosystems are dif-623

ferent but the outcome is similar as would be expected if it is independent624

of the order mutations occur. For such biological systems, we feel that the625

concept of historically independent replacement introduced in Section 4.1 is626

important.627
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Appendix A1. Remark 1714

Proof of formula (6) in Remark 1. Here, we prove that

|A|:x∗1 = −
∣∣A1
∣∣ (r1 + (Ax1)1

)
when N = 2 and A1 =

[
a22 a23
a32 a33

]
is nonsingular. The general proof of (6)715

is a straightforward extension of the methods provided here.716

Since A1 is nonsingular, (Ax1)1 = a12x
1
2 + a13x

1
3 where x1 =

 0
x12
x13

 has

components given by the solution of

[
a22 a23
a32 a33

] [
x12
x13

]
+

[
r2
r3

]
=

[
0
0

]
.

By Cramer’s Rule,

x12 = − 1

|A1|

∣∣∣∣ r2 a23
r3 a33

∣∣∣∣ and x13 = − 1

|A1|

∣∣∣∣ a22 r2
a32 r3

∣∣∣∣
and so∣∣A1

∣∣ (r1 + (Ax1)1
)

= r1

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ r2 a23
r3 a33

∣∣∣∣− a13 ∣∣∣∣ a22 r2
a32 r3

∣∣∣∣ .
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Set W1 =

 r1 a12 a13
r2 a22 a23
r3 a32 a33

. Expanding |W1| along the first row, we obtain

|W1| = r1

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ r2 a23
r3 a33

∣∣∣∣+ a13

∣∣∣∣ r2 a22
r3 a32

∣∣∣∣ .
In particular, |W1| = |A1| (r1 + (Ax1)1).717

Since x∗ is a solution of Ax + r = 0 for N = 2, a simple rearrangement

gives W1

 1
x∗2
x∗3

 = −x∗1

 a11
a21
a31

. The first coordinate of vector

 1
x∗2
x∗3

 can

be expressed as

1 = −:
x∗1|A|
|W1|

whenever :|W1| 6= 0:.

In other words, condition |W1| 6= 0 implies formula (6) for i = 1 and N = 2.718

If |W1| = 0, there are two cases depending on the (non)singularity of A. If A719

is nonsingular, then Cramer’s Rule applies to Ax∗ = −r and yields x∗1 = 0.720

By using |W1| = |A1| (r1 + (Ax1)1) again, the nonsingularity of A1 implies721

the x∗1 = 0 = (r1 + (Ax1)1) special case of (6). In the second case where A722

is singular, then |A| = 0 and, as before, (r1 + (Ax1)1) = 0 and we are done.723

�724

Appendix A2. Example 1725

Discussion of Example 1 (continued). To describe the global phase portrait726

of the three-dimensional (3D) LV system (7) investigated in Example 1, we727

pass to the associated 4D replicator system15 (Bomze, 1983; Hofbauer and728

Sigmund, 1998)729

ẋi = xi
(
(Ax)i − x ·Ax

)
where A =


0 5 −1 −4
2 0 2 −1
3 5 0 −4
3 −2 3 0

 (21)

15We use Bomze’s normalization of choosing a11 = a22 = a33 = a44 = 0
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is the payoff matrix, x · Ax is the dot product Σixi(Ax)i of the column730

vectors x and Ax, and731

x1 =
ρ1
κ
, x2 =

ρ2
κ
, x3 =

µ1

κ
, x4 =

1

κ
(22)

with κ = ρ1 + ρ2 + µ1 + 1. When doing this, the non-negative octant
(ρ1, ρ2, µ1) ∈ R3

≥0 is replaced by the three-dimensional unit simplex

∆4 = {(x1, x2, x3, x4)T ∈ R4
≥0 | x1, x2, x3, x4 ≥ 0 and x1 + x2 + x3 + x4 = 1}

with barycentric coordinates. Clearly the vertices of ∆4 (i.e., V1 = e1, V2 =
e2, V3 = e3, V4 = e4) are equilibria of the 4D replicator system in (21). Three
nontrivial equilibria are lying on 1D edges, namely

S =
1

3

(
e2 + 2e4

)
, Q− =

1

7

(
5e1 + 2e2

)
, Q+ =

1

7

(
2e2 + 5e3

)
and two more equilibria are lying on 2D faces, namely

P− =
1

3

(
e1 + e2 + e4

)
, P+ =

1

3

(
e2 + e3 + e4

)
:.

It is an easy but somewhat lengthy task to apply the standard Grobman-
Hartman lemma in the vicinity of each equilibrium. The Jacobian is com-
puted by the general formula

Jij = δi,j
(
(Ax)i − x ·Ax

)
: + :xi

(
aij − (Ax)j − aj · x

)
:, i, j = 1, 2, 3, 4 :

where aj is the jth column of A. Eigenvectors which are not perpendicular732

to the normal vector of the 3D plane of equation x1 + x2 + x3 + x4 = 1 have733

to be disregarded. Our final result is demonstrated in Figure 2.734

In order to illustrate the behavior of the resident-mutant system (7) far
from the origin of R3

≥0, triangle V1V2V3 is replaced by the front-right-top
octant of a sphere. A quick analysis of (22) implies that the properties
observed in the last paragraph of Example 1 are lifted to the level of the
associated replicator subsystems. In particular, the x3 = 0 and the x1 = 0
restrictions of the full replicator system (21)—shown as the ‘circular sectors’
V1V4V2 and V3V4V2 in Figure 2—are dynamically the same and of Type 12
in Bomze’s classification of 2D replicator systems (see Bomze, 1983; Bomze,
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Figure 2: Schematic phase portrait of the replicator system (21).

1995); cf. with Figure 7.1 in Hofbauer and Sigmund (1998) and Figure 37
(a) in Maynard Smith (1982). The rest follows from inequalities

d

dt

(
x3
x1

)
=
x3
x1

(3x1 + x3) > 0 and
d

dt

(
µ1

ρ1

)
=
µ1

ρ1
(3ρ1 + µ1) > 0,

valid for trajectories of systems (21) and (7) with x1, x3 ∈ (0, 1) and ρ1, µ1 >735

0, respectively.16736

16The local phase portraits in the vicinity of the nine equilibria are clearly visible in
Figure 2. Note that V1 is a repellor, V4 and P+ are attractors. All the other equilibria are
saddles. Equilibria V2 and V3 have a unique ingoing trajectory each. Equilibria P− and Q+

have a unique outgoing trajectory each. Equilibria S and Q− have two outgoing and two
ingoing trajectories, respectively. On the 2D faces containing P− and P+, both P− and P+

are stable foci created by the complex eigenvalue pair −1±i
√
3

6 . The unstable eigendirection

at P− is (−11,−2, 13, 0)
T

with eigenvalue λ4 = 1. The strongly-stable eigendirection
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Appendix A3. Theorem 4737

Proof of Theorem 4 (continued). It is left to point out that a convex combi-738

nation of the two mutant strategies dominates a convex combination of the739

two resident strategies.740

741

Given a 4× 4 matrix B in (19) whose entries are subject to conditions

bii = 0 whenever i = 1, 2, 3, 4 and bij > 0 whenever i+j = 2k+1, k = 1, 2, 3

and to the conditions listed in (20), we look for dominance of the form742

y(row1) + (1− y)(row2) < x(row3) + (1− x)(row4) (23)

with some x = x∗ ∈ [0, 1] and y = y∗ ∈ [0, 1] suitably chosen.743

Each column of matrix B—more precisely, each coordinate vector of the744

row vectors in (23)—leads to a linear, strict inequality in the xy−plane. All745

in all, we are facing four open half-planes defined by the linear inequalities746

y > `1(x) = 1− xb31 + (1− x)b41
b21

, y < `2(x) =
xb32 + (1− x)b42

b12
,

y > `3(x) =
b23 − (1− x)b43

b23 − b13

, y < `4(x) =
xb34 − b24

b14 − b24

, (24)

respectively. The line of equation y = `i(x) will be denoted by Li, i =747

1, 2, 3, 4. Please note that all denominators are positive
(
for i = 3 and i = 4,748

recall that b23 > b13 by (20c0) and b14 > b24 by (20e0)
)
. As a by-product,749

both L3 and L4 have positive slopes.750

751

Our aim is to construct a solution pair x = x∗ ∈ [0, 1] and y = y∗ ∈ [0, 1]752

to the linear system of inequalities (24). Depending on the properties of the753

lines L1, L2, L3, L4, a lengthy separation of cases will be required. But first754

at P+ is (3, 2,−13, 8)
T

with λ1 = − 1
3 . The center-unstable and the strongly-unstable

eigendirections at Q− are (−85, 8, 0, 77)
T

with λ3 = 1
7 and (−31,−4, 35, 0)

T
with λ4 = 15

7 ,

respectively. The center-stable and the unstable eigendirections at Q+ are (−7, 4, 3, 0)
T

with λ3 = − 5
7 and (0, 8,−85, 77)

T
with λ4 = 1

7 , respectively. The 2D stable quadrant at

S is the convex span of eigendirections (0, 1,−9, 8)
T

and (−9, 1, 0, 8)
T

belonging to the
double eigenvalue λ1,2 = − 1

3 . Finally, let us note that all α-limit sets and all ω-limit sets
of (21) are one of the nine equilibria.
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we collect some inequalities which are valid for all cases to be investigated.755

756

Note that L2 is always strictly above L1 for 0 ≤ x ≤ 1 since
(
0, 1 − b41

b21

)
757

and
(
1, 1− b31

b21

)
are points on L1,

(
0, b42

b12

)
and

(
1, b32

b12

)
are points on L2 and758

1 − b41
b21

< b42

b12
by (20b) and 1 − b31

b21
< b32

b12
by (20a). Similarly, note that L3759

is strictly to the right of L4 for 0 ≤ y ≤ 1 since
(
1− b23

b43
, 0
)

and
(
1− b13

b43
, 1
)

760

are points on L3,
(
b24

b34
, 0
)

and
(
b14
b34
, 1
)

are points on L4, and 1− b23
b43

> b24

b34
by761

(20h) and 1− b13

b43
> b14

b34
by (20g). A major consequence is that geometrically,762

our task is to find a point (x∗, y∗) in the unit square [0, 1]2 that is (strictly)763

above L1, below L2, to the left of L3, and to the right of L4.764

Set y0i = `i(0) and y1i = `i(1), i = 1, 2, 3, 4. Let x0i be the x−coordinate765

of Li at y = 0. Let x1i be the x−coordinate of Li at y = 1.
(
If the slope of Li766

is zero—which may happen only for i = 1 and i = 2—then x0i and x1i are not767

defined. In what follows we shall give a special attention to this degenerate768

possibility.
)

Using the new notation, our results so far can be rewritten as769

y12 > y11 , y02 > y01 , x04 < x03 , x14 < x13 . (25)

Observe that L2 and L4 both have positive height at x = 1
(
i.e. y12 =770

b32
b12

> 0 and y14 = b23−b24

b14−b24
> 0 by (20h0) and (20e0)

)
and that the heights771

of L1 and L3 are both less than 1 at x = 0
(
i.e. y01 = 1 − b41

b21
< 1 and772

y03 = b23−b43
b23−b13

< 1 by (20c0) and (20g0)
)
:773

y12 > 0 , y14 > 0 , y01 < 1 , y03 < 1. (26)

In view of inequalities (20c), (20e), (20h), (20g), we obtain that774

y12 > y13 > 0 , y01 < y04 < 1 , x04 < x03 < 1 , x13 > x14 > 0. (27)

Combining the very first inequalities in (25) and in (27), we conclude that775

y12 > max{y11, y13} > 0. (28)

Note that y14 > 0 is equivalent to x04 < 1 and y14 ≤ 1 is equivalent to776

x14 ≥ 1. There are several equivalencies of the types above, e.g. the equiva-777

lence between x13 > 0 and y03 < 1 etc.778

779

From now on, we have to distinguish CASES 1,2,3,4 depending on the780

sign of the slopes of L1 and L2.781

782
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CASE 1. Assume that L1 and L2 have nonnegative slopes.783

CASE 2. Assume that L1 has negative slope and L2 has nonnegative slope.784

CASE 3. Assume that L1 has nonnegative slope and L2 has negative slope.785

CASE 4. Assume that L1 and L2 have negative slopes.786

787

In view of (24), Slope(L1) = b41−b31

b21
and the Slope(L2) = b32−b42

b12
.788

Within each CASE, recalling y12 > 0 and y14 > 0 from (26), we have
three subcases according to

(i) 0 < y14 ≤ 1 , (ii) 0 < y12 ≤ 1 & y14 > 1 , (iii) y12 > 1 & y14 > 1.

In Cases 1(i), 2(i), 3(i), 4(i), 1(ii), 2(ii), 3(ii), and 4(ii), our choice for x =
x∗ ∈ [0, 1] and y = y∗ ∈ [0, 1] will be

(x∗, y∗) = (1,min{y12, y14} − ε) where ε > 0 is sufficiently small.

In view of inequality (28) and assumption 0 < y14 ≤ 1 (for (i)) or assumptions789

0 < y12 ≤ 1 and y14 > 1 (for (ii)), (x∗, y∗) is above L1, below L2 and to the790

right of L4. Thus, the mutant strategy of species 1 will dominate a convex791

combination of the two resident strategies if (x∗, y∗) is to the left of L3. That792

is, it remains to check that793

y14 > max{y11, y13}. (29)

Case 1(i). Recall that y14 ≤ 1 is equivalent to x14 ≥ 1. With the help794

of a little plane geometry, y14 > y13 is implied17 by x04 < x03 < 1 and795

1 ≤ x14 < x13. In order to prove inequality y14 > y11, the cases Slope(L1) > 0796

and Slope(L1) = 0 will be considered separately. Note that the lines L2, L3,797

and L4 are already fixed. If Slope(L1) > 0, then x11 is defined and satisfies798

x14 < x11. In fact, x14 = b14
b34

< b41
b41−b31

= x11 follows directly from assump-799

tion b41 > b31 and (20f). Combining 1 ≤ x14 < x11 and y01 < y04 < 1 (the800

second chain of inequalities in (27)), inequality y14 > y11 follows by an ele-801

mentary geometric argument for two lines in the plane. The degenerate case802

Slope(L1) = 0 is easier. Then x11 does not exist but y11 = y01 < y04 < y14803

and we are done.804

805

17Note that a purely algebraic proof of inequality y14 = b34−b24

b14−b24
> b23

b23−b13
= y13 is

considerably harder. Elementary examples show that y14 ≥ y13 does not follow from
x04 < x03 < 1 and 0 < x14 < x13. Thus the equivalence between y14 ≤ 1 and x14 ≥ 1 (due
to the fact that the slope of L4 is positive) leads to a crucial improvement of (27).
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Case 1(ii). By using (28), both y11 < 1 and y13 < 1 follow from assump-806

tion 0 < y12 ≤ 1. Since y14 > 1, we conclude that inequality (29) holds true807

in the slightly stronger form y14 > 1 > max{y11, y13}.808

809

The proof of inequality y14 > y11 in Case 1(i) above works also in Case810

3(i). For the remaining Cases 2(i) and 4(i), the slope of L1 is negative811

(and the slope of L4 is positive). Thus y14 > y11 is a direct consequence of812

inequality y01 < y04 in (27). Fortunately, the proofs of inequality y14 > y13813

are the same in Cases 1(i), 2(i), 3(i), and 4(i). Moreover, the proof in Case814

1(ii) can be repeated in Cases 2(ii), 3(ii), and 4(ii), too. Absolutely no815

modifications are needed.816

Thus only Cases 1(iii), 2(iii), 3(iii), and 4(iii) are left. We claim that an817

(x∗, y∗) in the unit square of the form (x∗, 1) will work in all these cases. Re-818

call that, by assumption, y12 > 1 and y14 > 1. Similarly, y13 > 0 by (27). In819

what follows, inequalities from (25)–(27) will be recalled without any further820

notice.821

822

Case 1(iii). If y11 < 1 and y13 < 1, then we can take (x∗, y∗) = (1, 1) (i.e.823

the mutant phenotype of species 1 dominates its resident phenotype).824

If y11 ≥ 1, both the existence of x11 and inequality 0 < x11 ≤ 1 are implied825

by y01 < 1 ≤ y11. As a by–product, we obtain that Slope(L1) > 0. Recall826

that 0 < x14 < x13. The argument we used in Case 1(i) leads to x14 < x11827

again. In what follows we distinguish two cases according as Slope(L2) > 0828

or Slope(L2) = 0. Suppose that Slope(L2) > 0. Then y01 < y02 < y12829

and y11 < y12 give rise both to the existence of x12 and to inequality x12 <830

x11. Since 0 < max{1, y13} < y12 and x02 < x03
(
i.e. −b42

b32−b42
< 1 − b23

b43
831

by (20d) when b32 − b42 > 0 which is equivalent to Slope(L2) > 0
)

with832

x03 < 1, also inequality x12 < x13 holds true. All in all, we arrived at833

the chain of inequalities 1 ≥ min{x11, x13} > max{0, x12, x14} and can take834

(x∗, y∗) = (min{x11, x13} − ε, 1). In the degenerate case Slope(L2) = 0, we835

have 0 < x11 ≤ 1, x14 < x11 and 0 < x14 < x13. In particular, 0 < x14 <836

min{x11, x13} ≤ 1. Given x ∈ [0, x11) arbitrarily, (x, 1) is (strictly) below L2837

and above L1. For x ∈ (x14, x13), (x, 1) is to the left of L3 and to the right838

of L4. Thus the choice (x∗, y∗) = (min{x11, x13} − ε, 1) is still possible.839

If y11 < 1 and y13 ≥ 1, consider first the special case Slope(L1) ≥ 0 and840

Slope(L2) = 0. Since y11 < 1 < y12, all points on the top edge of the unit841

square (i.e. for 0 ≤ x ≤ 1 and y = 1) are (strictly) below L2 and above842
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L1. Combining inequalities 0 < x14 < x13 and y03 < 1 ≤ y13, we arrive at843

0 < x14 < x13 ≤ 1. In particular, we can take (x∗, y∗) = (x13 − ε, 1). Now844

we turn our attention to the special case Slope(L1) > 0 and Slope(L2) > 0.845

Thus `1, `2, `3, `4 are strictly increasing functions. This implies the existence846

of the intersection points x11, x12, x13, x14. Clearly 0 < x14 < x13 ≤ 1. The847

derivation of inequalities x14 < x11 and x12 < x13 is exactly the same as in848

the case y11 ≥ 1 above. The remaining inequality x12 < x11 follows from the849

chains of inequalities y01 < y02 < y12, y01 < y11 < 1 < y12 via an easy geo-850

metric argument. Depending on the relative position of y02, y11 and 1 in the851

open interval (y01, y12), we have to consider three separate subcases, namely852

y11 < 1 ≤ y02, y02 ≤ y11 < 1 or y11 ≤ y02 ≤ 1. (If y11 ≤ y02 ≤ 1, then one of853

the inequalities should be strict.) In each of the three subcases, we arrive at854

inequality x12 < 1 < x11. Again, an appropriate choice in the unit square is855

(x∗, y∗) = (min{x11, x13} − ε, 1). Finally, consider now the remaining special856

case Slope(L1) = 0 and Slope(L2) > 0. As before, 0 < x14 < x13 ≤ 1 and857

x12 < x13 (and y11 < 1, y12 > 1). For x ∈ (x14, x13), (x, 1) is to the left of858

L3 and to the right of L4. Given x ∈ (x12, 1] arbitrarily, (x, 1) is (strictly)859

below L2 and above L1. Thus the choice (x∗, y∗) = (x13−ε, 1) is appropriate.860

861

Case 2(iii). If Slope(L1) < 0 and Slope(L2) = 0, then 1 > y01 > y11 and862

y02 > y12 > 1. Thus all points on the top edge of the unit square are (strictly)863

above L1 and below L2. Since 0 < x14 < x13 and x14 < 1 (by using y14 > 1864

and Slope(L4) > 0), we can take (x∗, y∗) = (x14 + ε, 1). If Slope(L1) < 0865

and Slope(L2) > 0, then x12 exists and (by using y12 > 1) satisfies x12 < 1.866

Similarly, x14 < 1 and x11 < 0. As in the proof of Case 1(iii), inequalities867

x02 < x03 < 1 and max{1, y13} < y12 imply via some geometry that x12 < x13.868

In view of 0 < x14 < x13, we can take (x∗, y∗) = (max{x12, x14}+ ε, 1). Note869

that the choice (x∗, y∗) = (min{1, x13} − ε, 1) is also possible.870

871

Case 3(iii). Since Slope(L2) < 0, we have y02 > y12. As a trivial conse-872

quence of assumption y12 > 1, all points on the top edge of the unit square873

are (strictly) below L2. In addition, x12 > 1. Similarly, assumption y14 > 1874

implies that x14 < 1. Recall that, from (27), 0 < x14 < x13. Last but not875

least, the proof of inequality x14 < x11 in Case 1(i) with Slope(L1) > 0 can876

be repeated and leads to (x∗, y∗) = (x14+ε, 1). If Slope(L1) = 0, then y01 < 1877

implies that the choice (x∗, y∗) = (x14 + ε, 1) is still possible.878

879

Case 4(iii). Every point on the top edge of the unit square is (strictly)880
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above L1 and below L2. Recall that 0 < x14 < x13 and note that x14 < 1 by881

assumption y14 > 1. As above, we can take (x∗, y∗) = (x14 + ε, 1). �882
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